Коэффициент теплопроводности ппу: Теплопроводность пенополиуретана ППУ Коэффициент и таблица сравнения изоляции
Теплопроводность ппу, таблица
На современном строительном производстве широко применяются теплоизоляционные материалы. Их использование позволяет значительно сократить сметную стоимость объекта, не потеряв при этом в качестве. Один из самых востребованных материалов на рынке утеплителей – пенополиуретан.
Пенополиуретан относится к группе искусственных газонаполненных пластмасс. Он состоит из полиуретана, между которым находятся пузырьки воздуха. Теплопроводность пенополиуретана практически равна нулю, что делает его незаменимым материалом на стройке и в быту. Различают несколько его видов:
- Жёсткий пенополиуретан – новый и перспективный материал, который ещё не прошел проверку временем. На сегодняшний день учёным только предстоит изучить поведение этого материала через 30-40 лет эксплуатации. Его производят прямо на строительной площадке. Он наносится на поверхность методом напыления. Жёсткий ППУ используется для утепления и звукоизоляции цокольных и подвальных этажей, фундаментов.
- Мягкий пенополиуретан – широко используется в качестве набивочной теплоизоляции и для изготовления различных предметов обихода. Его плотность 5-35 кг/м/.
Немного истории
Первые образцы пенополиуретана были получены в лаборатории города Леверкузен в 1937 году. Сначала не использовали как утеплитель. Из него изготавливали лепнину. Вторая мировая война внесла свои коррективы в динамику развития пенополиуретана. Его производство было приостановлено до начала 60-х годов. Для восстановления разрушенной инфраструктуры понадобилось много строительного материала. Пенополиуретан занял в этом списке достойное место.
Анализ технических характеристик ППУ
В этой статье будет рассмотрен жёсткий пенополиуретан. Его всё чаще используют на строительных площадках. У него низкая теплопроводимость и гидрофобность. ППУ не пропускает пары воды, не гниёт. На его поверхности не образуется грибок и плесень. Он не вступает в реакции с большинством реагентов.
Для всестороннего изучения этого теплоизоляционного материала рассматриваются его основные свойства:
- Теплоизолирующие свойства.
- Шумоизолирующие свойства.
- Влагостойкость.
- Паропроницаемость.
- Поведение в различных химических средах.
- Сопротивление открытому огню.
- Плотность.
- Срок эксплуатации.
- Экологичность.
Сводная таблица усреднённых параметров основных теплоизоляционных и отделочных материалов
Теплоизолирующие свойства
Этот параметр напрямую зависит от величины ячейки и колеблется в диапазоне 0,019-0,035 Вт/мºС. Теплопроводность ячеистого ППУ хуже, чем у пенополистирола, керамзитового гравия и минеральной ваты. При одинаковой толщине слоя утеплителей – пенополиуретан сохраняет тепло намного эффективнее, чем вышеперечисленные материалы.
Схема сравнения теплоизолирующих свойств различных строительных материалов
Шумоизолирующие свойства
Его пористая и ячеистая структура обеспечивает удовлетворительную звукоизоляцию, но не от всех видов шума.
Важно! Нет универсального вида шума. Поэтому один материал может эффективно защищать от ударных шумов, но совершенно не сопротивляться другим их видам.
Пенополиуретан эффективно защищает внутренние помещения от различных ударных шумов. Это значит, что он заглушит звуки громких шагов или танцев соседей сверху. С другой стороны, по многочисленным отзывам потребителей, ППУ практически не защищает внутреннее пространство от звуков с улицы, громких разговоров иди музыки.
Этому есть простое объяснение. Ячеистые материалы (пенополиуретан, пенопласт) благодаря своей структуре плохо гасят звуковые волны. Для этих целей лучше использовать утеплители с волокнистой структурой (минеральная вата). У них волны гасятся за счёт колебаний внутренних волокон.
Влагостойкость
Для правильного использования теплоизоляционных материалов надо знать, какой процент влаги он сможет впитать. У пенополиуретана этот показатель равен 1-3 процентам от объёма материала в сутки. Этот показатель значительно выше, чем у пенопласта и минеральной ваты. Для улучшения защиты от влаги в состав ППУ добавляют присадки. Например, обычное касторовое масло уменьшает его гидрофобность в 4 раза.
Пример защиты фундамента ППУ ниже уровня земли (во влажной среде)
Паропроницаемость
По этому параметру у ячеистого пенополиуретана высокие показатели. Коэффициент его паропроницаемости µ=50. Для сравнения, у тяжелого бетона этот показатель в 40-50 раз ниже. ППУ подходит для обработки внешних поверхностей стен и фундаментов. Он может полностью остановить всасывание бетоном влаги. С другой стороны его не рекомендуется применять в воде. Есть вероятность возникновения химической реакции гидратации.
Схема работы стенового «пирога» на отвод влаги
Важно! Не вся пенополиуретановая пена хорошо защищает. Есть несколько видов ячеистой пены без защитной оболочки. Для них нужна дополнительная пароизоляция.
Поведение в различных химических средах
Реагенты | Концентрация, % | Стойкость |
Вода водопроводная | – | Ст |
Морская вода | – | Ст |
Соляная кислота | 36 | Нт |
Серная кислота | 45 | Ст |
Фосфорная кислота | 40 | Ст |
Едкий натр | 40 | Ст |
Аммиачная вода | 25 | Ст |
Азотная кислота | 68 | Ст |
Ацетон | – | Нт |
Кетоны | – | Нт |
Четырёххлористый углерод | – | Нт |
Толуол | – | Ст |
Бензин, нефтепродукты | – | Ст |
Сода | – | Ст |
Этил ацетат | – | Нт |
Метиловый спирт | 96 | Ст |
Этиловый спирт | 96 | Ст |
Эфиры | – | Нт |
Уксусная кислота | – | Ст |
Минеральные масла | – | Ст |
Растительное масло | – | Ст |
Муравьиная кислота | – | Нт |
*Ст- стоек, Нт – нестоек
Пенополиуретан зарекомендовал себя, как стойкий к основным химическим раздражителям материал. Он лучше, чем пенопласт сопротивляется испарениям многих химических элементов, если их концентрация не превышает норму. ППУ нельзя растворить с помощью бензина, солярки или различных масел. Многие концентрированные кислоты не способны разрушить его структуру.
