Краны шаровые для отопления: Какие шаровые краны лучше для системы отопления

Содержание

Краны для радиаторов отопления: какие лучше, как поставить?

Казалось бы, чего проще – подобрать и установить краны для радиаторов отопления в частном доме или квартире. Но представленный в торговой сети ассортимент радиаторной арматуры неожиданно широк, что ставит в тупик рядового обывателя, не разбирающегося в вопросах водяного отопления. Отсюда и цель данной статьи – помочь разобраться людям, какие краны надо ставить на батареи и для чего они служат в отопительных системах различных типов.

Зачем на радиаторах краны

Каждый отопительный прибор – это отдельный элемент системы, нуждающийся в настройке и периодическом обслуживании. Если же управлять расходом теплоносителя через батареи в зависимости от потребности в тепле, то можно добиться хороших результатов в плане экономии энергоносителей. То есть, радиаторные вентили и краны для отопления призваны решать такие задачи:

  1. Полное отсечение отопительного прибора от системы.
  2. Ограничение протока теплоносителя через батарею.
  3. Изменение расхода теплоносителя в зависимости от внешних условий.
  4. Спуск воздуха из радиатора и трубопроводной сети.

Есть масса ситуаций, при которых без отключения батареи обойтись сложно. К примеру, исправно работающее централизованное отопление посреди весны, когда на улице уже тепло, а в квартире просто жарко. Другой случай – необходимость снятия отопительного прибора с целью замены, промывки или ремонта. При отсутствии запорной арматуры осуществить любое действие с радиатором становится проблематичным.

Вентили ставят и на батареи в стиле ретро

Ограничение протекающего теплоносителя осуществляется с целью балансировки индивидуального отопления в частном доме или квартире. Неважно, какой тип системы отопления у вас используется, без балансировки с помощью вентилей первые батареи всегда получат большее количество воды, чем последние. Ограничить расход теплоносителя в начале сети и тем самым уравнять все приборы между собой – это задача регулирующей радиаторной арматуры.

Автоматическое управление расходом поступающего теплоносителя – это способ сэкономить энергоносители, используемые для обогрева дома. Если каждый кран на батарее отопления станет поддерживать установленную температуру воздуха в помещении, управляя течением воды через радиатор, то в целом система израсходует лишь необходимое количество тепла, не больше. А это немалая экономия.

Ну и проблема выпуска воздуха при заполнении системы или в период эксплуатации тоже решается за счет специальных воздушных кранов, устанавливаемых на все современные радиаторы. Ниже предлагается перечень разновидностей запорно-регулировочной арматуры, перечисленной в том же порядке, что и решаемые ею задачи:

  1. Полуоборотные шаровые краны в прямом и угловом исполнении. Изготавливаются из латуни, бронзы или полипропилена с металлической вставкой.
  2. Балансировочные вентили для радиаторов – прямые и угловые.
  3. Вентили регулировочные с термоголовками (термостатические клапаны).
  4. Спускные воздушные краны – автоматические и ручные.

Для справки. Некоторые домашние умельцы применяют для присоединения отопительных приборов трехходовые смесительные клапаны. Но такое решение неоправданно дорого и на практике используется редко.

Теперь следует рассмотреть подробно, какие краны лучше ставить на радиаторы в различных условиях и обстоятельствах. Некоторые варианты наглядно показаны на видео:

Установка шаровых кранов на батареи

Обычный шаровой кран предназначен только для переключения в 2 положения: «открыто» и «закрыто». Регулировать протекание теплоносителя через радиатор с его помощью нельзя, только перекрывать. Ниже на рисунке представлена простая схема подключения отопительного прибора с этим видом арматуры:

Предлагаемая схема – лучший вариант нерегулируемого подключения радиатора к стоякам центрального отопления в квартире. Балансировать ее вам все равно не придется, а ставить термостатический клапан бессмысленно из-за плохого качества теплоносителя. Вместо шарового крана на выходе также практикуется монтаж так называемого запорного клапана, его отличие лишь во внешнем виде.

В зависимости от компоновки приборов и труб отопления можно подобрать угловой кран для радиатора с декоративным покрытием или без такового. Также при выборе изделия рекомендуется обращать внимание на рабочее давление, указанное на корпусе изделия или в его паспорте. Оно должно соответствовать давлению в отопительной сети многоквартирного дома.

Совет. Выбирайте для монтажа на радиатор хорошие краны из толстостенной латуни и соединением с накидной гайкой – американкой. Она позволит быстро отсоединить подводки без вращения элементов. На однотрубном стояке не забудьте установить байпас с небольшим смещением в сторону от основной трубы.

Балансировочный вентиль

Вентиль для регулировки отопления по конструкции отличается от обычного шарового тем, что может плавно перекрывать проходное сечение за несколько оборотов. Причем после балансировки положение вентиля можно зафиксировать, дабы никто случайно не нарушил настройки. Данный вид регулировочных кранов ставится на выходе из радиатора, как показано на схеме:

Здесь показано присоединение к двухтрубной горизонтальной системе, наиболее распространенной в частных домах и квартирах с индивидуальным отоплением. Кстати сказать, принцип монтажа арматуры при однотрубной схеме остается таким же. На подающей подводке ставится обычный шаровой, а на обратной – регулировочный кран. В том случае, когда в двухэтажном доме имеет место система с вертикальными стояками, то схема монтажа сопутствующей арматуры выглядит так:

Принцип подбора изделий – такой же, как в предыдущем разделе. Прямое или угловое исполнение принимается в зависимости от компоновки оборудования и трубопроводов, так же важно при сборке использовать американки. Особое внимание обращайте на качество литья и толщину латунных стенок арматуры. Если у вас проложены сети из полипропиленовых труб, не спешите покупать ППР-краны, лучше поставить переходники и надежные металлические изделия.

Совет. Балансировочные вентили ставятся на все радиаторы, кроме самого последнего, находящегося в тупике ветви. На подводках к нему достаточно поставить простые шаровые краны.

Использование вентилей с термоголовками

Это самые лучшие краны, которые только можно поставить на радиаторы в системе отопления частного дома. Настроенная на определенную температуру воздуха, термоголовка воздействует на шток клапана, заставляя его открывать или закрывать свое проходное сечение. Таким образом происходит автоматическое количественное регулирование теплоносителя, проходящего через отопительный прибор.

Термостатический клапан устанавливается на подающей подводке к батарее, а на обратной ставится блансировочный вентиль. Ошибочно считать, что балансировка системы будет автоматически осуществляться  термоголовками, вентили нужны в любом случае. Установка вместо них обычных шаровых кранов допускается при централизованном отоплении либо в системах с попутным движением теплоносителя (петля Тихельмана). Но регулировать расход теплоносителя с помощью шарового крана недопустимо, да и не получится.

Совет. Большинство моделей термоклапанов имеют режим механической блокировки проходного сечения. Если вам достались изделия без подобного режима, то для обслуживания батареи придется поставить дополнительный отсекатель, как это изображено на схеме:

Воздушные краны и радиаторная гарнитура

Практически во всех современных радиаторах предусматривается возможность установки ручных кранов Маевского для сброса воздуха. Некоторые производители даже комплектуют ними свои изделия. По желанию вместо ручного воздухоотводчика можно поставить и автоматический, но на практике это выглядит не слишком презентабельно.

В последнее время все более популярной становится прокладка отопительных магистралей ниже уровня пола и применение радиаторов с нижним подключением. Тогда между батареей и полом остается небольшой просвет, куда не всегда можно поместить какую-либо арматуру. На этот случай есть специальная гарнитура подключения со встроенными кранами, показанная на картинке (слева):

Справа изображена гарнитура для нижнего подключения обычного радиатора с боковыми пробками, в ней тоже имеются вентили плюс реализована возможность присоединения термоголовки. Подобные решения выглядят очень эстетично, но потребуют максимальных финансовых затрат. Больше информации о гарнитуре показано на видео:

Заключение

Какие поставить краны для радиаторов отопления, зависит от конкретных условий в каждом отдельно взятом случае. Когда не нужно никакое регулирование, то достаточно подключить отопители через простую запорную арматуру, она будет работать только на отключение прибора. Балансировка или автоматическое управление температурой в доме потребуют установки соответствующих вентилей.

шаровые запорные вентили, как выбрать


Содержание:


Современное эффективное отопительное оборудование используется, как правило, в системах закрытого типа с принудительным типом циркуляции теплоносителя. Чтобы такое отопление функционировало правильно, его оборудуют всевозможными запорными элементами. В данной статье речь пойдет о том, какие краны лучше ставить на радиаторы отопления в зависимости от их материала и типа системы. При этом разновидность запорной арматуры определяется условиями, в которых она будет использоваться.



Стоит отметить, что морально устаревшие и неэффективные отопительные системы с обвязкой из стальных труб используются все реже и реже. Они предполагают естественный тип циркуляции воды в отопительном контуре, то есть, теплоноситель передвигается по трубам благодаря гравитационным силам. Никакие запорные элементы в таких системах не устанавливают, а если необходимо снизить скорость потока, то на конкретном участке ставят трубы меньшего диаметра.


Обе описанные системы отопления чаще всего оборудуют такими элементами, как радиаторы. Их задача – увеличение теплоотдающей поверхности и более качественный обогрев помещения.



Радиаторы отопления применяются в следующих случаях:

  • в частных домах;
  • в многоэтажных домах, подключенных к автономной котельной;
  • в квартирах, обогреваемых от централизованной городской теплосети.

Батареи, подключенные к центральному отоплению


В данной ситуации моноблочные или секционные радиаторы подключается, как правило, шаровыми кранами. Они не дают возможности регулировать поток теплоносителя, а всего лишь позволяют отключить конкретный радиатор от общей отопительной системы.


Причины для перекрытия крана на радиаторе могут быть следующими:

  • необходимо получить доступ к стене для проведения косметического ремонта в комнате;
  • радиаторы (особенно чугунные) нуждаются в промывке и удалении известкового налета;
  • батарея начала течь и нуждается в ремонте;
  • принято решение о замене радиатора.



Стоит отметить, что при отключении радиатора в системах, где в отопительном стояке нет перемычки, тепла лишаются и жители соседней квартиры. Поэтому при установке шарового крана для радиатора желательно предусмотреть байпас, то есть дополнительный контур с запорно-регулирующим элементом.

Применение радиаторов в автономных отопительных системах


Если речь идет о подключении жилья к небольшим автономным котельным, для учета потребляемого тепла устанавливают специальные счетчики. Чтобы эффективно использовать ресурсы и не переплачивать, в квартирах рекомендуется установка регулирующей арматуры в процессе монтажа отопительных радиаторов и систем теплых полов.


Запорно-регулирующая арматура бывает двух видов – клапаны и вентили.


При использовании клапана для биметаллических радиаторов предварительную настройку выполняют вручную, а дальнейшее функционирование системы происходит в автоматическом режиме. Клапан регулируется термостатической головкой, которая считывает показания температуры воздуха в помещении. Если предполагается монтаж батареи в углублении стены, или же рядом расположены тяжелые сложные шторы, для удобства управления клапаном монтируют выносной датчик.



Как правило, батарея подключается с помощью двух запорных устройств. Сверху устанавливают клапан с термоголовкой, а снизу — запорный вентиль для радиатора отопления. Запорный шток вентиля обычно прикрыт специальной заглушкой.


Обратите внимание, что перекрытие крана для нижнего подключения радиаторов отопления выполняют лишь в некоторых ситуациях. В связи с этим шток запорного вентиля всегда поднят на максимальную высоту, а передвинуть его можно только шестигранником.

Использование батарей отопления в частном доме


Отопительные котлы, установленные в частных домах, обычно оборудованы программируемой автоматикой и набором метеозависимых датчиков. В связи с этим, устанавливать отдельные краны для алюминиевых радиаторов отопления на каждом приборе нет необходимости.



Достаточной мерой в данном случае будет установка одного вентиля на подающей трубе в верхней точке контура и запорного вентиля на каждом устройстве. Такая система целесообразна с точки зрения экономии, поскольку клапаны стоят намного дороже вентилей. К тому же, программируемое управление котлом позволяет добиться аналогичного эффекта.

Система отопления с полипропиленовыми комплектующими


Принцип, как выбрать шаровые краны для отопления, основывается еще и на типе материала, из которого такая система изготовлена. Так, если отопительный контур сделан из полипропилена, то наряду с традиционными запорными элементами, нужно использовать полимерные шаровые краны и вентили.



По принципу функционирования данные устройства ничем не отличается от латунных изделий, а вот цена на них существенно ниже.

Подключение батарей


Как правило, современные радиаторы имеют особые технологические отверстия с нарезанной изнутри резьбой для врезки в центральный трубопровод. В связи с этим, краны для радиаторов в большинстве случаев имеют особое разъемное соединение – американку.



Это специальный штуцер с внешней резьбой, конусный конец которого стыкуют с седельной зоной корпуса арматуры. Накидная гайка обеспечивает фиксацию и быстрый демонтаж.


Чтобы накрутить штуцер американки на резьбу радиатора используют либо шестигранный, либо многоступенчатый гаечный ключ, исходя из формы сечения штуцера.

Разновидности запорных элементов – прямые и угловые


Зачастую проходящие по квартире коммуникации очень сильно портят внешний вид комнаты. Чтобы как-то замаскировать отопительные трубы в нишах под окнами или в штробах в стенах, понадобятся специальные угловые варианты запорно-регулирующих вентилей. Благо, производители сейчас предлагают широкий ассортимент таких изделий, и можно подобрать угловой радиаторный кран под свои потребности.



Определиться, какой именно вариант запорных элементов вам понадобится, можно будет только после детального изучения конфигурации системы и учета ряда факторов.


Немаловажную роль в процессе подбора крана играет удобство его монтажа. Кроме того, значение имеет предназначение запорно-регулирующей арматуры, то есть в каких целях они будут установлены, а также тип источника тепла.


Повышение ресурсной надежности полипропиленовых шаровых кранов

Полипропиленовый кран VALTEC

Напорные полипропиленовые трубопроводы благодаря своей дешевизне и относительной простоте монтажа прочно завоевали своё место во внутридомовых инженерных системах.

Кроме непосредственно самих труб и фитингов, соединяемых методом полифузионной сварки, стала применяться и широко использоваться также и специальная полипропиленовая арматура для таких трубопроводов: шаровые краны, вентили, фильтры, коллекторы и обратные клапаны.

Полипропиленовые шаровые краны являются наиболее распространенным видом арматуры, применяемой в системах полипропиленовых трубопроводов. Они устанавливаются и на каждом вводе в квартиру, и на разводящих трубопроводах, и на стояках. Кроме того, такие краны в несколько ином исполнении монтируются на входе и выходе отопительных приборов, позволяя отключать эти приборы в случае необходимости.