Пенополиуретан можно использовать для защиты металлических поверхностей. Во время его нанесение на металл образуется два слоя плёнки. Первый плотно прилегает к поверхности, а второй защищает от химических реагентов.
Сопротивление открытому огню
Это важный параметр при выборе утеплителя. Не секрет, что при пожаре интенсивность распространения огня в значительной степени зависит от горючести теплоизоляционного материала. Согласно ГОСТ 12.1.044-89 ППУ относится к группам горючести Г2 и Г3. Согласно этой классификации пенополиуретан не является активным источником горения. Он сам не поддерживает огонь, а только может воспламениться от других источников.
Важно! Пенополиуретан сразу погаснет, если от него убрать огонь. Самозатухание – это важное свойство, которое относится ко всем его видам.
Плотность
Важный параметр, влияющий на несущую способность утеплителя. Для различных целей предусмотрен материал со своей плотностью. Диапазон значений плотности ППУ 8-80 кг/м3. Материал с открытыми ячейками обладает более низкой плотностью, чем с закрытыми ячейками.
Плотность различных видов пенополиуретана
Срок эксплуатации
Большая часть производителей указывают срок эксплуатации 20-30 лет. Это гарантийное время, в течение которого полезные свойства материала находятся в допустимых рамках. Последние исследования европейских учёных показали удивительные и обнадеживающие результаты. При сносе домов, построенных 40-50 лет назад с использованием пенополиуретана, учённые обнаружили, что его свойства практически не изменились. Структура и фактура остались теми же, что и изначально. Дальнейшие лабораторные исследования только подтвердили долговечность этого материала.
Экологичность
Важный параметр, на который всё больше и больше обращают внимание современные строители. В процессе производства пенополиуретан переходит из жидкого в твёрдое состояние за 30 секунд. После этого вредные испарения с его поверхности прекращаются. Если его нагреть до 450 Сº, то начнут выделяться углекислый и угарный газы. Впрочем, то же самое можно наблюдать и во время нагревания дерева.
Пенополиуретан не выделяет вредных для организма человека соединений
Положительные и отрицательные свойства ППУ
Для более удобного понимания сути, свойств и области применения материала надо иметь представление не только о физических и химических свойствах, но и знать его положительные и отрицательные стороны.
Положительные
- У пенополиуретана хорошая адгезия. Он без проблем пристаёт к деревянной, металлической, бетонной поверхностям. Для него не нужны дополнительные крепёжные элементы. Благодаря своей эластичной структуре и способу нанесения пенополиуретан хорошо ложится на неровные основания. Перед его нанесением поверхность не нуждается в дополнительной обработке грунтом или краской.
- У ППУ низкая стоимость. Он производится прямо на строительной площадке путём смешивания двух компонентов. Отсутствуют затраты на дополнительную транспортировку и изготовление.
- Пенополиуретан – это лёгкий материал, который не нагружает строительные конструкции.
- Кроме тепло- и звукоизоляции пенополиуретан укрепляет несущие стены, делая конструкцию более прочной и долговечной.
- На него практически не оказывают влияние экстремально низкие и высокие температуры. ППУ не разрушается от цикличного замораживания и размораживания.
- У покрытия из пенополиуретана монолитная структура. Нет щелей для появления мостиков холода. Ветер его не продувает.
Отрицательные
- ППУ быстро разрушается под действием ультрафиолетовых лучей. Поэтому он не остаётся в открытом состоянии, а требует защиты. Его можно покрыть слоем краски или оштукатурить. Также подойдет использование различных облицовочных панелей.
- Пенополиуретан – это негорючий материал. Всё равно его не рекомендуется использовать в местах возможного соприкосновения с открытым огнём. Если это технически невозможно, то ППУ закрывается огнестойким гипсокартоном.
Технология нанесения
Два компонента подаются в смесительный бачок. Там под давлением они смешиваются и с помощью пистолета распыляются на обрабатываемую поверхность. Через несколько секунд смесь резко увеличивается в объёме и быстро застывает.
Способ нанесения пенополиуретана
Важно! Для нанесения ППУ необходимо специальное оборудование и средства индивидуальной защиты. Поэтому лучше доверить этот процесс профессиональным строительным организациям.
Пенополиуретан во всех отношениях качественный материал. Экономия времени и средств может составлять 50-70% в сравнение с использованием традиционных утеплителей. Работы можно проводить круглый год. Технологии не стоят на месте, поэтому утепление строительных конструкций с помощью пенополиуретан будет становиться всё дешевле и надёжнее.
В технической литературе пенополиуретан описывается как материал с самой низкой теплопроводностью в списке стандартных термоизоляционных материалов. Пенополистирол и жесткий пенополиуретан с низкой плотностью (от 20 до 50 кг/м3) по праву стали самыми используемыми материалами для промышленных холодильных и морозильных камер и других систем, где требуется повышенная термоизоляция. В этом заслуга низкой теплопередачи. Для сравнения теплопроводность жесткого пенополиуретана в разы ниже теплопроводности минеральной ваты и всех других популярных утеплителей.
Коэффициент теплопроводности жесткого пенополиуретана и других материалов
Именно низкая теплопроводность делает ППУ оптимальным материалом для термоизоляции. Коэффициент теплопроводности жесткого пенополиуретана составляет 0,019 – 0,028 Вт/м*К. Этот показатель определяет количество теплоты, которая проходит сквозь куб материала со стороной в 1 м за 1 секунду при единичном изменении температуры в 1 Кельвин. Низкая теплопроводность позволяет обеспечить необходимую теплоизоляцию при минимальном слое покрытия. Например, теплопроводность пенопласта составляет 0,04 – 0,06 Вт/м*К, т.е. понадобится в 2-3 раза более толстый слой пенопласта, чем пенополиуретана. В видео ниже поясняется понятие теплопроводности и его применение в строительстве:
Совет от профессионала
Если вы хотите сравнить теплопроводность различных строительных материалов, необходимо поделить их коэффициенты теплопроводности. К примеру, теплопроводность минваты и ППУ соотносятся как 0,052/0,019=2,74. Это означает, что слой пенополиуретана в 10 см равен 27,4 см слою минеральной ваты по своим утепляющим свойствам. Если брать теплопроводность керамзита и ППУ, то соотношение будет 0,18/0,019=9,47. То есть слой керамзита должен быть почти в 10 раз толще.
Ниже приведена теплопроводность строительных материалов в таблице
Материал
|
Коэффициент теплопроводности (Вт/м*К)
|
Жесткий пенополиуретан
|
0.019 – 0.028
|
Пенополистирол (пенопласт)
|
0.04 – 0.06
|
Минеральная вата
|
0.052 – 0.058
|
Пенобетон
|
0.145 – 0.160
|
Пробковая плита
|
0.5 – 0.6
|
*Цифры могут изменяться в зависимости от производителя, погодных условий, точного состава.
Как рассчитать необходимую толщину слоя ППУ-утеплителя?
Для расчета необходимого количества материалов для утепления дома или другой постройки необходимо обратиться к нормативам СНиП 23-02-2003 и рассчитать следующие параметры:
Rreq = a*Dd + b
Dd = (Tint – Tht)*Zht
Δ=Rreq*λ
Rreq – сопротивление теплопередачи
a и b – коэффициенты из таблиц СНиП
Dd – градусо-сутки отопительного сезона
Tint – внутренняя температура помещения, которую необходимо поддерживать
Tht – средняя температура воздуха снаружи помещения
Zht – длительность периода отопления
Δ – искомая толщина слоя ППУ-утеплителя
Λ — теплопроводность
Сопротивление теплопередачи рассчитывается для цельной конструкции, поэтому для расчета сопротивления теплопередачи ППУ необходимо вычесть из общего показателя сопротивления теплопередачи других составных материалов покрытия (например, для стены нужно также учитывать теплопроводность штукатурки и кирпича).
Для примера, возьмем минимальную теплопроводность ППУ, равную 0,019. Используя данные из СНиП для стандартных стен жилого дома – Rreq=3,279 рассчитаем толщину теплоизоляционного покрытия из ППУ – Δ = 3,279*0,019= 0,0623 м (т.е. 6,23 см). Если вам посчастливится приобрести самый термостойкий пенополиуретан с таким низким коэффициентом теплопроводности, достаточная толщина термоизоляционного слоя всего 6 см.
В сравнении с другими утеплителями наиболее тонкий слой утепления дает именно пенополиуретан, теплопроводность которого ниже, чем у любого другого материала. Поэтому нередко утепление ППУ обходится дешевле, чем использование менее совершенных вариантов теплоизоляции.
Типоразмеры скорлуп ППУ
Компания Амаро производит теплоизоляцию из ППУ для труб различных диаметров. Мы изготавливаем скорлупы с внутренним диаметром (внешний диаметр трубы) от 25 мм до 1220 мм и толщиной стенки скорлупы от 37 мм до 60 мм.
Скорлупы поставляются как два полуцилиндра. Стандартная длина цилиндров – 1 метр.
Возможно изготовление скорлуп нестандартных размеров по индивидуальному заказу.
Скорлупы и отводы ППУ выпускаются без наружного покрытия или с дополнительной защитой (виды теплоизоляционных скорлуп для труб):
- без покрытия
- фольгированые
- с покрытием из стеклопластика
- с покрытием из оцинкованной стали (в кожухе)
Все типоразмеры на скорлупы и отводы ППУ, а также оптовые и розничные цены на них, вы найдете в прайс-листе.
Основные показатели пенополиуретановой скорлупы производства ООО ТК «АМАРО»
На каждую партию Скорлуп ППУ выдается паспорт соответствия Техническим условиям.
Указанные ниже характеристики определены по методикам, утвержденным в ГОСТ. Основные ГОСТЫ и ТУ на наши скорлупы вы найдете в разделе «ГОСТы, ОСТы, ТУ на скорлупы ППУ».
Характеристики скорлуп ППУ
Наименование показателя | По норме | Фактическая у скорлуп Амаро |
Кажущаяся плотность кг/м куб. | 40-70 | 60 |
Разрушающее напряжение при сжатии кПа, не менее | 200 | 280 |
Разрушающее напряжение при изгибе кПа, не менее | 500 | 520 |
Количество закрытых пор %, не менее | 90 | 92 |
Водопоглащение за 24 часа, % об., не более | 8 | 3,5 |
Коэффициент теплопроводности, ВТ/м К | 0,019 -0,033 | 0,022 |
Температура размягчения по Вика, нагрузке 10Н, Сº, в пределах | 108-186 | 130(150)* |
* при кратковременных нагрузках |
Устойчивость к агрессивным средам
Теплоизоляция трубопровода цилиндрами из пенополиуретана имеет неоспоримые преимущества перед другими теплоизоляторами. Скорлупы ППУ устойчивы к воздействию микроорганизмов и агрессивных сред (промышленные газы, дизельное топливо, морская вода и т.д.).
Воздействие агрессивных сред на пенополиуретан
Морская вода, мыльная пена | стоек |
Бензол, толуол, ксилол, бензин, керосин | стоек |
Растительные масла и животные жиры | стоек |
Концентрированный раствор КОН | стоек |
Метиленхлорид, четыреххлористый углерод | набухает |
Спирт, ацетон, стирол, этилацетат | набухает |
Концентрированная соляная кислота | набухает |
Концентрированная серная, азотная кислота | растворяется |
Сравнительные технические характеристики скорлуп ППУ с другими теплоизоляторами
Скорлупы из пенополиуретана имеют закрытую пористую структуру, а значит, не впитывают влагу, сохраняют свои свойства в широчайшем диапазоне температур, способны прослужить 30 и более лет, обладают низким коэффициентом теплопроводности и эффективно сохраняют тепло.