Сами по себе шаровые краны являются надёжными и долговечными устройствами. Огромное количество шаровых кранов с латунными и стальными корпусами успешно эксплуатируются десятки лет на объектах самого разного назначения.

Однако в процессе эксплуатации систем полипропиленовых трубопроводов стали выявляться определенные недостатки шаровых кранов, корпус которых выполнен из полипропилена.

Наиболее часто встречающийся дефект, как правило, связан с протечкой крана по штоку (рис. 1, 2).

Рис. 1. Негерметичность уплотнения штока. Проверка мыльным
раствором

Рис. 2. Протечка шарового крана по штоку

Как оказалось, эта проблема может быть вызвана несколькими причинами. Первая причина связана с конструкцией и традиционной технологией изготовления таких кранов.

Латунный шаровой затвор (2) обычного полипропиленового крана (рис. 3) со штоком (4) и седельными кольцами из PTFE (тефлона) (3) помещается в составную пластиковую (полипропиленовую или нейлоновую) обойму (5), состоящую из двух половинок. На шток заранее устанавливаются эластомерные сальниковые кольца (6), выполненные из NBR, EPDM или FPM (витона). Обойма с затворным механизмом фиксируется в пресс-форме, после чего форма поступает в термопластаппарат. Здесь в пресс-форму подаётся под высоким давлением расплавленный полипропилен, формирующий корпус крана (1).

Именно в этот момент могут происходить непредсказуемые деформации обоймы, вызванные воздействием высокой температуры и давления.

В период эксплуатации эти деформации могут усугубляться от воздействия транспортируемой среды. В результате зазоры между обоймой и штоком увеличиваются и уже не могут компенсироваться эластичностью сальниковых колец. Возникает протечка.

Малейшее нарушение режима формования корпуса полипропиленового крана приводит к печальным последствиям. Превышение температуры расплава может привести к полному расплавлению обоймы, что вызовет неработоспособность готового изделия. Если температура расплава будет меньше расчетной, герметичной связи между корпусом и обоймой не возникнет, что вызывает общую потерю краном герметичности (рис. 4).

Рис. 3. Конструкция традиционного полипропиленового крана

Рис. 4. Распил бракованного шарового крана с отслоившейся обоймой   

Еще одной причиной потери герметичности полипропиленовых кранов является различие коэффициентов линейного расширения полимерных материалов и латуни.

Рис. 5. Конструкция крана VTp.743

Установка обычного полипропиленового крана в систему горячего водоснабжения или отопления приводит к следующему: пластиковая обойма и корпус шарового крана увеличиваются в размерах больше, чем латунный шаровой затвор и шток. Это ведет к образованию зазора между деталями, в результате чего появляется течь. Шаровой кран уже не представляет собой цельное изделие, а лишь набор отдельных, неплотно прилегающих друг к другу составных частей.

Ещё одним существенным недостатком пластиковой обоймы полипропиленового шарового крана является её гораздо меньшая прочность по сравнению с латунью, из которой выполняется шток. В процессе открытия-закрытия крана, латунный шток, поворачиваясь в обойме, постепенно сминает ее, как и более мягкий и податливый материал. Это вызвано тем, что при воздействии на флажковую рукоятку крана пользователь передаёт на шток не только крутящий, но и некоторый изгибающий момент. И этот изгибающий момент
тем больше, чем туже открывается затвор. С течением времени, между штоком и обоймой образуется зазор, который уже не может компенсировать эластичность сальниковых эластомерных колец. Как следствие, возникает течь.

Выявив и изучив вышеизложенные недостатки, компания VALTEC внесла существенные изменения в конструкцию полипропиленовых шаровых кранов.

В полипропиленовом кране VTp.743 (рис. 5) в конструкцию крана включена сальниковая обойма (7), выполненная из латуни CW614N, в которой помещён шток (4) и сальниковые кольца (6). Такая обойма уже не покоробится при формовке и не потеряет герметичности из-за силовых и абразивных воздействий штока. В нижней части штока имеется опорный буртик, который упирается в латунную сальниковую обойму. Таким образом давление рабочей среды, а также возможные гидравлические удары, воспринимает не пластик, как в традиционном кране, а латунь. Обойма, в которой располагается шаровой затвор (2) и седельные кольца (3) выполнена из полипропилена, армированного стекловолоконной фиброй.

Масса фибры составляет 17 % от общего веса материала обоймы. Армированный полипропилен обоймы имеет коэффициент линейного расширения 6,2х10-5 1/°С, что более чем в два раза ниже чем у неармированного полипропилена (13х10-5 1/°С). Таким образом, обойма компенсирует скачок в линейных деформациях латуни и полипропилена, не позволяя появляться в конструкции крана зазоров, ведущих к потере герметичности. Это обеспечивает заявленный класс герметичности шарового затвора (класс «А») как в системах отопления, так и в системах горячего водоснабжения. Эти же решения использованы в конструкции радиаторных шаровых кранов VTр.717 (прямой) и VTр.718 (угловой) (рис. 6).

Рис. 6. Конструкция шарового крана VTр.717

Единственным отличием от крана VTp.743 у радиаторных кранов является наличие дополнительного интегрированного в корпус резьбового патрубка, к которому присоединяется полусгон с накидной гайкой. Полусгон служит для непосредственного соединения полипропиленового крана с отопительным прибором.

Чтобы ещё больше приблизить эксплуатационные и прочностные качества полипропиленового шарового крана к его латунным аналогам, компанией VALTEC был разработан усиленный шаровой кран VTp.744 (рис. 7), представляющий некий гибрид латунного и полипропиленового шаровых кранов, сочетающий в себе достоинства каждого из них.

Рис. 7. Конструкция крана VTp.744

В кране VTp.744 пластиковая обойма затвора и шара заменена на латунную, изготовленную из горячепрессованной никелированной латуни CW.617N. В сущности, получился латунный шаровой кран, заключенный в полипропиленовую оболочку. Для защиты от протечек, вызванных разностью коэффициентов линейного теплового расширения латуни и пластика, в местах возможного негативного проникновения рабочей среды в обойму интегрированы уплотнительные кольца из EPDM. Сальниковый узел такого крана теперь
ничем не отличается от сальникового узла обычного латунного крана, например серии VALTEC COMPACT. Такой кран хоть и несколько дороже обычных полипропиленовых кранов, но по эксплуатационным свойствам, прочности и долговечности значительно превосходит их.

Внешний вид кранов VTp.744 и VTp.743 одинаковый. Различаются они маркировкой на корпусе («744» и «743»).

Стендовые испытания в Лаборатории комплексных испытаний элементов инженерных систем (ЛаКИЭлИС) подтвердили ресурсную надёжность шаровых полипропиленовых кранов, о которых мы рассказали в этой статье.

В частности, при циклических испытаниях краны VTp.743, VTp.717 и VTp.718 выдержали по 13 000–15 000 циклов открытия/закрытия на горячей (70 °С) воде, а кран VTp.744 – 24 000 циклов.

Таким образом, используя полипропиленовые шаровые краны VALTEC, пользователь может быть твёрдо уверен в их длительной безаварийной эксплуатации.

Автор: Е.В. Полякова


© Правообладатель ООО «Веста Регионы», 2010

Все авторские права защищены. При копировании статьи ссылка на правообладателя
и/или на сайт www.valtec.ru обязательна.

Классификация кранов для батарей отопления + технология их установки

Введение


Централизованная или индивидуальная система отопления нуждается в регулировке. Погода имеет приятное свойство изменяться, а вот температура теплоносителя в системе чаще всего остается неизменной. В результате наблюдается печальная картина: за окном — мороз, а в комнатах — тропическая жара. Владельцы частных домов с индивидуальным отоплением могут полностью контролировать температуру воздуха в каждой комнате благодаря современным системам автоматизации. Но существует и менее затратный способ регулировать интенсивность потока теплоносителя — установка кранов на батареи отопления. Наличие этих простых, но полезных устройств позволяет также более эффективно проводить ремонт и техническое обслуживание радиаторов, поскольку в помощью таких кранов можно в любой момент отключить радиатор от системы, а затем так же просто снова его подключить.

Преимущества


При монтаже современной системы отопления, еще на этапе ее разработки, мастер обязательно порекомендует заказчику установить краны на радиаторы. В результате владелец объекта получает целый ряд преимуществ:

  1. Возможность отключить/подключить батарею, независимо от времени года и отопительного сезона. Батарея может забиться, сломаться, дать течь, а простой поворот крана прекратит подачу теплоносителя и позволит сразу же провести необходимые манипуляции с устройством.
  2. Если в квартире или доме становится слишком жарко из-за внезапного потепления, на которые поставщики тепла не успели своевременно отреагировать, достаточно просто отключить батарею. Когда температура достигнет комфортного уровня, батарею снова включают.
  3. Установленный внизу радиатора кран позволяет перед демонтажом быстро и аккуратно слить теплоноситель в отдельную емкость или даже сразу в канализацию. Это значительно сэкономит время и силы на уборку после ремонта или замены радиатора.
  4. Наличие кранов позволяет проводить регулярное техническое обслуживание радиатора, чтобы удалить из системы загрязнения и попавший в трубы воздух. В результате батарея прослужит дольше, а качество отопления повысится.


Иногда владельцы квартир беспокоятся о том, что кран может легко дать течь или сломаться. Чтобы этого не случилось, следует выбрать качественное оборудование, а также тщательно соблюдать технологию монтажа.

Устройство шарового крана и их виды


Для установки на радиаторы обычно используют шаровые краны. Это относительно простое устройство, которое состоит из следующих элементов:

  • затвор;
  • шток с уплотнителем;
  • уплотнительная шайба;
  • уплотнительные седла;
  • корпусная и регулировочная гайки;
  • ручка управления;
  • корпус.


Затвор представляет собой металлический шар, по центру которого сделано отверстие. Ручка позволяет переместить затвор в одно из двух положений: “закрыто” или “открыто” — поворотом на 90 градусов. Такое простое устройство обеспечивает надежность конструкции и относительно невысокую цену.


Чаще всего шаровые краны изготавливают из прочной латуни или подобных сплавов, используют в их производстве также прочные современные пластики и эффективные смазочные материалы. Еще одно преимущество шарового крана — компактные размеры. Для небольшого устройства проще подобрать подходящее место в системе.



На схеме подробно представлено устройство шарового крана, которое позволяет понять принципы работы этой простой и надежной конструкции.


В зависимости от пропускной способности различают:

  • полнопроходные;
  • стандартные;
  • неполнопроходные шаровые краны.


Первые пропускают 90-100% потока теплоносителя, вторые — около 70-80%, а третьи — всего лишь 40-50%. Для монтажа на радиаторе рекомендуется устанавливать полнопроходные конструкции, которые обеспечат отсутствие значительных препятствий для теплоносителя, что благоприятно сказывается на эффективности отопления помещения.


В продаже можно встретить шаровые краны, выполненные из пластика, но для трубопроводов горячего водоснабжения или отопления они не подходят, поскольку плохо переносят высокие температуры. Латунные шаровые краны для радиаторов различают также по способу монтажа:

  • муфтовые;
  • фланцевые;
  • приварные;
  • комбинированные.


Муфтовые краны обычно рекомендуются для использования при монтаже отопительных систем, подходят они также для водопроводов и газопроводов. Применяются как в жилых помещениях, так и при обустройстве общественных зданий. Это небольшие устройства, простые в эксплуатации и очень надежные. Их легко установить, при этом специальное сложное оборудование обычно не требуется. Такие конструкции монтируют на трубы с сечением не более 40-45 мм.


Выбирая краны для трубопроводов большего диаметра, рекомендуется обратить внимание на фланцевые конструкции. Они рассчитаны на трубопроводы диаметром более 50 мм. При монтаже обязательно следует использовать специальные уплотнительные прокладки, чтобы обеспечить достаточную прочность и герметичность соединения крана и трубопровода. Фланцевые шаровые краны обладают достаточной прочностью, чтобы использоваться в отопительных системах.


Различают разборные фланцевые краны и неразборные. Первые имеют разборной корпус, который будет очень удобным при замене износившихся или испортившихся деталей. Чаще всего замены требуют прокладки, иногда приходится ставить новый затвор и т.п. У неразборных фланцевых кранов цельнолитой корпус. При поломке приходится полностью заменять всю конструкцию.


Приварные конструкции устанавливают путем сварки, как понятно из названия. Поскольку демонтаж такой конструкции простым не назовешь, устройства этого типа устанавливают в местах с ограниченным доступом. Приваривать шаровые краны следует только специалистам, которые обладают необходимой квалификацией.


Приварной шаровый кран достаточно сложно установить, поскольку нужно провести умелую сварку. Такие устройства устанавливают в местах, к которым нельзя обеспечить свободный доступ


В комбинированных конструкциях могут сочетаться несколько способов монтажа. Такие краны могут быть проходными, угловыми, многоходовыми (например, трехходовыми). Последний тип в монтаже систем отопления применяется не часто, поскольку используется в системах, где необходимо смешивание или перенаправление различных сред.


Хотя для отопительных систем лучше всего использовать краны из латуни или ее сплавов, в продаже можно встретить силуминовые регулировочные конструкции, менее прочные и более дешевые. Внешне они очень похожи на латунные краны и могут выдаваться за дорогостоящие оригиналы недобросовестными продавцами. Перед покупкой следует проконсультироваться с профессиональным мастером, который поможет отличить подделку и сделать правильный выбор.


Шаровые краны из силумина стоят недорого, но отличаются низкой устойчивостью к нагрузкам и коррозии. Такие конструкции не стоит устанавливать на батареи отопления.


Силуминовые конструкции в отопительных системах выдерживают нагрузки не более года, потом они ломаются. Этот материал крайне плохо переносит повышенные нагрузки, такие как гидроудар, заметно подвержен коррозии. Иногда силуминовый кран для батареи отопления просто отваливается от трубопровода при закрывании или открывании крана. Это может привести к значительным и серьезным ожогам. Кроме того, при использовании некачественных кранов часто возникают протечки. В результате может быть затоплен не один этаж.

Порядок установки шарового крана


Проще всего установить фланцевый шаровый кран, это очень популярная конструкция. Чтобы установить такой кран, необходимо:

  1. Удалить теплоноситель из отопительной системы. У владельцев частных домов с индивидуальным отоплением проблем не возникнет, а вот жильцам квартир придется согласовать это мероприятие с управляющей компанией.
  2. Выбрать подходящее место.
  3. Нарезать резьбу (в случае ее отсутствия).
  4. Обмотать резьбу крана уплотнителем, например, ФУМ лентой.
  5. Привинтить кран.
  6. Проверить места соединения на предмет протечек.