Характеристик пенополиуретана в сравнении с иными материалами
Теплоизолятор | Степень плотности (кг/м.куб) | Коэф. теплопроводности (Вт/м*К) | Пористость | Срок эксплуатации (лет) | Диапазон рабочих температур |
ППУ | 40-200 | 0,025 | Закрытая | 30 | -180…+150 |
Минеральная вата | 55-150 | 0,052-0,058 | Открытая | 5 | -40…+120 |
Пенопласт | 30-60 | 0,040-0,050 | Закрытая | 5-7 | -50…+110 |
Пробковая плита | 220-240 | 0,050-0,060 | Закрытая | 3 | -30…+90 |
Пенобетон | 250-400 | 0,145-0,160 | Открытая | 10 | -30…+120 |
Сравнение цилиндров ППУ с теплоизоляционными цилиндрами из минеральной ваты
Применение цилиндров теплоизоляционных из минеральной ваты – эффективный способ теплоизоляции трубопровода, однако, минеральная вата по своим технико-экономическим показателям проигрывает современным скорлупам ППУ.
Сравнительный анализ технико-экономической эффективности при использовании пенополиуретана и традиционной минеральной ваты
Показатели | Пенополиуретан (ППУ) | Минеральная вата |
Коэффициент теплопроводности | 0,02-0,03 Вт/м*К | 0,05-0,07 Вт/м*К |
Толщина покрытия | 35-70 мм | 120-220 мм |
Эффективный срок службы | 25-30 лет | 5 лет |
Производство работ | Круглогодично | Теплое время года, сухая погода |
Влага, агрессивные среды | Устойчив | Теплоизоляционные свойства теряются, восстановлению не подлежит |
Экологическая чистота | Безопасен! Разрешено применение в жилых зданиях | Аллерген |
Характеристика ппу изоляции
Изоляция ппу по своим характеристикам во многом превосходит показатели иных теплоизоляционных материалов. Приведенные сравнения доказывают, что изоляция труб ппу скорлупой выгодна в экономическом плане, особенно с учетом её долговечности, ремонтопригодности и возможности повторного использования при реконструкциях трубопроводов.
Про ряд достоинств ППУ изоляции и её сравнении с изоляцией из ППС (пенополистирол) можно прочитать в этом материале.
Прайс лист на скорлупы ППУ производства АМАРО.
Технология пенополиуретана и характеристики ппу
- История создания и применение ппу.
- Компоненты пенополиуретана и производители сырья.
- Получение пенополиуретана, характеристики и свойства.
- Оборудование для пенополиуретана.
- Бизнес-план по напылению ппу.
При смешивании всех компонентов в строго заданных пропорциях, которые указаны в паспорте производителя сырья и обеспечиваются применяемым оборудованием ДУГА®, синтезируется пенополиуретан с последующим вспениванием и отверждением.
Технология пенополиуретана и характеристики ппу определяются свойствами конкретной системы компонентов, в паспорте которых производителем всегда указываются важнейшие параметры, необходимые оператору при получении изделия из пенополиуретана (ппу):
время старта системы – отсчитывается от момента смешивания компонентов до начала вспенивания;
время гелеобразования — отсчитывается от момента смешивания компонентов до начала полимеризации, при которой можно получить тянущиеся нити синтезированного полимера;
кажущаяся плотность (при свободном вспенивании) – отношение массы полученного ппу к его объёму.
Эти параметры задаются производителями сырья для получения заданного результата, в зависимости от требований, предъявляемых к конечному изделию из пенополиуретана. Например, для напылительных систем ппу время старта обычно невелико (3-10 секунд), так как ппу должен начинать вспениваться сразу после напыления на поверхность. У систем компонентов, предназначенных для заливки, время старта увеличивают (от 15 до 60 секунд) для того, чтобы успеть равномерно залить смесь в полости формы или объекта.
Параметр времени гелеобразования важен тем, что с момента его начала происходит резкое повышение вязкости смеси, в результате которого смесь теряет способность к дальнейшему растеканию (это особенно актуально для заливочных систем).
Плотность полученного ппу важна для целей его дальнейшего использования (теплоизоляция или изделия из ппу). Небольшая плотность подойдёт для качественной тепло-шумоизоляции, повышенная – для обеспечения требуемой жесткости покрытия, высокая – для прочности готовых изделий.
Технология пенополиуретана подразумевает соединение компонентов путем смешивания в распылителе или заливочном узле с последующим нанесением на поверхность или заливкой в форму: оборудование ппу ДУГА® — видео напыления и заливки.
В результате смешивания основных компонентов и прохождения химической реакции из пресыщенной газом жидкости по мере её застывания и увеличения вязкости образуется вспенённый пластический материал – пенополиуретан, часть твёрдой фазы которого заменена газом, находящимся в массе полимера в виде множества ячеек-пузырьков. Максимальное давление впенивающегося ппу в закрытой форме достигает 6 кгс/см2.
В зависимости от заданных производителем сырья параметров (скорости роста полимера и реакции газообразования на стадии вспенивания) стенки ячеек оказываются разрушенными или закрытыми, что определяет формирование эластичного или жесткого ппу соответственно. Характеристики материала, соответственно, будут отличаться. Каждая партия компонентов сопровождается собственным паспортом от производителя. В паспорте указаны наименование организации, марка компонента и номер партии, дата изготовления, характеристики системы и конечного продукта.
Профессиональное ппу оборудование
Характеристики и свойства пенополиуретана
- Теплопроводность и паропроницаемость ппу
Основным и наиболее важным параметром для выбора пенополиуретана в качестве теплоизоляции, является низкий коэффициент теплопроводности ппу: 0,019 — 0,029 Вт/М*К. Наглядно оценить такое важное качество можно, сравнивая различные строительные материалы, толщину которых нужно применить для достижения одинаковой теплопроводности конструкции:
Важнейшими качествами любого теплоизоляционного материала, применяемого в строительстве, являются его низкие коэффициенты теплопроводности и паропроницаемости, экологическая чистота, прочность и водостойкость. Низкая паропроницаемость, вопреки распространённому ошибочному мнению о «дышащих стенах», как обязательном условии качественного экологически чистого жилья, не менее важна, чем хорошая теплоизоляция.
Более того, эти два важнейших параметра неразрывно связаны друг с другом. Теплоизоляционные свойства материала напрямую зависят от его способности пропускать воздух. Идеальная теплоизоляция не должна пропускать воздух вообще.
В случае высокого коэффициента паропроницаемости материала, он будет впитывать пары влаги, набухать и терять свои основные свойства, то есть перестаёт быть теплоизоляцией.
Кроме того, такой утеплитель становится прекрасной средой для развития плесени, грибков и микроорганизмов. Вред от таких «соседей» трудно переоценить.
В строительных конструкциях наиболее подвержены таким отрицательным процессам различного вида минераловатные утеплители, неотъемлемым атрибутом применения которых является обязательный монтаж пароизоляционной, гидроизоляционной и ветрозащитной мембран для защиты от пара изнутри помещения и от влаги и ветра снаружи.
По сути, необходимость применения паро-, влаго-, и ветроизоляции в конструкциях с применением минераловатных утеплителей нужна именно для того, чтобы не допустить прохождения воздуха и паров влаги через теплоизоляцию и устранить тот самый эффект «дышащих стен». Это вполне объяснимо, так как основной целью теплоизоляционного материала является снижение потерь на отопление или охлаждение, в том числе, блокированием прохождения воздуха через материалы конструкции.
Выведение лишней влаги из помещений и приток свежего воздуха снаружи должен обеспечиваться, в первую очередь, грамотно спроектированной вентиляционной системой объекта, а не микроотверстиями конструкций, тем более теплоизоляции.
Особенно, если учесть тот факт, что объём выводимой через паропроницаемые материалы влаги в десятки раз меньше, чем требуется в реальной жизни (например, в процессе приготовления пищи, сушке белья, работающем душе в ванной и т.п.).
Качественный утеплитель с низкой паропроницаемостью обеспечивает отличную теплоизоляцию, шумоизоляцию, отсутствие сквозняков, пыли и влаги, а также препятствует прохождению влаги через себя в так называемую «точку росы», предотвращая образование конденсата на материалах конструкции.
Не менее важную роль играют выдающиеся характеристики пенополиуретана и в теплоизоляции скатных кровель. Каждая оттепель зимой связана с появлением опасных сосулек, возникающих при таянии снега не только и не столько от солнечных лучей, но и от плохой теплоизоляции кровли, нагреваемой снизу прохождением тёплого воздуха из помещений. Теплоизоляция зданий и сооружений пенополиуретаном с 95% закрытыми ячейками решает большинство строительных и эксплуатационных проблем, обеспечивая длительный срок службы защищаемого объекта.
Теоретически теплоизоляция любого объекта пенополиуретаном возможна как снаружи, так и изнутри. На первый взгляд, с точки зрения упрощения процесса, утепление, например, стен или кровли изнутри выглядит предпочтительным – нет зависимости от погодных явлений, не требуется подогрев ппу компонентов в холодное время года, нет дополнительных затрат на строительные леса и подмостки. Однако, с точки зрения технической грамотности такого решения, утепление стен или кровли изнутри не является правильным вариантом. Если даже не учитывать тот факт, что внутренняя теплоизоляция будет уменьшать полезный объём объекта, существует ряд отрицательных последствий внутренней теплоизоляции:
- Строительные материалы, из которых построен объект, не будут прогреваться должным образом и начнут постепенно разрушаться под действием окружающей среды и перепадов температур.
- Будут образовываться мостики холода в местах примыканий строительных конструкций снаружи объекта, так как не будет обеспечено цельное теплоизоляционное покрытие. Соответственно, будет происходить утечка тепла/холода.
- Расположение точки росы при внутреннем варианте теплоизоляции будет смещено уже к границе между теплоизоляцией и стеновой или кровельной конструкцией, что также не будет способствовать долговечности объекта и приведёт к ускоренному разрушению строительного материала, а также будет препятствовать созданию правильного микроклимата внутри помещения.
Учитывая возможные отрицательные последствия внутреннего расположения теплоизолирующего слоя, требования СНиП в области теплоизоляции объекта предписывают размещение строительных материалов с более высокой теплопроводностью и теплоёмкостью (кирпич, бетон, камень) именно с внутренней стороны строительной конструкции.
Примерная схема движения воздуха в типовом коттедже:
Для теплотехнического расчёта при проектировании будущего здания или сооружения используют численные показатели коэффициентов теплопроводности и паропроницаемости, параметры которых для большинства применяемых в строительстве материалов приведены в таблице:
Сравнительная таблица теплопроводности и паропроницаемости различных строительных материалов
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*К) | Эквивалентная толщина, м (при сопротивлении теплопередаче = 4,2 м2*К/Вт) | Пароницаемость, Мг/(м*ч*Па) | Эквивалентная толщина, м (при сопротивлении паропроницанию =1,6 м2*ч*Па/мг) |
---|---|---|---|---|---|
Железобетон | 2500 | 1.69 | 7.10 | 0.03 | 0.048 |
Бетон | 2400 | 1.51 | 6.34 | 0.03 | 0.048 |
Керамзитобетон | 1800 | 0.66 | 2.77 | 0.09 | 0.144 |
Керамзитобетон | 500 | 0.14 | 0.59 | 0.30 | 0.48 |
Кирпич красный глиняный | 1800 | 0.56 | 2.35 | 0.11 | 0.176 |
Кирпич, силикатный | 1800 | 0.70 | 2.94 | 0.11 | 0.176 |
Кирпич керамический пустотелый (брутто1400) | 1600 | 0.41 | 1.72 | 0.14 | 0.224 |
Кирпич керамический пустотелый (брутто1000) | 1200 | 0.35 | 1.47 | 0.17 | 0.272 |
Пенобетон | 1000 | 0.29 | 1.22 | 0.11 | 0.176 |
Пенобетон | 300 | 0.08 | 0.34 | 0.26 | 0.416 |
Гранит | 2800 | 3.49 | 14.6 | 0.008 | 0.013 |
Мрамор | 2800 | 2.91 | 12.2 | 0.008 | 0.013 |