Выясняя, как правильно поставить кран на батарею, следует учесть ряд нюансов, которые помогут грамотно выполнить эти операции. 


Подробно посмотреть пример резки резьбы можно в следующем видеоролике:



Шаровый кран устанавливают на участке между батареей и байпасом — специальной перемычкой, которая обеспечивает циркуляцию теплоносителя в системе, даже когда кран перекрыт.


Кран устанавливают перед батареей и за перемычкой, которая соединяет “вход” и “выход” теплоносителя, чтобы при перекрывании потока теплоноситель не прекращал циркулировать по системе. Если такая перемычка (профессионалы называют ее байпас) отсутствует, при установке крана на радиатор эту проблему нужно обязательно решить. Устанавливая кран, следует учесть два момента:

  • Не должно быть препятствий для регулировочной ручки, установленной в любое положение.
  • Следует обеспечить свободный доступ пользователя к крану.


Перед приобретением крана, конечно, следует убедиться, что диаметр крана и трубы, на которую его будут устанавливать, соответствуют друг другу. Уточнить стоит также и тип резьбы. У фланцевого крана эти элементы могут быть выполнены следующим образом:

  • обе резьбы внутренние;
  • обе резьбы внешние;
  • сочетание внутренней и внешней резьбы с разных сторон.


На фланцевых кранах имеется специальная маркировка в виде стрелки, которая указывает направление потока рабочей среды, т.е. теплоносителя. Не стоит пренебрегать этими указаниями при установке крана.


Чтобы избежать протечек, следует правильно использовать ФУМ ленту или другой подходящий уплотнитель. В случае, когда кран устанавливается на трубу с открытой резьбой (понятно, что на фланце крана резьба будет закрытого типа), уплотнитель наматывают по часовой стрелке. При этом мастер располагается лицом к отверстию трубы. Если же открытая резьба находится на фланце, уплотнитель также наматывают по часовой стрелке, но уже располагаясь лицом к крану, а не к трубе.


Когда ФУМ лента намотана правильно и в достаточном количестве, для завинчивания резьбы понадобятся заметные усилия. По окончании работ часть уплотнителя может немного выступать на стыке, это совершенно нормальная ситуация, характерная для хорошей герметизации. Если же кран проворачивается легко, использован слишком тонкий слой уплотнителя. В этом случае следует намотать еще немного ФУМ ленты, а затем плотно привинтить кран к трубе. Соблюдение этих несложных правил поможет установить кран правильно и обеспечит достаточно высокую герметизацию.


По окончании работ необходимо обязательно проверить соединение, заполнив систему водой, желательно, при повышенном давлении. Пренебрежение этим правилом может привести к затоплению помещения из-за неправильной герметизации соединений. Чаще всего от последствий недобросовестной работы страдают жильцы многоквартирных домов, поскольку заполнение отопительной системы водой перед началом отопительного сезона обычно проводится без предупреждения в будний день.

Несколько слов о кране Маевского


Помимо обычных шаровых кранов существует механизм, который предназначен специально для радиаторов — кран Маевского. Это устройство необходимо не для регулировки потока теплоносителя, а для удаления воздуха, который тем или иным образом попал в поток. В основе устройства находится игольчатый механизм, специально разработанный для этих целей.


Кран Маевского — небольшое устройство, которое обычно устанавливают в самой высокой точке отопительной системы, чтобы стравливать попавший в трубы воздух


Существуют два типа кранов Маевского — простая механическая модель и автоматическое устройство. Первым управляют вручную, второй настраивают соответствующим образом, и он включается, когда это необходимо. Удаление воздуха из отопительной системы позволяет предупредить образование воздушных пробок и повысить эффективность работы системы.


Устанавливают краны Маевского в самой высокой точке системы, где скапливается воздух. Если система работает с принудительной циркуляцией, перед включением такого крана рекомендуется отключить насос и подождать некоторое время.


Выбирая кран для чугунной батареи, следует помнить, что в таких конструкциях накапливается много загрязнений, которые создают дополнительную нагрузку на кран


Автоматический кран Маевского обычно используют только в системах автономного отопления. В этом случае владельцы дома могут контролировать качество теплоносителя, регулярно проводят чистку системы и т.п. В многоквартирных домах с централизованным отоплением используют модели крана Маевского с ручным управлением, они более прочные и лучше сопротивляются загрязнениям, которые характерны для теплоносителя в общественных системах. Автоматические модели в таких условиях очень быстро засоряются и ломаются. Особенно внимательными к состоянию кранов на радиаторах следует быть тем, у кого в доме стоят старые чугунные радиаторы.

Шаровые краны

Шаровой кран, какой лучше, какой выбрать? Вроде простой вопрос, но всё что дорогое всегда подделывается. Все понимают, что в цене добавлена накрутка за бренд.  Эта разница создаёт многочисленные подделки иногда очень плохого качества. Больше всего их можно встретить под итальянские бренды. Но даже оригинальные дорогие краны надо эксплуатировать согласно техническим характеристикам. Если установить дорогой шаровой кран на воду на улице и оставить на зиму с водой, то весной вы увидите, что его разорвало с вероятностью в 90 %. И купив относительно дешевый кран ( его корпус и шар должны состоять из латуни а уплотнения из фторопласта ). Поставив такой шаровой кран на холодную или горячую до 70 градусов с минимальным давлением, прослужит более 10 лет. Действительно  очень часто можно встретить системы водоснабжения или системы отопления частных домов, например с гравитационной схемой отопления. Которые укомплектованы шаровыми кранами без названий фирм и страны происхождения, и они отработали больше 20 лет. И судя по всему, простоят еще, как минимум столько же.  Но если вы устанавливаете любое оборудование в систему отопления с перегретым теплоносителем и высоким давлением, то тут  экономить нельзя. В основном такие нагрузки можно встретить в многоэтажных домах в системе отопления. Отопление  частного дома оборудованы предохранительным клапаном до 3 атм и датчиком перегрева до 70-80 градусов. Водопроводы нормальные монтажники укомплектовывают редукторами давления. Поэтому в монтаже отопления многоэтажек надо использовать краны известных европейских брендов и обязательно усиленной серии с рекомендованным давлением от 40 атм. В остальных случаях можно использовать оборудование хорошего качества. Не обязательно в загородном доме с  водопроводом из металлопластиковых труб ставить дорогой вентиль. Или другая крайность, когда трубопровод из меди или нержавейки с кранами, которые изготовлены из силумина.  

Шаровые краны для водопровода выпускаются многими странами и производителями. Безусловно, европейское качество и технологии в производственной сфере15 лет назад были лидирующими и нам много опережали китайские заводы. И главное что производители шаровых кранов, которые первыми зашли на Российский рынок с качественными шаровыми кранами, и на сегодня остаются самыми востребованными. К таким брендам можно отнести Bugatti, Itap, Giacomini, Fiv, Pettinaroli, Oventrop, и другие. Безусловно, все эти марки высокого качества. Но хотелось бы в шаровых кранах для отопления и шаровых кранах для водоснабжения видеть разницу не вооружённым взглядом. И это потребность заметил производитель шаровых кранов бугатти, были разработаны несколько серий. Хотя начиналось всё с  обычного крана 600 серии Arizona, но  очень быстро появилась усиленная 300 серия  Oregon. С появлением новой серии шаровых кранов Bugatti, Монтажные организации могли выбирать по цене и качеству. Например, шаровые краны для горячей воды и водоснабжения можно было поставить 600 серию, а для отопления 300 серию. Что касается шаровых кранов с американкой 1/2 дюйма или 3/4 дюйма для подсоединения радиаторов, то у большинства выбор остановился на шаровом кране bugatti с американкой арт. 322 1/2 дюйма или 322 3/4 дюйма. С увеличением продаж шаровых кранов фирмой bugatti разработана новая серия в сторону утяжеления 400 серия Nevada. Была внедрена новая установка штока изнутри. При такой конструкции даже открутив гайку для прижатия уплотнителя, шток  не выскочит, что делает кран ещё надёжнее. Но изменение в сторону удорожания завершилось на 400 серии. Все новые серии 900 New Jersey, 600 Kentucky и другие направлены на удешевление. Основной чертой европейского качества выделялось сырьё и оборудование. Китайская продукция, которая появилась 20 лет назад, была полной противоположностью. На сегодня не осталось не одной старой марки, которая завозилась из Китая. Зато можно выделить много новых брендов которые явно хотят остаться на долго на Российском рынке. Например, марка Tim-Rif это  усиленный тяжёлый  кран по весу равный 300 серии bugatti. Изготовлен из латуни CW617N  той же марки, что и европейские производители шаровых кранов.  Tim-rif разместил надпись марки латуни на шаровом кране, что бы показать что данная продукция премиум класса. На ней не экономят на качестве и количестве сырья. Также продуманна и ремонтопригодность, под ручкой находится гайка для подтяжки сальника вокруг штока. В 2012 году на заводе Tim-Rif были полностью заменены сборочные линии на новые. В этих линиях увеличено количество проверок качества готовых изделий. Сегодня на заводе разрабатываются новые модели. В ближайшее время будет запущенна новая линия по производству коллекторов.

Шаровые краны обладают рядом преимуществ относительно кранов вентилей. Шаровые краны более долговечны, более герметичны, и более надёжны. Они имеют небольшие габариты красивый дизайн при этом проходное сечение равно заявленному сечению резьбового соединения (полнопроходные шаровые краны). Использование лучшей гидравлики и герметичности в конструкции, а также долговечных и антикоррозийных материалов латуни, каучука, фторопласта вывели шаровые краны на первые места в системах отопления, газоснабжения, водоснабжения. Встречаются производители, которые ради удешевления изготавливают заведомо бракованную продукцию например корпус из силумина (сплав алюминия с кремнием) или шар из железа и т.д. У шаровых кранов Bugatti все составляющие: корпус, шар, шток, регулировочная гайка изготавливаются из латуни безопасной для применения в системах отопления, водоснабжения, газоснабжения…. К подвижным запорным комплектующим шарового крана Bugatti относится шток и шар. Данные изделия должны быть выполнены из латуни ( например шар из железа ржавеет, перестаёт открываться и приходит в негодность). Для увеличения долговечности шаровой кран бугатти оснащен регулировочной гайкой сальникового уплотнения. Если в процессе длительной эксплуатации появилось течь под ручкой шарового крана Bugatti, нужно подтянуть гайку, и она прижмет уплотнительное кольцо вокруг штока. Даже через несколько лет эксплуатации шарового крана Bugatti ( долговечность латуни и фторопласта разные ), можно заменить уплотнительное кольцо и подтянуть гайку. Всё выше перечисленное ведёт к удорожанию шаровых кранов, но это необходимый минимум.

Что такое шаровой кран? Поэтому попробуем разобраться в этом, чтобы ответить на вопрос и объяснить, что такое шаровой кран.
Шаровой кран описывается как механическое устройство, которое перекрывает или направляет и регулирует поток различных типов жидкостей путем поворота шара, который имеет отверстие в середине. Поворотом ручки шарового крана, вручную открывается или закрывается движение жидкостей или газов по трубопроводу, который сдерживает давление со стороны потока жидкости. Долговечность и полное перекрытие потока делает шаровой кран лучшим по сравнению с другими запорными механизмами.
Клапаны, шаровые крана и другие запорные механизмы встречаются в нашей повседневной жизни и могут остаться незамеченным. Например, есть клапаны, которые находятся в смесителях для кухни или для ванной. Есть клапаны внутри стиральной машины, посудомоечные машины, в газовых котлах и водонагревателях, в холодильных установках и кондиционерах и в другом оборудовании. Различные виды промышленности используют клапаны в производстве и в оборудовании. Такие отрасли промышленности производящие электронику, в энергетике, автомобили, полиграфию, пластмассы, текстиль, металл, медицина, химическая и пищевая промышленность. Благодаря шаровым кранам можно перекрывать трубопроводы с высоким давлением и температурой. Шаровые краны являются незаменимым оборудованием в эксплуатации и ремонте оборудования или участка системы, они позволяют отремонтировать быстро легко оборудование или участок трубопровода.
Материал для изготовления может быть из сталь, латунь, чугун, бронзы, нержавейки или ПВХ, шаровые краны муфтовые могут быть таких размеров: 1/2 дюйма, 3/4 дюйма, 1 дюйм, 1_1/4 дюйма, 1_1/2 дюйма, 2 дюйма, 2_1/2 дюйма, 3дюйма, 4 дюйма. Размеры с большим диаметром соединяются при помощи сварки или фланцев. И для таких сложных запорных устройств используют клапана и задвижки с электроприводами. Блок управления клапанами с электроприводами с пневматическими или механическими могут регулировать поток жидкости для точного изменения давления и расхода.
Основной тип шаровых кранов это полно проходные шаровые краны ( это когда отверстие в шаре равно сечению резьбы шарового крана или полу проходные или не полно проходные ( для экономии металла уменьшают диаметр шара ). Другой тип это 3 (трех) ходовые или 4 (четырех) ходовые. Такие краны нашли широкое применение в системе отопления для смешивание и регулировки температуры теплоносителя. В зависимости от схемы и условий подбирается тип шарового крана или клапана или задвижки. В спецификации обычно указывают марку крана например Bugatti, Itap, Giacomini, Fiv, Pettinaroli, Oventrop,TIM-RIF, G.BEKA, Danfoss, Valtec и другие.. Чтобы рассмотреть другие бренды для определения соответствующего шарового крана нужны технические показатели температура и давление, сколько выходов, размер, тип материала корпуса, тип присоединение и др..

Разбираем краны шаровые: технические характеристики

Краны шаровые: технические характеристики

Если вы решили произвести замену радиаторов отопления, монтируете водопровод или просто подключаете бойлер, счетчики воды или газа, то купить кран шаровый или вентиль вам будет просто необходимо.

Но сначала надо определиться с техническими характеристиками изделия, способами назначения, материалом изготовления, основными видами и различиями шаровых кранов для водопровода, отопления, размеры.

Почему данный вид кранов называют шаровыми?

Если вы возьмете кран в руки и повернете ручку крана, то внутри него увидите стальную задвижку, выполненную в виде шара с отверстием. При открытии крана, задвижка поворачивается, предоставляя свободный проход потоку воды или газа. В закрытом же состоянии «шар» повернут перпендикулярно потоку, что полностью перекрывает его движение.

Кран шаровой

Виды шаровых кранов или вентилей, их отличия, размеры и технические характеристики

Краны шаровые отличаются по диаметру внутреннего прохода, по типу резьбы (внутренняя или наружная), рабочему давлению, материалу, из которого изготовлены, производителю продукта и среды применения.

Диаметр или размер шарового крана, используемого при монтаже водо-газопровода, бывает разный. Чаще всего находят применение краны шаровые с диаметром внутреннего прохода равным 1/2 дюйма или 3/4 дюйма, что соответствует 15 мм, 20 мм или же 25 мм. Реже используют трубы и краны диаметром равным 1 дюйм, 1 1/4 дюйма, 1 1/2 или же 2 дюйма.

Например, в квартире или частном доме на холодное и горячее водоснабжение вполне достаточно будет установить кран шаровой полдюймовый 1/2, т.к. диаметр трубы всегда соответствует диаметру крана. Для системы отопления, при наличии в ней циркуляционного насоса, достаточно трубы диаметром 3/4 дюйма и, соответственно, и кранов шаровых того же диаметра.

Если же система отопления будет иметь естественную циркуляцию теплоносителя, тогда резонно использовать трубы и краны большего диаметра. Данный показатель должен быть не менее 40-50 мм.

Диаметр шарового крана, как правило, указан на нем самом. Символ, показывающий на эти технические характеристики — DN. Например, обозначение DN15 показывает нам, что данный шаровой кран имеет условный диаметр внутреннего прохода равный 15 мм или 1/2 дюйма.

Краны шаровые различают по типу резьбы. Она бывает внутренняя или наружная. На сленге сантехников внутреннюю резьбу называют гайкой, наружную — штуцер. Например, шаровой кран имеющий с обоих концов внутреннюю резьбу, называют кран шаровой «гайка-гайка». Если же с одной стороны внутренняя, а с другой наружная, тогда «гайка-штуцер» и т.д.

Следующий показатель — это рабочее давление, т.е., давление внутри системы, до предела которого кран шаровый может использоваться. Измеряется он в атмосферах, а на самом изделии обозначается под символом PN.

Например, обозначение PN40 говорит о том, что кран может быть применен в системах с максимальным рабочим давлением до 40 атмосфер. На практике, краны шаровые с показателем не ниже PN16 можно использовать даже в системах центрального отопления, например, для подключения радиаторов отопления, газовых или электрических котлов.

Краны шаровые Valtec и Bugatti

Материал изготовления шаровых кранов

Им может быть силумин, латунь или же латунь, покрытая никелем. Ни в коем случае не покупайте краны, выполненные из силумина. Это достаточно хрупкий сплав. Кран, выполненный из этого материала, может развалиться уже до момента его эксплуатации при монтаже.

Отличить силуминовый кран от латунного можно, взяв оба изделия в руки и сравнить их вес. Кран, выполненный из латуни, будет заметно тяжелее.

Область применения шаровых кранов

Обычно данный вид кранов используется для перекрытия потоков воды или газа. Как отличить кран шаровой для газа и воды по внешнему признаку? Тут все просто — кран с желтым рычагом или «бабочкой» предназначен для газопровода, краны любых других цветов — для холодного или горячего водоснабжения, или отопления.

Производители шаровых кранов

Сейчас на рынке представлено достаточно различных производителей. Мы рекомендуем покупать качественные шаровые краны известных, проверенных брендов, таких как, Bugatti или Valtec.

Если же цена на продукцию этих марок вам покажется высокой, то можно приобрести краны отечественных российских производителей, например, краны шаровые муфтовые 11б27п1 (ГОСТ) Бологовского арматурного завода хорошо зарекомендовали себя еще с советских времен,имеют хорошие технические характеристики, кроме того и цена на их продукцию невысока.

Но остерегайтесь подделок, покупайте товар в фирменных магазинах.

Читайте также:

Типы шаровых кранов: особенности выбора

В. Поляков, С. Шовкопляс

Рынок водопроводной арматуры предлагает широкий выбор шаровых кранов для водопровода разных типоразмеров, конструкций и исполнений. Их цены могут различаться в разы. Наряду с высококачественными изделиями торговля может предлагать менее качественную арматуру практически по одной и той же цене. На что нужно обращать внимание при выборе шаровых кранов для внутридомовых водопроводных сетей?

Шаровые краны во внутридомовых водопроводных сетях сейчас практически полностью вытеснили пробковые конусные краны благодаря своей надежности и долговечности, которая на порядок выше, чем у старых конструкций. Главное, чем обеспечивается надежность шаровых кранов в качестве запорной арматуры по сравнению с затворами с конусной пробкой – рабочая среда (вода) с твердыми абразивными частицами пропускается в шаровом кране мимо уплотняемых поверхностей через отверстие в сферическом затворе, на проход, а в кране с конусной пробкой –вокруг нее.

Притертая пробка конусного крана уже через несколько циклов открывания/закрывания может потерять герметичность из-за абразивного воздействия нерастворимых механических примесей в рабочей среде, омывающей уплотняющую поверхность. Кроме того, пробковые краны имеют значительное гидравлическое сопротивление.

Шаровые же краны (с полнопроходным сечением, которое примерно совпадает с условным диаметром трубы Ду) в открытом виде практически не оказывают сопротивления потоку. Частично проходные шаровые краны – специальное решение, которое применяется там, где нужно намеренно ограничить поток.

Частично проходные шаровые краны различают на:

  • стандартнопроходные – круглое отверстие в сферическом затворе такой арматуры на один типоразмер меньше внутреннего диаметра трубопровода, пропускная способность шарового крана составляет от 70 до 90% потока;
  • неполнопроходные – отверстие для пропуска потока значительно меньше внутреннего диаметра трубы, пропускная способность такого шарового крана снижается до 40-70%.

Шаровый кран предназначен для полного перекрывания потока, работает в режиме открыто/закрыто и не предназначен для дросселирования потока! Более того, производители шаровых кранов снимают их с гарантии, если у неисправного крана обнаруживаются признаки того, что он использовался для частичного перекрывания потока (в качестве регулировочного вентиля).

Шаровые краны были разработаны довольно давно, но лишь с появлением надежных уплотнений приобрели широкую популярность и массовый спрос. Уплотнения, применяемые в водопроводных шаровых кранах, изготавливаются из износостойкого нитрил-бутадиенового синтетического каучука (NBR, как правило, черного цвета) или тефлона (политетрафторэтилен, фторопласт, как правило, белого или желтоватого цвета) с термоприсадками и с добавками антифрикционных веществ (например, графита или дисульфида молибдена).

Благодаря улучшению технологии производства сферических затворов и современным материалам для уплотнений было достигнута высокая надежность, снижены усилия поворота затвора, повышена герметичность и обеспечена долговечность шаровых водопроводных кранов, что обусловило массовый спрос на них и предложение от большого числа фирм-изготовителей.

Главный элемент устройства шарового крана – подвижный и гладкий затвор сферической формы со сквозным круглым отверстием, служащим для прохода потока вещества, см. рис. 1.

Рис. 1. Схема водопроводного шарового крана

Сферический затвор (поз. 2) располагается в центральной части корпуса крана между седлами (поз. 3) – двумя спрофилированными уплотнительными кольцами. Затвор, в свою очередь, закреплен на поворотном штоке (поз. 5) с ручкой-рычагом (поз. 12) или двулепестковой ручкой (ручкой «баттерфляй»,«бабочка», поз. 6).

Для полного открывания или закрывания шарового крана нужно в определенную сторону повернуть затвор ручкой на 90° до упора.

В закрытом положении пропускное отверстие в шаровом затворе располагается перпендикулярно оси корпуса и трубопровода. При открывании затвора отверстие в нем занимает положение вдоль оси трубы, создавая свободный проток через корпус крана. Положение ручки сразу позволяет понять, закрыт или открыт кран – в открытом положении рычаг или лепестки ручки-бабочки располагаются вдоль трубы (корпуса крана) и поперек – когда поток перекрыт.

Виды шаровых кранов

Помимо отношения диаметра пропускного отверстия по отношению к диаметру условного прохода Ду трубопровода шаровые краны (условно) подразделяют по различным признакам.

По способу крепления к трубе шаровые водопроводные краны делят на:

Муфтовые – присоединяются к трубам внутренней конической или цилиндрической резьбой. Обычно применяются во внутриквартирных и внутридомовых коммуникациях небольших диаметров (до 50 мм).

Сварные – присоединяются к трубам с помощью сварки. Это обеспечивает максимальную герметичность стыков и используется на ответственных и труднодоступных участках протяженных наружных магистралей. К этому виду арматуры относят и пластиковые шаровые краны, в которые ввариваются трубы из синтетического материала, например, полипропилена.

Фланцевые – монтируются на трубах с диаметром, как правило, более 50 мм с помощью разборных или неразборных фланцев. Фланцевый крепеж применяют там, где возможен частый монтаж/демонтаж трубопроводной арматуры, а также в помещениях, где запрещены сварочные работы.

Комбинированные – присоединяются к трубам разными способами. Такие изделия применяются в системах коммуникаций с разными соединениями – резьба/сварка, фланец/сварка и т. п., включая хомуты. По материалу корпуса краны шаровые разделяются на:

Латунные – также называемые металлическими, они встраиваются в стальные и пластиковые трубопроводы.

Пластиковые – встраиваются в трубопроводы из сантехнической пластмассы.

Силуминовые – изготавливаются из более дешевого и менее качественного аналога латуни – силумина, сплава алюминия с кремнием. Такие изделия отличаются хрупкостью и требуют осторожности при монтаже. Из-за склонности к образованию трещин их рекомендуется использовать только в трубопроводах холодной воды.

Порошковые – изготавливаются из цветных материалов методами порошковой металлургии – спекания под давлением; склонны к растрескиванию корпуса и срыву ниток резьбы.

По конструкции запорного элемента шаровые краны бывают:

С плавающим шаром – в таких изделиях сферическая пробка не плотно соединена со шпинделем и относительно него может смещаться. Под действием давления входного потока, закрытый затвор прижимается к уплотнительному кольцу на выходе, тем самым, перекрывая кран. Такая арматура используется в трубопроводах диаметром не более 200 мм, поскольку на линиях с большими диаметрами и давлением, затвор создает слишком высокую нагрузку на уплотнениях и работа крана затрудняется.

С шаром в опорах – в таких изделиях сферическая пробка имеет специальные опоры. Осевой выступ (цапфа) в нижней части шара входит в особое углубление, а седла под действием давления прижимаются к поверхности шарового затвора. Благодаря опорам усилия, необходимые для управления краном, значительно уменьшаются, что позволяет применять менее мощные приводные устройства, чем в случае с кранами с плавающим шаром. Из-за более сложной конструкции устройства такого типа стоят намного дороже обычных шаровых кранов.

С дополнительными функциями – например, для стравливания воздуха, с дренажем, с фильтром, с регулятором и т. д.

Материал корпуса шарового крана

Самое главное, на что следует обратить внимание при приобретении шарового крана для водопровода – это материал корпуса. Для внутридомового водопровода лучшим материалом признана латунь, а не цинково-алюминиевый сплав (ЦАМ), предлагаемый некоторыми недобросовестными производителями. Сплав ЦАМ содержит порядка 96-98% цинка, 2-3% алюминия и до 1% меди и значительно легче латуни (удельный вес ЦАМ – 6,7 г/см3, а у латуни 8,4÷8,7 г/см3). Цинково-алюминиевые изделия широко применяют в автомобильной промышленности (карбюраторы, арматура для масло- и бензопроводов), но использовать их для водопроводов нельзя. Кран из ЦАМ в домовом водопроводе просто рассыплется через год-два на куски (рис. 2). Причина этого довольно проста – цинк на самом деле корродирует в воде самым первым из других металлов в изделии. Для масла и углеводородных жидкостей ЦАМ имеет достаточную коррозионную стойкость, а в воде – нет, цинк защищает другие металлы от коррозии, соединяясь с водой первым.

Рис. 2. Кран из цинково-алюминиевого сплава (ЦАМ) через 2 года эксплуатации

Отличить, сделан ли кран из латуни или из ЦАМ можно по весу: кран из ЦАМ заметно легче. Но сравнивать по весу конструктивно подобные краны надо без ручек – недобросовестные производители часто «компенсируют» недостаток веса применением более массивного рычага (ручки) из крашеного черного металла.

Латунь имеет характерную желтизну. Если шкуркой или надфилем слегка снять гальванопокрытие на корпусе крана, то можно увидеть, латунь ли это. Цвет ЦАМ – серебристый, не меняющийся при окислении. Безопаснее всего приобретать кран, у которого естественный цвет латуни виден на каком-либо участке без гальванопокрытия, (рис. 3).

Рис. 3. Естественный цвет латуни виден на резьбовом патрубке крана Valtec Base

Качественные латунные шаровые краны обычно изготавливают методом горячего объемного прессования из свинцовосодержащей латуни марки CW617N по EN 12165, похожей по составу на латунь марки ЛС59-2 по ГОСТ 15527. Это способ предпочтительнее центробежного литья под давлением, так как горячепрессованные детали намного прочнее литых. Латунные детали кранов из прутка (шаровой затвор, шток, сальниковая гайка), как правило, делаются из латуни марки CW614N (ЛС 58-3), см. таблицу 1. Краны с корпусами из нержавеющей стали применяются в пищевой промышленности и излишне дороги для водопроводной арматуры.

Таблица 1. Состав латуни для водопроводных шаровых кранов

Сальниковые узлы

Сальниковый узел шарового крана обеспечивает его герметичность по отношению к внешней среде. Конструктивные решения этих узлов могут быть различными (таблица 2) и во многом именно они определяют эксплуатационные свойства крана.

Таблица 2. Распространенные конструкции сальниковых узлов шаровых кранов

Самой надежной и практичной на сегодня день признана конструкция с прижимной гайкой с наружной резьбой, см. поз. 7, таблица 2, она применяется, в частности, в кране Valtec Base.

При выборе крана следует учитывать, что шаровые краны с неремонтопригодными сальниковыми узлами прослужат до первой протечки по штоку, после чего весь кран подлежит замене.

У крана, в котором шток вставлен снаружи, а не изнутри корпуса, давление может выбить этот шток. С одной стороны, такое решение делает кран ремонтопригодным, но с другой стороны, имеется опасность выбивания штока давлением рабочей среды. Сальниковая гайка может не удержать шток от выдавливания – незаконтренное резьбовое соединение под действием продольной силы в условиях знакопеременных нагрузок и вибрации стремится к раскручиванию даже при самотормозящей резьбе.

При вибрации сила трения в резьбе существенно ослабевает, что ведет к самопроизвольному раскручиванию. Такая же проблема возникает в накидных гайках обжимных фитингов. Именно поэтому их полагается время от времени докручивать.

Сила давления рабочей среды стремится вытолкнуть шток шарового крана из сальникового патрубка. Если шток вставлен изнутри – эту выталкивающую силу воспринимает буртик штока, опирающийся на корпус крана (рис. 4; поз. 5, 7 табл. 2).