Сосна, ель поперек волокон | 500 | 0.09 | 0.38 | 0.06 | 0.096 |
Дуб поперек волокон | 700 | 0.10 | 0.42 | 0.05 | 0.08 |
Сосна, ель вдоль волокон | 500 | 0.18 | 0.75 | 0.32 | 0.512 |
Дуб вдоль волокон | 700 | 0.23 | 0.96 | 0.30 | 0.48 |
Фанера клееная ФК | 600 | 0.12 | 0.50 | 0.02 | 0.032 |
ДСП, ОСП-3 | 1000 | 0.15 | 0.63 | 0.12 | 0.192 |
ПАКЛЯ | 150 | 0.05 | 0.21 | 0.49 | 0.784 |
Гипсокартон | 800 | 0.15 | 0.63 | 0.075 | 0.12 |
Картон облицовочный | 1000 | 0.18 | 0.75 | 0.06 | 0.096 |
Минвата | 200 | 0.070 | 0.30 | 0.49 | 0.784 |
Минвата | 100 | 0.056 | 0.23 | 0.56 | 0.896 |
Минвата | 50 | 0.048 | 0.20 | 0.60 | 0.96 |
Пенополистирол | 33 | 0.031 | 0.13 | 0.013 | 0.021 |
ПЕНОПОЛИСТИРОЛ ЭКСТРУДИРОВАННЫЙ | 45 | 0.036 | 0.13 | 0.013 | 0.021 |
Пенополистирол | 150 | 0.05 | 0.21 | 0.05 | 0.08 |
Пенополистирол | 100 | 0.041 | 0.17 | 0.05 | 0.08 |
Пенополистирол | 40 | 0.038 | 0.16 | 0.05 | 0.08 |
Пенопласт ПВХ | 125 | 0.052 | 0.22 | 0.23 | 0.368 |
ПЕНОПОЛИУРЕТАН | 80 | 0.041 | 0.17 | 0.05 | 0.08 |
ПЕНОПОЛИУРЕТАН | 60 | 0.035 | 0.15 | 0.0 | 0.08 |
ПЕНОПОЛИУРЕТАН | 40 | 0.029 | 0.12 | 0.05 | 0.08 |
ПЕНОПОЛИУРЕТАН | 30 | 0.020 | 0.09 | 0.05 | 0.08 |
Керамзит | 800 | 0.18 | 0.75 | 0.21 | 0.336 |
Керамзит | 200 | 0.10 | 0.42 | 0.26 | 0.416 |
Песок | 1600 | 0.35 | 1.47 | 0.17 | 0.272 |
Пеностекло | 400 | 0.11 | 0.46 | 0.02 | 0.032 |
Пеностекло | 200 | 0.07 | 0.30 | 0.03 | 0.048 |
Битум | 1400 | 0.27 | 1.13 | 0.008 | 0.013 |
ПОЛИУРЕТАНОВАЯ МАСТИКА | 1400 | 0.25 | 1.05 | 0.00023 | 0.00036 |
Полимочевина | 1100 | 0.21 | 0.88 | 0.00023 | 0.00054 |
- Теплоизоляция пенополиуретаном
Широкому распространению в различных областях жизнедеятельности человека пенополиуретан обязан, в том числе, благодаря своей устойчивости к различным агрессивным средам: бензину, морской воде, минеральным маслам, промышленным газам, пластификаторам, растительным и животным жирам, многим кислотам, щелочам и растворителям.
Рабочие температуры применения теплоизоляции и изделий из ппу лежат в диапазоне от -100 ℃ до +150 ℃. Материал не подвержен влиянию микроорганизмов, плесени.
Как и любой полимер, пенополиуретан подвержен постепенному старению и разрушению под действием ультрафиолета. С целью достижения максимального срока службы теплоизоляции, желательно защитить её от попадания прямых солнечных лучей. Современные системы ппу, включающие необходимые добавки, позволяют получать материал, который является достаточно устойчивым к воздействию УФ-излучения (разрушение внешнего слоя незащищённого от прямых солнечных лучей ппу не превышает 1 мм в год).
При этом нужно учитывать, что на практике пенополиуретан обычно не имеет прямого контакта с ультрафиолетом, как правило, не являясь финишным слоем в конструкции здания, либо будучи защищённым различными покрытиями (штукатуркой, гидроизоляцией, декоративной окраской и т.п.).
Учитывая длительный (не менее 30 лет) срок службы ППУ, целесообразно выбирать не менее долговечные финишные покрытия, например, эмали на основе кремнийорганических соединений и т.п. При надлежащей защите характеристики материала останутся неизменными на многие десятилетия.
Защитить пенополиуретан и одновременно выполнить качественную гидроизоляцию объекта можно, применяя оборудование для жидкой резины ДУГА®.
- Пожароопасность пенополиуретана
С началом бурного развития в прошлом веке мировой химической промышленности и связанного с этим массового применения химической продукции во всех сферах, возникла необходимость в подтверждении пожарной безопасности применяемых материалов. Большинство испытаний и проверок были проведены ещё во второй половине прошлого века.
Основные выводы и результаты этих работ относительно пенополиуретана можно свести к следующему: самостоятельно материал не горит и огонь не распространяет. Эти факты подтверждены, в том числе, наглядными испытаниями, многократно проводимыми в разных странах, в том числе во ВНИИПО в России.
Наглядные результаты реальной стойкости ППУ к открытому огню сегодня можно без труда найти во многих видеороликах интернета. Например, посмотреть реальное видео горючести пенополиуретана можно на нашем сайте в разделе видео. Группы горючести ППУ различных марок и назначения лежат в пределах от Г4 (сильногорючие) до Г1 (слабогорючие).
По степени воспламеняемости большинство пенополиуретанов относится к группе В2 (умеренновоспламеняемые). Непосредственно горению подвержены лишь продукты термического разложения пенополиуретана, которое происходит при нагреве свыше 600℃.
Учитывая, что ппу, как правило, находится в качестве утеплителя снаружи объекта, при достижении такой температуры в слое теплоизоляции, от объекта внутри уже ничего не остаётся.
Выход токсичных веществ при нагреве пенополиуретана начинается при температурах от 450℃, а опасная концентрация наиболее опасной токсической составляющей – синильной кислоты – наступает лишь при нагреве ппу до 1000℃.
В случае внешней теплоизоляции из ппу опасные вещества растворяются в атмосферном воздухе. При достижении подобных температур внутри объекта, наибольшую опасность для здоровья будут представлять уже не продукты выделения теплоизоляции, а угарный газ, который выделяется из многих материалов, например, отделочных, декоративных, тканей, фанеры, ДСП и т.п. при гораздо более низких температурах.