Когда шток вставлен снаружи, выталкивающую силу воспринимает резьба сальниковой гайки (рис. 5). Вибрации крана и знакопеременные температурные нагрузки приводят к самопроизвольному откручиванию сальниковой гайки и появлению течи. При отсутствии должного контроля гайка может частично выйти из резьбового зацепления. В этом случае при малейшем скачке давления часть резьбы, оставшаяся в зацеплении, будет смята и шток будет выбит из крана.

Самый неудачный вариант сальникового узла – если опорный буртик штока смещен вверх и прижимается сальниковой гайкой (рис. 6). В этом случае, по замыслу конструкторов, сальниковая гайка одновременно выполняет функцию ограничителя хода штока и прижимного элемента в уплотнении.

Кроме возможного выбивания штока давлением, в данной конструкции добавляется опасность полного заклинивания шара штоком. Это может произойти при пережатии уплотнения сальниковой гайкой.

Шаровый затвор

В большинстве латунных шаровых кранов для внутридомовых водопроводов затвор представляет собой шар (рис. 7 А). Иногда снизу затвора выполняют круговую проточку (рис. 7. Б). При этом под затвором образуется «отстойник», где неизбежно будет скапливаться шлам. Если в кране с обычным шаром расстояние от поверхности затвора до стенки корпуса везде примерно одинаковое, то в шаре с проточкой появляется зона малых скоростей потока, что приводит к осаждению нерастворимых частиц.

Иногда шар обтачивают в псевдокуб, протачивая еще и его боковые стороны (рис. 7 В). Это решение применимо для кранов, которые редко используются для открывания/закрывания потока, поскольку кромки боковых проточек при частом повороте затвора могут деформировать или повредить кольца седельных колец, что существенно сократит срок службы крана.

Для борьбы с пресловутой «сальмонеллой» и устранения застойной зоны в нижней глухой проточке, как показано на рис. 7 Б, производители в последнее время стали выпускать краны со сквозным отверстием в нижней части шарового затвора (рис. 7 Г). Однако в этом случае сальниковый узел при открытом кране может подвергаться воздействию гидравлических ударов без их ослабления.

Рис. 7. Сечения шаровых затворов

Для уплотнений шаровых кранов применяется тефлон, он почти полностью вытеснил остальные материалы. Тефлон – достаточно дорогой материал, поэтому на нем пытаются сэкономить. Толщина тефлоновых колец в седлах крана может быть настолько мала, что при повышении температуры тефлон из кольца превратится в некую волнообразную структуру, не способную выполнять функцию уплотнения.

Уплотнительные элементы из тефлона дешевых марок отличает зернистость и шероховатость, что заметно визуально. Такой тефлон прослужит недолго, так как может выкрашиваться кромками шарового затвора.

Тефлоновые седельные кольца предварительно обжаты. Рабочая кромка кольца при этом деформируется, принимая сферическую форму. В связи с этим, шаровой кран должен открываться и закрываться с некоторым усилием. Если кран открывается совершенно свободно, это свидетельствует либо о недостаточном усилии предварительного обжатия, либо о том, что под седельные кольца установлены «демпферы» из эластомера. Эластомеры имеют меньшую температурную стойкость и долговечность сравнительно с тефлоном, т. к. эластомер со временем уменьшает предварительное поджатие, его материал «релаксирует» и впоследствии теряет свои уплотняющие свойства.

Шаровой затвор постоянно находится под воздействием потока рабочей среды, в которой могут присутствовать нерастворимые абразивные частицы, «бомбардирующие» поверхность затвора. Поэтому важно, чтобы наружная поверхность затвора имела высокую твердость. Особенно страдает шаровый затвор, если его используют для регулирования потока и устанавливают в промежуточном положении (рис. 8).

Рис. 8. Шаровой затвор крана после года интенсивной эксплуатации

Для снижения абразивного износа поверхность затвора, как правило, имеет полированное твердое гальванопокрытие из хрома. Хром наносится на медную или никелевую подложку. Её отсутствие резко снижает срок службы крана. При гальванизации хром осаждается в виде «островков», между которыми имеется сетка микротрещин. При эксплуатации эти микротрещины заполняются продуктами коррозии подслоя (медь или никель) и таким образом получается прочное монолитное покрытие.

В последнее время появились шаровые краны с тефлоновым покрытием шарового затвора. Тефлоновое покрытие предназначено в основном для уменьшения трения при повороте затвора. Даже кратковременная эксплуатация этих кранов выявляет крайне низкую стойкость такого покрытия из-за недостаточной твердости тефлона в условиях потока рабочей среды с механическими включениями. Часто для затвора используется не коррозионностойкая латунь, а черный металл. Это можно проверить отверткой с магнитным наконечником. Качественный сферический затвор должен быть отлично отполирован и быть зеркально-блестящим, а не матовым.

Конструкция шарового крана

Несмотря на кажущуюся простоту, шаровый кран имеет ряд конструктивных особенностей.

Рис. 9. Продольный распил корпуса шарового крана

На рис. 9 видны следующие элементы конструкции корпуса:

а – резьба, соединяющая корпус крана с резьбовой полумуфтой, должна иметь не менее трех ниток. Как правило, это метрическая резьба с шагом 1,25 мм;
b – длину присоединительной трубной резьбы для кранов из горячепрессованной латуни допускается уменьшать на 10%. В частности, для кранов с номинальным диаметром 1/2″ размер «b» должен составлять не менее 11 мм;
с – минимальная ширина буртика, ограничивающего присоединяемую трубу в муфтовом патрубке крана при завинчивании;
d – минимальная толщина стенки корпуса для заявленного номинального давления (PN) у литых кранов «d» должна быть примерно втрое больше по
сравнению с кранами с горячепрессованными корпусами.

Рис. 10. Регулирование потока шаровым краном

Регулирование потока шаровым краном не допускается, поскольку кроме активного износа уплотняющей поверхности (см. рис. 8) шаровые краны имеют весьма тонкую стенку корпуса. Она способна выдержать заявленные в паспорте давления и температуру, но, при попытках использовать шаровой кран в качестве регулирующего органа, стенка не в состоянии противостоять длительному воздействию кавитации дросселированного потока и разрушению стенок корпуса абразивными частицами (рис. 10) в напорной зоне.

Крепление рукояти

Даже такая незначительная особенность, как способ крепления рукояти шарового крана, может сказаться на его долговечности и безопасной эксплуатации.

Рис. 11. Узлы крепления рукоятки шарового крана

На рис. 11 представлены наиболее распространенные конструктивные решения этого узла. Самым надежным считается крепление с самоконтрящейся гайкой (рис. 11 В). Интегрированное в гайку полиэтиленовое кольцо с внутренним диаметром, меньшим, чем диаметра штока, предотвращает самопроизвольное откручивание гайки из-за переменных усилий и вибрации трубопровода. Крепление рукояти обычной гайкой (рис. 11 Б) требует обслуживания: время от времени гайку приходится подтягивать. Слабая затяжка гайки превращает рукоять в рычаг, которым можно сломать шток. Наименее удачным является узел, в котором рукоять крепится винтом (рис. 11 А). Внутренняя продольная резьба в штоке значительно его ослабляет, т. к. ее живое сечение (по впадинам резьбы) чрезвычайно мало (рис. 12).

Рис. 12. Излом штока по внутренней резьбе

Виды шаровых кранов

Компании, производящие шаровые краны для внутридомовых водопроводных инженерных систем, обычно предлагают нескольких серий кранов разных типоразмеров, каждая из которых рекомендована для строго определенных условий эксплуатации. В таблице 3 приводится перечень типов шаровых кранов VALTEC, которые многие годы успешно эксплуатируются в нашей стране.

Таблица 3. Серии шаровых кранов производства VALTEC

Маркировка на корпусе шарового крана

На внешних сторонах корпуса шарового крана производители обязательно наносят ряд обозначений (см. рис. 13). Все маркировочные символы должны быть максимально четкими. Расплывчатость и нечеткость обозначений может свидетельствовать об изношенности форм или о том, что перед покупателем – дешевая подделка.

Рис. 13. Маркировка на корпусе шаровых кранов

На шаровом кране обычно указываются:

Эмблема (торговый знак, клеймо) компании-производителя – обязательный атрибут качественного изделия.
DN – номинальный диаметр, который может быть указан в миллиметрах (15, 20, 25, 32, 40 и 50 мм), или в дюймах (например, ½, ¾, 1, 1 ¼, 1 ½ и 2”).
PN – рабочее давление в барах. В зависимости от диаметра и конструктивных особенностей конкретного изделия, это значение может находиться в пределах от 15 до 40 бар.
Материал корпуса – марка латуни по EN.
Дата производства изделия – 04/11.

Устранение неисправностей шаровых кранов

Несмотря на простоту конструкции и длительный ресурс, запорная арматура шарового типа может сломаться. В определенный момент шаровые краны могут перестать герметично перекрывать воду или поворачиваются с большим трудом. Это первые признаки износа таких изделий, длительность эксплуатации которых часто уменьшается из-за жесткости воды, к тому же содержащей механические загрязнения и абразивные частицы.

Видео. Устранение неисправности в шаровом кране VALTEC BASE

С течением времени соли откладываются на внутренних частях изделия, в том числе – и на запорной сфере, и она при повороте начинает царапать уплотняющие кольца. Со временем вся поверхность затворной сферы будет постепенно покрываться налетом, контаминанты могут внедряться в поверхность уплотнителя, которые затем царапают сферическую поверхность затвора. В результате этих двух процессов герметичность крана может нарушиться. Почему шаровой кран не пригоден для регулирования потоков и должен эксплуатироваться в полностью открытом/закрытом положении, описано выше.

Процесс осаждения солей жесткости на поверхность затвора быстрее протекает в трубопроводах систем горячего водоснабжения и отопления. Особенно – в централизованных городских сетях, где качество теплоносителя обычно оставляет желать лучшего. В процессе монтажа перед кранами рекомендуется устанавливать фильтр грубой очистки воды. Это несколько защитит запорный элемент от износа мелкими частицами ржавчины.

Защитить шаровые краны от налета можно только путем качественной водоподготовки. В качестве профилактики, раз в квартал, а лучше – раз в месяц, шаровой кран нужно несколько раз проворачивать из одного крайнего положения в другое, чем снять отложения.

Если шаровой кран внезапно перестал работать вообще, то дело может быть не во внутренних неисправностях, а в поломке его ручки (рычага) и износа ее посадочного отверстия. Чтобы убедиться в исправности самого крана нужно открутить крепежный винт, снять рукоять и попробовать провернуть шток изделия разводным ключом или плоскогубцами. Если шток заблокирован, то арматурный элемент надо заменить.

Если при повороте ручки в положение «закрыто» вода продолжает поступать, то вероятнее всего произошло налипание солей на затворную сферу. Такой кран нужно заменить. Для восстановления частичного функционирования нужно несколько раз повернуть ручку в крайние положения, если необходимо – с использованием инструмента, соблюдая осторожность, чтобы не сломать изделие.

Если шаровый кран потек по штоку, то поступать в этой ситуации нужно в зависимости от конструкции сальникового узла (см. табл. 2). Резиновые уплотнительные кольца со временем теряют свои герметизирующие свойства, теряют эластичность, вследствие чего возможно протекание. Исправить эту неполадку можно только на шаровых кранах с сальниковой гайкой. Для этого ее нужно подтянуть, предварительно сняв ручку изделия. Если кран не снабжен сальниковой гайкой, его придется менять на новый целиком. Кроме того, течь может возникнуть и по причине появления трещины в корпусе или по резьбовой муфте. Такие неисправности характерны для дешевых изделий из довольно хрупкого силумина – со временем микротрещины, образованные при монтаже и затяжке резьбы, разрастаются. Очевидно, что такой кран нужно заменить как можно быстрее.

В целом же шаровые краны – надежные и долговечные изделия для водопроводных внутридомовых систем. Это явно не то устройство, на котором можно сэкономить – последствия от того, что кран, отсекающий магистраль, неожиданно перестанет исправно функционировать, очевидно, будут дороже разницы в цене между качественным изделием и дешевой подделкой. Выбрав кран от изготовителя с проверенной репутацией, следует применить его точно по назначению и соблюсти рекомендации по эксплуатации и монтажу. В таком случае шаровый кран прослужит долгое время без поломок и неожиданностей.

Читайте статьи и новости в Telegram-канале AW-Therm. Подписывайтесь на YouTube-канал.

Просмотрено: 36 500


Вас может заинтересовать:

Вам также может понравиться

Заказ был отправлен, с Вами свяжется наш менеджер.

3/2-ходовой шаровой кран с подогревом V3 / 2-H / PE

Барометрическая регулировка рабочей высоты анализаторов O₂ без компенсации давления

Введите планируемую рабочую высоту в поле. Установите анализатор на рассчитанное значение об.% O2 при 1013 мбар (высота = 0 м) в воздухе для измерения на запланированной рабочей высоте без барометрической погрешности.

Падение давления и время задержки

Введите свои значения в поля с 1 по 3.

Расчет 100% насыщения H2O без давления

Введите требуемую точку росы H2O (° C).
Расчет дает достаточно точные значения только в диапазоне температур от -20 ° C до +90 ° C.

Единицы давления

Введите значение для преобразования в соответствующее поле.Все остальные поля сразу покажут преобразованное значение.

Единицы измерения температуры

Введите значение для преобразования в соответствующее поле. Все остальные поля сразу покажут преобразованное значение.

Единицы длины

Введите значение для преобразования в соответствующее поле.Все остальные поля сразу покажут преобразованное значение.

Площадь

Введите значение для преобразования в соответствующее поле. Все остальные поля сразу покажут преобразованное значение.

Единицы объема

Введите значение для преобразования в соответствующее поле.Все остальные поля сразу покажут преобразованное значение.

Единицы веса

Введите значение для преобразования в соответствующее поле. Все остальные поля сразу покажут преобразованное значение.

Энергетические единицы

Введите значение для преобразования в соответствующее поле.Все остальные поля сразу покажут преобразованное значение.

Расход

Введите значение для преобразования в соответствующее поле. Все остальные поля сразу покажут преобразованное значение.

Скорость потока

Введите значение для преобразования в соответствующее поле.Все остальные поля сразу покажут преобразованное значение.

Рабочие единицы

Введите значение для преобразования в соответствующее поле. Все остальные поля сразу покажут преобразованное значение.

Шаровой кран

— обзор

Конструкция отверстия

Шаровые краны могут быть полнопроходными (FB) или RBbore (RB).С клапаном FB (иногда называемым полнопроходным) внутренний проход потока равен полной площади входного отверстия. В клапане RB проходное сечение порта (запорного элемента) меньше площади внутреннего диаметра трубы и входа клапана. Запорный элемент относится к шару в шаровом клапане, который также упоминается в некоторых международных стандартах клапана как запорный элемент . Клапан FB позволяет использовать устройство , вводимое в трубопровод, (PIG) ​​в трубопроводе.Скребок спроектирован и запускается в трубопровод для проверки или очистки, например, от отложений воска или накипи.

Оба шаровых клапана на рис. 1.12 должны быть FB для облегчения быстрого и полного выпуска жидкости в факельную линию. FB также требуется для шаровых кранов до и после предохранительных клапанов (PSV), как показано на рис. 1.12.

Рис. 1.12. Полнопроходной шаровой кран до и после PSV.

API 6D, стандарт для трубопроводной арматуры, дает минимальный диаметр отверстия для номинальных значений 150–600 и до 60 дюймов и отдельные колонны с минимальным отверстием для классов 900, 1500 и 2500, как показано в таблице 1.1. Но стандарт не предусматривает минимальный диаметр отверстия для больших размеров и классов высокого давления (максимальное отверстие 20 дюймов в классе 2500 и отверстие 36 дюймов в классе 1500). Отверстия API 6D считаются полнопроходными, но на самом деле они не являются полнопроходными — это означает, что внутренний диаметр шаровых кранов согласно стандарту API 6D меньше диаметра трубопровода (трубопровода). Следовательно, отверстие клапана должно быть равно диаметру трубы при проведении спуска скребка для трубопроводной арматуры API 6D. Минимальное отверстие в API 6D обычно больше, чем в ASME B16.34 стандарт для клапанов. Шаровой кран API 6D FB больших размеров, например, 24 дюйма, и классов давления 150–600 имеет отверстие гораздо ближе к трубе. Например, шаровой кран диаметром 24 дюйма из дуплексного материала класса 300 имеет диаметр примерно на 2 мм меньше, чем труба. Однако шаровой кран 20 ″ класса 150 по стандарту API 6D может иметь отверстие примерно на 8 мм меньше трубы.

Таблица 1.1. Минимальный диаметр отверстия согласно API 6D.

9011

901

250 9011 901 901 901

250 9011 9011 901 901

50

903 9013

9013 9013

9013 9013

9013

9013 9013

903

903

903 903

903 903

DN (мм) NPS (дюйм) Класс давления
PN 20–100 (класс 150–600) PN 150 (класс 900) PN 250 (класс 1500) PN 420 (класс 2500)
15 ½ 13 13 13 13
20 ¾ 1932 1932 1932 1932
25 1 25 25 25 25
32 32 32 32 38 38 38 38
50 2 49 49 49 42
65 2½ 62133

2½ 62 62 52
80 3 74 74 74 62
100 4 100 100 100 100 6 150 150 144 131
200 8 201 201 192 179
179
239 223
300 12 303 303 287 265
350 14 334 14 334

16 385 373 360
450 18 436 423
500 20 487 471
22
600 24 589 570
650 26 633 617 665
750 30 735 712
800 32 771

32 77

850 34 830 808
900 36 874 855
950 38 925
1000 40 40 976

1050 42 1020
1200 48 1166 1

1

1400 56 1360
1500 60 1432 1458 60 1432 1458

Согласно стандарту API 6D шаровой кран RB имеет уменьшение на один размер до 12 дюймов включительно (например.g., 12 ″ × 10 ″) и два уменьшения размера для размеров более 12 ″ –24 ″ (например, 24 ″ × 20 ″), а также соглашение потребителя и производителя для размеров более 24 ″. Это может привести к трехкратному уменьшению размера, превышающему 24 дюйма (например, 36 дюймов × 30 дюймов). Болты корпуса для клапанов FB обычно имеют больше фланцевых болтов по сравнению с клапанами RB. Шаровой кран RB имеет полнопроходное отверстие на концевом фланце (параметр B на рис. 1.13, правый клапан), которое постепенно уменьшается (параметр B1 на рис. 1.14, правый клапан). Поэтому оба диаметра отверстия показаны на чертеже общего вида шаровых кранов RB.Однако диаметр полнопроходного клапана постоянен (параметр B на рис. 1.14, левый клапан).

Рис. 1.13. Чертежи полнопроходного / уменьшенного шарового крана.

Рис. 1.14. Полнопроходные шаровые краны.

Некоторым приборам, например, расходомерам, может потребоваться прямая труба некоторой длины перед или за потоком, чтобы избежать турбулентности потока и обеспечить точность измерений. На рис. 1.14 показан 18-дюймовый шаровой клапан класса 150 перед проточным элементом (FE), который должен иметь то же отверстие, что и труба, чтобы избежать турбулентности потока в проточном элементе.

Полнопроходной шаровой кран API 6D обычно имеет меньший диаметр отверстия, чем труба. Например, полнопроходные шаровые краны 18 ″ API 6D класса 150 из дуплексного материала 22Cr могут иметь диаметр отверстия на 10–12 мм меньше диаметра трубы. Труба из дуплекса 22Cr не имеет допусков на коррозию и имеет меньшую толщину, что делает ее более проточной по сравнению с клапаном, а также по сравнению с трубой из углеродистой стали. Минимальный диаметр отверстия (проточного канала) составляет 90% внутреннего диаметра конца клапана согласно ASME B16.34, что является стандартом для конструкции клапана.

Внутренний диаметр трубы и клапана разный; Итак, между фланцем корпуса клапана и присоединенным фланцем есть уступ. Однако нет необходимости сужать какой-либо из фланцев соединителя клапана, в отличие от фланца, подсоединенного к оборудованию. Следовательно, шаровой кран должен быть спроектирован как специальный канал, обеспечивающий открытое сечение потока, равное диаметру трубы. Внутренняя поверхность шара, седла и контакта корпуса с седлом может создавать очень низкую турбулентность.Однако может потребоваться специальная прокладка с тем же внутренним диаметром, что и отверстие трубы в клапане и фланцевом соединении, чтобы избежать турбулентности жидкости.

Другой пример описывает шаровой клапан FB, который соединен фланцем с фланцем с обратным клапаном с двумя пластинами без каких-либо расстояний. Для обратных клапанов с двумя пластинами обычно требуется минимум 2D (в 2 раза больше диаметра трубы) перед по потоку и 5D (в 5 раз больше диаметра трубы) после прямой линии, чтобы избежать турбулентности потока и эрозии внутри обратного клапана с двумя пластинами.Поэтому не рекомендуется соединять шаровой клапан RB с обратным клапаном с двумя пластинами. При установке обратного клапана перед шаровым клапаном необходимо учитывать зазор диска двойного пластинчатого обратного клапана, как показано на рис. 1.15. Однако установка обратного клапана, соединенного с шаром FB со стороны выхода потока, не создает риска столкновения двухдискового диска, поскольку диск открывается на противоположной стороне шарового клапана.

Рис. 1.15. Полнопроходной шаровой кран в сочетании с двухдисковым обратным клапаном.

Шаровые краны могут потребоваться перед насосами, чтобы увеличить чистый положительный напор на всасывании насосов. Рекомендуется также иметь запорные шаровые краны перед регулирующими клапанами. Хотя перед регулирующим клапаном спроектирован редуктор, который вызывает падение давления, шаровой клапан FB вместо клапана RB мог бы быть лучшим выбором перед регулирующим клапаном, как показано на рис. 1.16. Как показано на рисунке, стопорный шаровой клапан после регулирующего клапана также должен быть FB.Выбор шарового клапана FB позволяет избежать пробоя и наличия двухфазного потока, который может увеличить износ, эрозию и кавитацию в регулирующем шаровом клапане. Однако шаровой кран RB может быть выбран вместо FB для экономии затрат.

Рис. 1.16. Полнопроходные запорные шаровые краны до и после регулирующего клапана.

В одном из проектов шаровой кран RB был выбран вместо шарового клапана FB на линии подфакельного факела. Технологический отдел запросил два параметра Θ и B = d1 / d2, чтобы определить, достаточна ли пропускная способность (значение CV) RB.Эти два параметра показаны на рис. 1.17.

Рис. 1.17. Параметры шарового клапана Θ и B.

Два последовательно закрытых шаровых клапана FB могут быть выбраны для ручного сброса давления в факельную систему. Например, шаровые краны 2 ″ класса 1500 для ручного сброса давления должны иметь внутренний диаметр не менее 49 мм в соответствии с таблицей 1.1 стандарта API 6D. Если кто-то задается вопросом, можно ли выбрать клиновую задвижку в качестве альтернативы, ответ — нет. Клиновая задвижка 2 ″ класса 1500 не может обеспечить полнопроходную задвижку в соответствии со стандартом API 602, который распространяется на задвижки, проходные и обратные клапаны для размеров 4 ″ и меньше в нефтяной и газовой промышленности.Минимальное отверстие клиновой задвижки указанного выше размера и класса давления составляет 38 мм, что меньше диаметра отверстия шарового клапана согласно API 6D.

За исключением примера шарового клапана рядом с расходомером (расходомером), упомянутого ранее, трубопроводные клапаны должны иметь специальное отверстие, равное или близкое к внутреннему диаметру трубы, из-за работы скребка. Хотя трубопроводная арматура спроектирована на основе API 6D, минимальные диаметры отверстий, указанные в API 6D, не обязательно подлежат скребку. Диаметр отверстия клапана обычно меньше толщины трубы, особенно когда труба изготовлена ​​из дуплексного материала 22Cr.Дуплексная труба из 22Cr не имеет допуска на коррозию при относительно высокой прочности, что делает толщину трубы меньше по сравнению с трубой из углеродистой стали и соединенным клапаном из дуплексного материала 22Cr. На рис. 1.18 показано испытание на смещение после изготовления и сборки шарового крана для трубопровода путем прохождения инструмента, сделанного из стержня длиной 1 м с тремя пластинами круглой формы на обоих концах и в середине, чтобы убедиться, что внутренний диаметр клапана клапан подходит для работы со скребком.

Рис.1.18. Испытание на смещение шарового крана стояка.

District Energy — Böhmer — идеальный шаровой кран

Überzeugende Argumente

BÖHMER Kugelhähne überzeugen seit jeher durch ihre Zuverlässigkeit und hohe Funktionssicherheit.

Das reicht Ihnen nicht? Hier sind noch 10 gute Gründe mehr!

10 REDUNDANTE ABDICHTUNG

09 EINDEUTIGE STELLUNGSANZEIGE

08 INNENLIEGENDER ANSCHLAG

07 MEDIENFREIER DOM

06 МАССИВНЫЙ ВОЛЛКУГЕЛЬ

05 ДОППЕЛТЕ ЛАГЕРУНГ

04 GEFEDERTE SITZRINGE

03 MAKELLOSE SCHWEISSENDEN

02 DURCHGESCHWEISSTE NÄHTE

01 MASSIVE GEHÄUSEBAUTEILE

Da der Fernwärmekugelhahn ein Teil des Rohrsystems ist, setzt BÖHMER bei den Kugelhahngehäusen auf massn Schmiedestahl und Wandstärken, умирают в Jedem Querschnitt größer als das angeschlossene.

So können auftretende Zug- und Druck-belastungen sowie Biegemomente kompensiert werden, ohne dass es zu Fehlfunktionen der BÖHMER-Fernwärmekugelhähne kommen kann.

Damit übertreffen die Gehäusebauteile der BÖHMER-Fernwärmekugelhähne nicht nur die erforderlichen Normen, sondern gewährleisten höchste Betriebssicherheit auch unter extremen Betriebsbedigungen.

Für die Produktion der BÖHMER-Fernwärmekugelhähne erfolgt keine Kaltverformung an den Gehäusebauteilen.Somit behavior die Materialprüfzeugnisse der Rohteile in vollem Umfang mit den Physikalischen und chemischen Eigenschaften ihre Gültigkeit.

Die Massive Gehäusebauteile gewähren höchste Betriebssicherheit auch unter extremen Betriebsbedingungen

Massive Gehäusebauteile

Fernwärmekugelhähne unterliegen mitunter mitunter extremen. Deshalb ist konstruktiv
sicherzustellen, dass Spannungsrisskorrosion an den Schweissnähten ausgeschlossen ist.

Um den Eintritt von korrosiven Medien in die Schweissnaht zu verhindern, werden die BÖHMER-Fernwärmekugelhähne komplett durchgeschweisst.Über den gesamten Querschnitt, einwandfrei und ohne Risse und Bindefehler.

Durch die Ausführung der Schweissnähte gemäß den gültigen Vorschriften aus dem Rohrleitungs- und Behälterbau werden die hohen Qualitätsansprüche erfüllt. Die dauerhafte Betriebssicherheit der Fernwärmekugelhähne hat bei BÖHMER höchste Priorität.

Die durchgeschweißten Schweißnähte де Gehäuses nehmen Auch extremste Belastungen Ауф унд Sorgen für betriebssichere унд сделайте schaltbare Armatur

Durchgeschweißte Nähte

Мм умирают Böhmer-Fernwärmekugelhähne für ден Erdeinbau в isolierfähiger Baulänge цу produzieren, Werden умирают Gehäusekörper Durch Rohrenden verlängert.

Diese Rohrenden übertreffen die Forderungen der EN488 hinsichtlich der Wandstärken.

Hierdurch wird das sichere Aushalsen für Entleerungs- und Entlüftungsstutzen möglich, ohne dass die in der Norm geforderten Mindestwandstärken unterschritten werden.

Darüber hinaus minimieren die zerspanend bearbeiteten Rohrenden den Aufwand der Richtarbeiten beim Anschweißen an die Rohrleitung durch ihre absolute Rundheit.

Die verlängerten Schweißenden erfüllen mehr als die geforderte Norm und bieten absolute Rundheit durch zerspanende Bearbeitung

Wandstärken über Norm.

Die druckfederunterstützten Kugeldichtungen sorgen für lange Lebensdauer und bilden die Basis für die bei bestimmten Einsatzbedingungen geforderte Doppelabsperrung (Double Block and Bleed).

Es kommen Zylinderfederpakete zum Einsatz, die im Vergleich zu Tellerfedern einen deutlich größeren Federweg und eine höhere Standzeit aufweisen.

Selbst bei Verschmutzungen im Medium kann das selbstnachstellende Dichtungssystem uber den Kolben und den langen Federweg möglicherweise auftretenden Verschleiß an den Dichtungen kompensieren.

Das gesamte Dichtungssystem ist im Gehäuse vollständig gegen Schmutz gekammert, sodass seine Funktionalität langfristig gewährleistet ist.

Die druckfederunterstützten Kugeldichtungen sorgen für erhöhte Lebensdauer und
bilden die Basis der Double Block and Bleed-Funktion

Federunterstützte Sitzringe

Ab der Nennweite DN65 / PN40 bzw. DN125 / PN16 haben BÖHMER-Fernwärmekugelhähne grundsätzlich doppelt gelagerte Kugeln. Die doppelte Kugellagerung erhöht die ebensdauer der Armatur durch Reduzierung der auftretenden Belastungen an den Dichtelementen.