Например, продукты разложения древесины, шерсти, некоторых других материалов являются гарантированной причиной гибели живых организмов уже при температуре 400 ℃. Доля опасности для здоровья человека при пожаре именно пенополиуретана уменьшается ещё и в связи с его низкой плотностью, из-за которой количество материала на единицу объёма (а, следовательно, и количество выделяемых вредных веществ) значительно меньше, чем у материалов с монолитной структурой.
Теплота сгорания ппу примерно в шесть раз меньше, чем аналогичный параметр у древесины.
Несомненный плюс применения ппу в виде низкого коэффициента теплопроводности и тут играет важную роль: в случае пожара из-за низкой теплопроводности материал медленно прогревается внутрь своей структуры, что сильно замедляет процесс разложения ппу и выделения из него вредных веществ.
Кроме того, в отличие от многих распространённых материалов, ппу не способен к самостоятельному тлению. Благодаря отсутствию воздушной тяги через пенополиуретановую изоляцию (в отличие от минераловатных утеплителей) во время пожара не образуется и дополнительный приток кислорода, что является немаловажным фактором замедления распространения горения по объекту.
Все эти факты говорят в пользу применения пенополиуретана, как наименее опасного из многих материалов, которые человек использует в своей жизнедеятельности.
В чем же преимущества пенополиуретанов перед традиционными изоляционными материалами? Преимущества пенополиуретана ППУ напрямую вытекают из его свойств . Выборка основных свойств пенополиуретанов представлена в Таблице 1 ниже. Таблица 1 Сравнение теплоизоляционных свойств ППУ с другими изоляционными материалами Возьмем за основу термическое сопротивление изоляционного слоя ППУ толщиной 50 мм с коэффициентом теплопроводности 0,02 Вт/(м×С). Термическое сопротивление данного слоя ППУ составляет — R=2,5 (м2×С)/Вт. Для сравнения возьмем следующие теплоизоляционные материалы: пенополистирол, минеральную вату, пробку и ДВП. Зная коэффициент теплопроводности каждого материала и термическое сопротивление ППУ R=2,5 (м2×С)/Вт, можно определить необходимую толщину изоляционного слоя по термосопротивлению соответствующую слою ППУ в 50 мм по следующей формуле: δ=R×λ где δ — толщина слоя, м; λ — коэффициент теплопроводности, Вт/м×K. Результаты представлены на графике ниже (см. Рис. 1). Из сравнительной характеристики видно, что теплоизоляционному слою пенополиуретана толщиной 50 мм по теплопроводности соответствует слой полистирола толщиной 80 мм или слой минеральной ваты — 90 мм и т.д. Таким образом можно смело утверждать, что на сегодняшний момент ППУ — самый эффективный и технологичный изоляционный материал, который представлен на нашем рынке. Сравнение пенополиуретана с традиционными теплоизоляторами представлено в Таблице 2. Таблица 2
Сравнительный технико-экономический анализ эффективности использования ППУ изоляции и традиционной минеральной ваты приведен в Таблице 3. Таблица 3
Для примера, если Вы решите утеплить стены дома площадью 500 квадратных метров, используя плиты из минеральной ваты Для справки, объем кузова автомобиля типа «Газель» – 9,7 куб.м. То есть для перевозки минваты Вам потребуется пять автомобилей типа «Газель». В конечном итоге, чтобы доставить данный объем минеральной ваты на стройплощадку потребуются значительные затраты на транспортировку, проведение погрузочно-разгрузочных и строительно-монтажных работ, а также потребуется усиление фундамента. При использовании ППУ На сегодняшний день потенциальный потребитель хочет, чтобы утеплитель обладал следующим набором физико-механических свойств:
Проведенный сравнительный анализ разных видов утеплителей показал, что утеплитель из пенополиуретана соответствует всем вышеперечисленным запросам потребителей. |
Коэффициенты теплопроводности ППУ при различной плотности.
Одним из важнейших показателей, отвечающих за определение толщины слоя теплоизолятора, является его теплопроводность, характеризующаяся через коэффициент теплопроводности. Именно величина этого показателя во многом и определяет насколько эффективен тот или иной утеплитель, а также используется при любых теплотехнических расчетах, даже простейших.
Коэффициент теплопроводности измеряется в Вт/(м•K) и обозначается «ʎ», что в физическом смысле означает количество теплоты, проходящей через 1 куб.м однородного материала за 1 час при разнице температур внутри и снаружи в 1 градус Кельвина. Чем ниже величина этого показателя, тем эффективнее он работает в качестве утеплителя.
Однако, как мы уже хорошо усвоили, пенополиуретан, его свойства и сферы применения в значительной степени зависят от плотности. С коэффициентом теплопроводности все ровно также. Нет плохого или хорошего ППУ, есть сферы его применения в соответствии с его свойствами. Ниже приведена таблица с ориентировочными коэффициентами теплопроводности для различных плотностей ППУ при напылении:
Плотность ППУ, кг/куб.м | Коэффициент теплопроводности, Вт/(м•K) | Сферы применения при напылении ППУ |
---|---|---|
8-20 преимущественно открытоячеистая структура | 0,035-0,040 | внутренняя тепло- и шумоизоляция, изоляция межэтажных перекрытий, не устойчив к механическим нагрузкам |
20-25 около 50% открытых ячеек | 0,030-0,036 | внешняя и внутренняя тепло- и шумоизоляция, должен быть защищен от попадания атмосферных осадков, не устойчив к механическим нагрузкам |
30-35 преимущественно закрытоячеистая структура | 0,020-0,026 | внешняя и внутренняя тепло- и шумоизоляция, в том числе изоляция фундаментов при глубине засыпки не более 3 м, не предназначен для хождения |
40-45 закрытоячеистая структура | 0,022-0,028 | внешняя и внутренняя изоляция, в том числе изоляция фундаментов при глубине засыпки не более 3 м, не для частого хождения |
60-70 закрытоячеистая структура | 0,028-0,034 | внешняя и внутренняя изоляция, в том числе изоляция фундаментов и эксплуатируемой кровли |
100-110 закрытоячеистая структура | 0,035-0,040 | внешняя и внутренняя изоляция, в том числе изоляция фундаментов и эксплуатируемой кровли |
Как видно из таблицы, наиболее эффективно, в качестве теплоизолятора, ППУ ведет себя при плотности от 30 до 50 кг/куб.м. В этом интервале плотностей наблюдается удачное сочетание свойств – малое количество открытых ячеек, способных конвекцией переносить тепло, и малая плотность, не позволяющая теплу передаваться через толщу стенок ППУ.