Darüber hinaus gewährleisten die geringeren Belastungen der Armaturenbauteile deutlich geringere Betätigungsmomente, wodurch sich die Getriebe- und Antriebseinheiten wirtschaftlicher und kompakter gestalten lassen.

Die doppelte Kugellagerung erhöht die Lebensdauer der Armatur durch Reduzierung der auftretenden Belastungen

Doppelte Kugellagerung

Die Vollkugel gewährt höchstemische Beitriebssicher. Die Mass Bauweise mit vollem runden und gleichförmigen Durchgangsquerschnitt verhindert Druck- und damit auch Leistungsverluste, так что dass die höheren Anschaffungskosten schnell amortisiert werden.

Hohlkugeln, deren Herstellung aufgrund der geringen Wandstärke Material einspart, kommen als Absperrkörper in der Regel nur dort zum Einsatz, wo Druck- und Leistungsverluste bei der Berechnung bleibentigticht.

BÖHMER empfiehlt für seine Fernwärmekugelhähne grundsätzlich den Einsatz von Massiven Vollkugeln.

Die array массивный Vollkugel gewährt höchste Betriebssicherheit

bei minimalen Strömungsverlusten

Massive Vollkugel

Der mediumfreie Domaufbau bei den BÖHMER- Fernwärmendekugen der.Somit lassen sich Korrosionsschäden durch von außen eindringendes Wasser vermeiden.

Der Kopf des Domaufbaus ist aus Edelstahl der Qualitätsgruppe V4A und damit auch gegen von außen anstehende Fremdmedien beständig.

Der mediumfreie Domaufbau vermindert умирают THERMISCHE Belastung

ан-дер-Isolierung

Mediumfreier Domaufbau

Ум умирает zweifelsfreie Positionierung в ден Endlagen дер Armatur цу sichern, verwendet Böhmer Bei Erdeinbau-Kugelhähnen ausschließlich innenliegende унд Сомит verschmutzungs- унд zerstörungssichere Anschläge.

Im Gegensatz zu offenliegenden Anschlägen kann so verhindert werden, dass sich Schmutz zwischen den Endanschlägen ablagert und die sichere Positionierung des Kugelhahnes in den Endlagen nicht erreicht wird.

Somit ist sichergestellt, dass die Kugel immer sicher in die Endpositionen gelangt, ohne dass Fehlstellungen der Kugel zu Schäden in Folge von strömendem Wasser führen.

Der innenliegende und somit verschmutzungsfreie Anschlag sichert die zweifelsfreie Positionierung in den Endlagen der Armatur

Innenliegender Anschlag

Der Zweiflach am au und diechontierbe im Vic.

Das Schaltwellenende mit einer stiiernseitigen Durchflussanzeige ist als Vierkant ausgelegt, wobei eine seitlich eingefräste Nut für die verwechselungsfreie Fixierung der Zusatzverlängerchungen der der.

Ein Zweiflach im Dombereich zeigt die Richtung der Rohrleitung an. Die Kombination beider Anzeigen macht immer die genaue Stellung der Kugel in dem Kugelhahn erkennbar, auch wenn der Gehäusekörper und die Ausrichtung der Rohrleitung nicht mehr zu sehen ist.

Die BÖHMER-Stellungsanzeige mit Zweiflach und roter Richtungskerbe im Vierkantschoner sichert eine eindeutige Stellungsanzeige auch nach der

Montage von BÖHMER-
Zubehör

Eindeutige Stellungsanzeige

Die Abdichtung der Schaltwelle erfolgt bei BÖHMER-Erdeinbaukugelhähnen über ein redundantes Dichtungssystem.

Das erste System dichtet direkt oberhalb der Kugel ab. Es verhindert das Eindringen von heißem Wasser in die Schaltwellenverlängerung und damit unnötige Wärmeverluste und thermische Schäden an der Isolierung.

Die untere Abdichtung besteht aus zwei temperatur- und druckbeständigen O-Ringen. Die zweite obere Abdichtung ist austauschbar und besteht ebenfalls aus einem O-Ring sowie zusätzlich aus einem PTFE-Dichtring.

Darüber hinaus erfüllt diese zusätzlich die Führung der Schaltwellenverlängerung.

Die redundante Schaltwellenabdichtung sorgt für absolut verlässliche Dichtheit nach außen

Redundante Wellenabdichtung

Советы NIBCO по проектированию эффективной гидронной системы

Используйте шаровой кран с одним фланцем для отключения насосов во время обслуживания.

Спроектировать эффективную гидравлическую систему — нелегкая задача. Потребности каждой системы могут сильно различаться от одной работы к другой, хотя основные элементы остаются в основном теми же. В типичной системе вы обычно найдете бойлер, циркуляционные насосы, расширительный бак, различные распределители тепла и аксессуары, такие как вентиляционные отверстия, клапаны и сливы. Выбор правильных компонентов для оптимальной установки, обслуживания и управления системой и ее оборудованием является ключом к эффективности работы.

На это следует обратить внимание при проектировании современной и эффективной гидравлической системы:

  1. Начиная с котла, рассмотрите коллектор со встроенными отсеками и стоками, чтобы упростить установку и обслуживание первичного контура отопления. Это решение сочетает в себе близко расположенные тройники с запорными клапанами для (1) гидравлического разделения контуров нагрева, (2) изоляции циркуляционного насоса и (3) продувки системы. Использование коллектора с правильным комплектом трубопроводов может сэкономить впечатляющие 261 минуту труда, устранить 29 путей утечки и заменить 34 отдельных компонента.Для комбинированных котлов или водонагревателей без бака выберите комплект сервисных клапанов, который сочетает в себе запорные клапаны с соединительной резьбой для выхода горячей воды и входа холодной воды с продувочными дренажами с высоким расходом и портом для необходимого предохранительного клапана. Комплект рабочего клапана в этой установке экономит 108 минут труда, устраняет 12 путей утечки и заменяет 14 компонентов.
  2. Для системных насосов выберите шаровой кран с одним фланцем, который подсоединяется к циркуляционному насосу с одного конца и к трубопроводу системы с другого.Это позволяет пользователю изолировать насос для обслуживания, практически не допуская попадания воздуха в систему при замене. Дополнительные функции включают съемный вращающийся фланец, отверстия для болтов с прорезями для высокоскоростных насосов, круглый фланец для насосов с регулируемой скоростью и многофункциональный слив для шланга с высоким расходом. Выбор этой кованой латуни, альтернативной сборке на месте, может сэкономить до 63 минут труда, устранить семь путей утечки и заменить восемь компонентов.
  3. На расширительном баке могут быть установлены трехходовые шаровые краны для удовлетворения различных потребностей бака.Эти клапаны предназначены для того, чтобы пользователь мог легко установить, изолировать, опорожнить или заменить резервуар, а также подключить систему к питающей линии. Он также обеспечивает соединение с воздушным сепаратором, который отделяет и удаляет захваченный воздух из системы с помощью уникальной коалесцирующей среды из нержавеющей стали. Этот единственный клапан может сэкономить 54 минуты труда, сократить шесть путей утечки и заменить семь компонентов.
  4. Способы распределения тепла могут быть самыми разными: от стандартного оборудования, такого как обогреватели плинтуса и радиаторы, до первоклассного оборудования, такого как системы напольного отопления и системы снеготаяния.Используйте термостатические смесительные клапаны на любой из этих систем распределения воды, чтобы обеспечить подачу жидкости к устройству при соответствующей температуре. Благодаря восьми концевым соединениям, дополнительному датчику температуры на штуцере и запорным клапанам термостатические смесительные клапаны можно настроить для любой установки.
  5. В контурах нагрева некоторые уникальные продукты, представленные на рынке, могут управлять потоком между первичной и вторичной зонами. Одним из таких продуктов является клапан, в котором шаровой клапан помещается между двумя близко расположенными тройниками — такую ​​конфигурацию невозможно достичь с помощью стандартных компонентов.Для дополнительных петель, таких как зона таяния снега, поищите продукты, которые помогают в регулярном обслуживании жидкостей. Например, для зоны таяния снега петля оснащена трехходовым шаровым клапаном, который изолирует поток между двумя независимо управляемыми сливными шлангами, позволяя пользователю одновременно продувать и заполнять систему. Это экономит 54 минуты труда, устраняет шесть путей утечки и заменяет семь компонентов.
  6. Остальные потребности системы могут варьироваться, но в основном зависят от перекрытий и сливов.Комбинированные шаровые / сливные клапаны можно использовать везде, где пользователю необходимо изолировать и опорожнить часть системы. Они могут сэкономить до 45 минут труда, устранить пять путей утечки и заменить шесть компонентов. Их также можно отрегулировать для слива с любой стороны шара. Для более упрощенного дренажа слив Т-образного типа можно установить в любом месте, где требуется слив, не требующий изоляции.

Гидравлические системы изменились с годами. Многие инновационные продукты, такие как клапаны NIBCO Webstone®, экономят рабочую силу, пространство и пути утечки.При проектировании вашей следующей гидронной системы учитывайте новейшие доступные клапаны. В полной установке выбор клапана имеет важное значение для создания современной и эффективной гидравлической системы. Выбирая правильные продукты, вы можете рассчитывать на замену 220 компонентов, сэкономить более 26 часов труда и устранить 177 путей утечки.

В полной установке выбор клапана имеет важное значение для создания современной и эффективной гидравлической системы.

Для получения дополнительной информации посетите www.nibco.com.

Home — Milwaukee Valve

Компания Milwaukee Valve была основана в Висконсине в 1901 году и начинала как небольшой производитель водопроводной и отопительной арматуры.Гершель Седер купил бизнес в 1959 году вместе со своим покойным партнером Максом Кенигсбергом. За прошедшие годы компания расширила свое предложение до того, что сейчас насчитывает более 5000 наименований, используемых в очень широком диапазоне приложений и отраслей, от очень маленьких водопроводных кранов, используемых в подвале вашего дома, до больших нефтехимических клапанов и почти всех размер и тип клапана между ними.

Благодаря нашей долгой истории, нашему опыту в широком спектре услуг и, наконец, нашим людям, многие из которых проработали в компании 25 или более лет, мы разработали уникальное сочетание возможностей, не имеющее себе равных в нашей отрасли. наших конкурентов.Цель этой статьи — описать эти возможности в интересах наших нынешних и будущих клиентов. Мы являемся международной организацией как в сфере поставок, так и в сфере продаж. Мы применяем наш строгий контроль качества при производстве всех материалов, независимо от того, производим ли мы их на наших заводах в Висконсине, на нашем 100% -ном предприятии в Китае или на одном из наших совместных предприятий в других странах мира.

Мы работаем над одним из крупнейших строительных проектов в Северной Америке невероятно быстрыми темпами, и Milwaukee Valve обеспечила качество, объем, цену и поддержку.
Тодд Фоллис — Компания John W. Danforth

Нам повезло, что компания Milwaukee Valve представлена ​​компанией Exceptional Product Sales, так как их ценности и приверженность обслуживанию помогают нашим усилиям по обеспечению наилучшего обслуживания, продукции и удовлетворенности клиентов.
Джим Барнс (менеджер по продажам) — Galloup

У нас не было абсолютно никаких проблем с пайкой новых клапанов с низким содержанием свинца Milwaukee Valve.
Джефф Коулсон (менеджер отдела сантехники) — Corrigan Company

Мы можем делать то, что делаем, потому что нам помогают надежные партнеры, такие как Milwaukee Valve.
Curtis Mellon — Murray

Шаровой клапан рубашки обогрева, клапан с рубашкой, клапан паровой рубашки

Шаровой клапан с рубашкой обогрева

Некоторые технологические среды затвердевают или закисают в закрытом клапане после работы. Оставшаяся среда может затруднить работу клапана или даже загрязнить технологическую среду во время работы. Чтобы избежать такой проблемы, один из вариантов — поддерживать температуру технологической среды, установив на клапан нагревательную рубашку. Этот шаровой кран с рубашкой обогрева часто требуется заказчикам из фармацевтической и фармацевтической промышленности.

Нагревательная рубашка — это устройство, которое поддерживает температуру технологической среды в корпусе клапана. Он приварен к корпусу клапана. После сварки остается дополнительное пространство между внешней стороной корпуса клапана и внутренней стороной рубашки. Он позволяет проходить горячей среде, обычно это пар, горячее масло или горячая вода. Стандартная куртка из нержавеющей стали 304 может выдерживать теплоноситель не более 6 бар (87 фунтов на кв. Дюйм), при более высоком давлении, пожалуйста, сообщите нам о более толстой рубашке.

Простая замена

Даже с рубашкой обогрева клапан все равно необходимо время от времени чистить.Поскольку наша нагревательная рубашка приварена к части корпуса клапана, клиенты могут разбирать клапан, заменять мягкие комплекты и чистить, как обычные клапаны.

Дополнительная опция

Чтобы еще больше уменьшить количество оставшейся среды в клапане, вы можете добавить наполнитель полости или выбрать покрытие из ПТФЭ. Заполнитель полости заполняет полость клапана. Благодаря слою гладкого PFA на поверхности проходного отверстия клапана он предотвращает прилипание среды к корпусу клапана, а также облегчает процесс очистки.

Тип клапана

Мы можем использовать нагревательную рубашку для всех наших шаровых кранов. Его можно приваривать к нашим цельным или двухкомпонентным фланцевым клапанам с круглым корпусом клапана. Его также можно приваривать к 3-х или 3-х ходовым шаровым кранам с прямоугольным корпусом. Для однокомпонентных клапанов мы предлагаем полностью закрытые клапаны. Для других шаровых кранов, таких как двухкомпонентные, трехкомпонентные, трехходовые, многоходовые, мы разрабатываем вариант с частичной рубашкой.