Для более точного определения коэффициента теплопроводности необходимо запрашивать у поставщика сырья результаты испытаний на конкретную марку ППУ-компонентов или же самостоятельно отдавать образцы на экспертизу в лабораторию строительных материалов.
По материалам сайта Химтраст. Оригинал статьи >>
Благодаря своим отменным техническим характеристикам и длительному сроку службы ППУ считается эталоном среди утеплителей и широко используется для обработки самых разных поверхностей – от стен и кровли домов до трубопроводов и промышленных емкостей. Рассмотрим основные преимущества пенополиуретана.
Теплопроводность и гигроскопичность
Пенополиуретан, по сравнению с такими популярными утеплителями, как минеральная вата и пенопласт, обладает самым низким коэффициентом теплопроводности — 0,025 Вт/м*К. У ближайшего «конкурента» — минеральной ваты — этот коэффициент выше — 0,052 Вт/м*К. При этом ППУ обладает закрытой пористостью, а следовательно, в массу утеплителя не проникает вода, не теряются рабочие свойства материала.
Легкость в нанесении ППУ
Пенополиуретан не нуждается в крепежных элементах за счет того, что ППУ имеет высокую адгезионную прочность, т. е. «прилипает» к любой поверхности, заполняя собой поры, полости и трещины. В таком случае возможность скопления конденсата и образования «мостиков холода» исключена. Фактические тепловые потери ППУ в 1.7 раза ниже нормативных (СниП 2.04.14-88 Энергосбережение, №1,1999 г.).
Утеплители из ППУ могут быть изготовлены разными способами — как напылением, так и с использованием пресс-форм (например, изготовление «скорлупок» для утепления трубопроводов, сэндвич-панелей и т.д.).
Толщина пенополиуретанового покрытия — обычно от 3 до 7 см. За одну смену одна бригада рабочих в состоянии нанести от 200 до 400 кв.м. ППУ. Бригада, работающая с минеральной ватой, уложит максимум 100 кв.м.
Также в пользу ППУ говорит то, что составляющие материала хранятся отдельно друг от друга, а смешиваются они непосредственно перед началом работ. Из 5 кубометров смеси получается 100 кубометров ППУ, а следовательно, снижаются расходы на хранение и транспорт.
Срок службы
Одно из самых главных свойств ППУ — долговечность. Данные лабораторных исследований на ускоренное старение показывают, что время службы пенополиуретана — не менее 30 лет. В том случае, если ППУ напрямую не контактирует с окружающей средой, этот срок увеличивается вдвое, до 60 лет. Например, завод-холодильник в Лондоне, построенный с использованием ППУ в 1968 г., успешно функционирует до сих пор. Жизненная практика показывает, что во всех случаях неудовлетворительного «поведения» пенополиуретана виновато либо низкое качество изделия, либо нарушение условий эксплуатации, например, температура выше 100 градусов по Цельсию, или постоянный контакт с жидкостью или газом под высоким давлением.
Безопасность
В отношении безопасности использования ППУ также «на высоте» — пенополиуретан в процессе эксплуатации не выделяет токсичных веществ, а также практически не горюч.
Удельное сопротивление —
- — электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба
— Калькулятор сопротивления электрического проводника
Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.
Коэффициент удельного сопротивления (Ом м) (значение по умолчанию для меди)
Площадь поперечного сечения проводника (мм 2 ) — манометр AWG
Алюминий | 2 Алюминий | 2 ,65 x 10 -8 | 3,8 x 10 -3 | 3,77 x 10 7 |
Алюминиевый сплав 3003, прокат | 3,7 x 10 -8 | |||
Алюминиевый сплав 2014, отожженный | 3,4 x 10 -8 | |||
Алюминиевый сплав 360 | 7,5 x 10 -8 | |||
Алюминиевая бронза | 12 x 10 -8 | |||
Животный жир | 14 x 10 -2 | |||
Мышца животного | 0.35 | |||
Сурьма | 41,8 x 10 -8 | |||
Барий (0 o C) | 30,2 x 10 -8 | |||
Бериллий | 4,0 x 10 -8 | |||
Бериллиевая медь 25 | 7 x 10 -8 | |||
Висмут | 115 x 10 -8 | |||
Латунь — 58% медь | 5.9 x 10 -8 | 1,5 x 10 -3 | ||
Латунь — 63% Cu | 7,1 x 10 -8 | 1,5 x 10 -3 | ||
Кадмий | 7,4 x 10 -8 | |||
Цезий (0 o C) | 18,8 x 10 -8 | |||
Кальций (0 o C) | 3,11 x 10 -8 | |||
Углерод (графит) 1) | 3 — 60 x 10 -5 | -4.8 x 10 -4 | ||
Чугун | 100 x 10 -8 | |||
Церий (0 o C) | 73 x 10 -8 | |||
Хромель (сплав хрома и алюминия) | 0,58 x 10 -3 | |||
Хром | 13 x 10 -8 | |||
Кобальт | 9 x 10 -8 | | ||
Константин | 49 x 10 -8 | 3 x 10 -5 | 0.20 x 10 7 | |
Медь | 1,77 x 10 -8 | 4,29 x 10 -3 | 5,95 x 10 7 | |
мельхиор 55-45 (константан) | 43 x 10 -8 | |||
Диспрозий (0 o C) | 89 x 10 -8 | |||
Эрбий (0 o C) | 81 x 10 -8 | |||
Эврика | 0.1 x 10 -3 | |||
европий (0 o C) | 89 x 10 -8 | |||
Gadolium | 126 x 10 -8 | |||
Галлий (1.1K) | 13.6 x 10 -8 | |||
Германий 1) | 1 — 500 x 10 -3 | -50 x 10 -3 | ||
Стекло | 1 — 10000 x 10 9 | 10 -12 | ||