Руководство по выбору шаровых кранов

ВА Серия

Материалы

Корпус: Никелированная латунь
Уплотнения: Viton, EPDM или Buna

Подключения

NPT: от 3/8 дюйма до 2 дюймов

VIP серии

Материалы

Корпус: Никелированная латунь
Уплотнения: Viton, EPDM или Buna

Подключения

G (BSPP): от 3/8 дюйма до 2 дюймов

VIP-EVO серии

Материалы

Корпус: Алюминий (несмачиваемый)
Торцевое соединение: Латунь с никелевым покрытием (смачивание)
Поршень: Chem.Латунь с никелевым покрытием (смачиваемая)
Седло: ПТФЭ, 15% стекловолокно
Уплотнения: Viton, EPDM или Buna

Подключения

NPT: от 3/8 дюйма до 2 дюймов
G (BSPP): от 3/8 дюйма до 2 дюймов

Угловые клапаны

Материалы

Корпус: нержавеющая сталь или бронза
Уплотнения: ПТФЭ

Подключения

NPT: от 3/8 дюйма до 2 дюймов
Tri-Clamp: от 1/2 дюйма до 2 дюймов

J Серия

Материалы

Корпус: Латунь
Уплотнения: BUNA или Viton

Подключения

NPT: от 3/8 дюйма до 1 дюйма

VAX серии

Материалы

Корпус: нержавеющая сталь или латунь
Уплотнения: FPM
Седла: PTFE

Подключения

NPT: от 3/8 дюйма до 1 дюйма

Серия SM

Материалы

Корпус: Латунь или бессвинцовая латунь
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

P2 серии

Материалы

Корпус: PVC
Уплотнения: EPDM или Viton
Седла: PTFE

Подключения

NPT: от 1/2 «до 4»
Клейкое гнездо: от 1/2 «до 4»

101 серии

Материалы

Корпус: Никелированная латунь
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

NPT: от 3/8 дюйма до 3 дюймов

26 серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: ПТФЭ и витон
Седла: RPTFE

Подключения

NPT: от 1/4 дюйма до 3 дюймов

36 серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: PTFE
Седла: RPTFE

Подключения

NPT: от 1/4 «до 3»
Сварка внахлест: от 1/4 «до 3»
Tri-Clamp: от 1/2 «до 4»

150F / 300F серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: от 1/2 до 8 дюймов
300 #: от 1/2 до 8 дюймов

150F / 300F серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: от 1/2 до 8 дюймов
300 #: от 1/2 до 8 дюймов

HPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

HPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

XP3 серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

DSI-WG серии

Материалы

Корпус: углеродистая сталь (A216 WCB)
Трим: API трим 8 (доступны другие)

Подключения

150 #: от 2 до 30 дюймов
300 #, 600 #, 900 #, 1500 #: Позвоните по телефону

XLB серии

Материалы

Корпус: Ковкий чугун с футеровкой PFA
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

150 #: 1/2 дюйма до 6 дюймов

V Серия

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: PTFE, TFM или 50/50
Седла: PTFE, TFM или 50/50

Подключения

NPT: от 1/2 «до 4»
150 # / 300 #: 1/2 «до 8»
Tri-Clamp: 1/2 «до 4»

Серия SM

Материалы

Корпус: Латунь или бессвинцовая латунь
Уплотнения: ПТФЭ
Седла: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

30D серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

Tri-Clamp: от 1/2 до 4 дюймов

31D серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ / витон или RPTFE

Подключения

NPT: от 1/4 дюйма до 3 дюймов

33D серии

Материалы

Корпус: Латунь
Седла: RPTFE
Уплотнения: RPTFE / Viton

Подключения

NPT: от 1/4 дюйма до 2 дюймов

MPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: TFM
Уплотнения: TFM

Подключения

150 #: от 3/4 дюйма до 6 дюймов
300 #: от 1 1/2 дюйма до 6 дюймов

PTP серии

Материалы

Кузов: PVC
Седла: PTFE
Седла: EPDM или Viton

Подключения

NPT: от 1/2 «до 2»
Клейкое гнездо: от 1/2 «до 2»

BFY серии

Материалы

Корпус: Нерж. Сталь 316L
Седла: EPDM, SIlicon или Viton

Подключения

Tri-Clamp: от 1/2 «до 6»
Стыковая сварка: 1/2 «до 6»

FE серии

Материалы

Кузов: PVC
Сиденья: EPDM

Подключения

Вафля: от 1 1/2 до 12 дюймов

FK серии

Материалы

Кузов: GRPP
Сиденья: Полипропилен

Подключения

Межфланцевый: от 1 1/2 до 12 дюймов
С выступом: от 2 1/2 до 12 дюймов

HP серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: RPTFE

Подключения

Межфланцевый: от 2 до 12 дюймов
С выступом: от 2 до 12 дюймов

HPX серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: Графит

Подключения

Межфланцевый: от 3 до 48 дюймов
С проушинами: от 3 до 48 дюймов
ANSI класс 150, 300, 600

HPX серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седла: Графит

Подключения

Межфланцевый: от 3 до 48 дюймов
С проушинами: от 3 до 48 дюймов
ANSI класс 150, 300, 600

ST серии

Материалы

Корпус: Ковкий чугун с эпоксидным покрытием
Седла: BUNA или EPDM

Подключения

Межфланцевый: от 2 до 12 дюймов
С выступом: от 2 до 24 дюймов

XLD серии

Материалы

Кузов: Ковкий чугун с покрытием из PFA
Седла: Витон

Подключения

Межфланцевый: от 2 до 24 дюймов
С выступом: от 2 до 24 дюймов

061 серии

Материалы

Корпус: Ковкий чугун с футеровкой PFA
Заглушка: Ковкий чугун с футеровкой PFA

Подключения

150 #: 1/2 дюйма до 4 дюймов

067 серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: ПТФЭ

Подключения

150 #: 1/2 дюйма до 4 дюймов

XP3 серии

Материалы

Корпус: нержавеющая сталь или углеродистая сталь
Уплотнения: PTFE, RPTFE, PFA или специальный

Подключения

150 #: от 1/2 до 12 дюймов
300 #: от 1/2 до 12 дюймов

GVI серии

Материалы

Корпус: Углерод или нержавеющая сталь
Накладка : SS, TFE или PEEK

Подключения

150 #: 1/2 дюйма до 4 дюймов
300 #: 1/2 дюйма до 4 дюймов
NPT: 1/2 дюйма до 2 дюймов
SW: 1/2 дюйма до 2 дюймов

GV серии

Материалы

Корпус: Бронза или нержавеющая сталь
Отделка: Бронза, SS или PEEK

Подключения

NPT: 1/2 дюйма до 2 дюймов
Стыковая сварка: 1/2 дюйма до 2 дюймов

GH серии

Материалы

Корпус: Чугун
Отделка: Бронза или нержавеющая сталь

Подключения

150 # Фланец: от 2 1/2 до 8 дюймов
300 # Фланец: от 2 1/2 до 8 дюймов

EWG серии

Материалы

Корпус: углеродистая сталь (A216 WCB)
Трим: API трим 8 (доступны другие)

Подключения

150 #: от 2 до 30 дюймов
300 #, 600 #, 900 #, 1500 #: Позвоните по телефону

DSI-WG серии

Материалы

Корпус: углеродистая сталь (A216 WCB)
Трим: API трим 8 (доступны другие)

Подключения

150 #: от 2 до 30 дюймов
300 #, 600 #, 900 #, 1500 #: Позвоните по телефону

21 серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: от 1/4 дюйма до 2 дюймов

282 серии

Материалы

Корпус: Латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: от 1/4 дюйма до 4 дюймов
NPT (наружная x внутренняя): 1/4 дюйма до 1 дюйма
Припой: 1/2 дюйма до 4 дюймов

282LF серии

Материалы

Корпус: Бессвинцовая латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

Ручные клапаны

Краны шаровые 2-ходовые

NPT: от 1/4 дюйма до 3 дюймов
Сварка внахлест: от 1/4 дюйма до 3 дюймов
Tri-Clamp: от 1/2 дюйма до 3 дюймов

3-ходовые шаровые краны

NPT: от 1/4 дюйма до 2 дюймов

Дисковые затворы

с проушинами: от 2 до 8 дюймов

112LF серии

Материалы

Корпус: Нержавеющая сталь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

282LF серии

Материалы

Корпус: Латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: от 1/4 дюйма до 4 дюймов
NPT (наружная резьба c внутренняя часть): 1/4 дюйма до 1 дюйма
Припой: 1/2 дюйма до 4 дюймов

250LF серии

Материалы

Корпус: Бессвинцовая латунь
Седла: ПТФЭ
Уплотнения: ПТФЭ

Подключения

NPT: 1/2 дюйма до 2 дюймов

Ручные клапаны

Краны шаровые 2-ходовые

NPT: от 1/4 дюйма до 3 дюймов
Сварка внахлест: от 1/4 дюйма до 3 дюймов
Tri-Clamp: от 1/2 дюйма до 3 дюймов

3-ходовые шаровые краны

NPT: от 1/4 дюйма до 2 дюймов

Дисковые затворы

с проушинами: от 2 до 8 дюймов

FireChek® серии

Материалы

Корпус: Нержавеющая сталь
Уплотнения: Delrin®

Подключения

NPT: 1/4 «
ISO: 1/4″

Клапаны пожаробезопасные FM

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: Graphoil
Седла: Xtreme RPTFE

Подключения

NPT: 1/2 дюйма до 2 дюймов
150 # / 300 #: 1/2 дюйма до 4 дюймов
Проушина / межфланцевое соединение: 3 дюйма и 4 дюйма

Серия ESD

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: 1/2 дюйма до 8 дюймов
300 #: 1/2 дюйма до 8 дюймов
NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

ESOV серии

Материалы

Корпус: Углерод или нержавеющая сталь
Седло: Трим API 8 или 12
Уплотнение крышки: Графит

Подключения

150 #: от 2 до 16 дюймов
300 #: от 2 до 16 дюймов

150F / 300F серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: 1/2 до 8 дюймов
300 #: 1/2 до 8 дюймов

Клапаны пожаробезопасные FM

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: Graphoil
Седла: Xtreme RPTFE

Подключения

NPT: 1/2 дюйма до 2 дюймов
150 # / 300 #: 1/2 дюйма до 4 дюймов
Проушина / межфланцевое соединение: 3 дюйма и 4 дюйма

HPF серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

HP серии

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

Межфланцевый: от 2 до 12 дюймов
С выступом: от 2 до 12 дюймов

Серия ESD

Материалы

Корпус: Углерод или нержавеющая сталь
Уплотнения: TFM или графит
Седла: TFM или 50/50

Подключения

150 #: 1/2 дюйма до 8 дюймов
300 #: 1/2 дюйма до 8 дюймов
NPT: 1/2 дюйма до 4 дюймов
Сварка внахлест: 1/2 дюйма до 4 дюймов

F Серия

Материалы

Корпус: Алюминий с полиуретановым покрытием

Момент

Пружинный возврат: до 56 500 дюймов / фунт.
двойного действия: до 59000 дюймов / фунт.

O серии

Материалы

Корпус: Алюминий с антикоррозийным покрытием

Момент

Пружинный возврат: до 25 600 дюймов / фунт.
двойного действия: до 25 600 дюймов / фунт.

P Серия

Материалы

Корпус: Алюминий с антикоррозийным покрытием

Момент

Пружинный возврат: до 25 600 дюймов / фунт.
двойного действия: до 25 600 дюймов / фунт.

CE серии

Материалы

Корпус: Поликарбонатный пластик (ABSPC)

Момент

100 дюймов / фунт.

V4 серии

Материалы

Корпус: Алюминий с эпоксидным покрытием

Момент

125 или 300 дюймов / фунт.

R4 серии

Материалы

Корпус: Поликарбонат

Момент

300 или 600 дюймов / фунт.

S4 серии

Материалы

Корпус: Антикоррозийный полиамид

Момент

до 2600 дюймов / фунт.

O серии

Материалы

Корпус: Литой под давлением алюминиевый сплав

Момент

до 8680 дюймов / фунт.

B7 серии

Материалы

Корпус: Алюминий с эпоксидным порошковым покрытием

Момент

до 20 000 дюймов / фунт.

FEX серии

Легко модернизируется на

Шаровые краны HPF, 150F и 300F

Сепаратор серии

Воздушный поток

От 20 до 150 стандартных кубических футов в минуту

Подключения

NPT (внутренняя резьба): от 1/4 дюйма до 1 дюйма

Фильтрация

Твердые вещества: 1 микрон
Вода: Удаление 100%

Комбинированный фильтр-элиминатор

Воздушный поток

От 20 до 150 стандартных кубических футов в минуту

Подключения

NPT (внутренняя резьба): от 1/4 дюйма до 1 дюйма

Фильтрация

Твердых тел: .01 микрон
Вода: Удаление 100%

01N серии

Материалы

Корпус: Нейлон

Подключения

NPT: 1 »

01A Серия

Материалы

Корпус: Алюминий

Подключения

NPT: 1 «

Серия DM-P

Материалы

Корпус: Пластик

Подключения

NPT (наружная резьба): от 1/4 дюйма до 1 дюйма

A1 серии

Материалы

Корпус: Алюминий или нейлон

Подключения

NPT: 1 дюйм или 2 дюйма

MAG серии

Материалы

Корпус: Нержавеющая сталь

Подключения

NPT: от 1/4 дюйма до 2 дюймов
BSPP: от 1/4 дюйма до 2 дюймов
Т-образный зажим: от 1/2 дюйма до 2 дюймов

G2 серии

Материалы

Корпус: нержавеющая сталь , алюминий или латунь

Подключения

NPT: 1/2 дюйма до 2 дюймов
Т-образный зажим: 3/4 дюйма до 2 1/2 дюйма
Фланец: 1 дюйм до 2 дюймов

TM серии

Материалы

Кузов: ПВХ, график 80

Подключения

NPT: от 1 до 4 дюймов
Клейкое гнездо (внутренняя): от 1 до 4 дюймов
Фланец: от 3 до 4 дюймов

WM-PT серии

Материалы

Кузов: ПВХ планка.60 или 80

Подключения

Клейкое гнездо (наружная): от 1/2 «до 4»
Вставка: от 1 1/2 «до 8»

WWM серии

Материалы

Кузов: ПВХ планка. 60 или 80

Подключения

Клейкое гнездо (наружная): от 1/2 «до 4»
Вставка: от 1 1/2 «до 8»

LM серии

Материалы

Корпус: Алюминий

Подключения

NPT: 1/2 «

WM серии

Материалы

Корпус: Бронза с эпоксидным покрытием

Подключения

NPT: от 1/2 «до 2»

WM-NLC серии

Материалы

Корпус: Бессвинцовая латунь

Подключения

NPT: от 1/2 «до 2»

WM-NLCH серии

Материалы

Корпус: Бессвинцовая латунь

Подключения

NPT: от 1/2 «до 2»

D10 серии

Материалы

Корпус: Бессвинцовая латунь

Подключения

NPT: 1/2 дюйма до 1 дюйма
Фланец: 1 1/2 дюйма до 2 дюймов

WM-PC серии

Материалы

Корпус: Полимер, армированный волокном

Подключения

NPT: от 1/2 «до 1 1/2»

WM-PD серии

Материалы

Корпус: Полиамид, армированный стеклом

Подключения

NPT: 1/2 — 3/4 дюйма

Импульсный выход

для счетчиков воды

Узнайте, что такое импульсный выход, и сравните счетчики воды, доступные с этой функцией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *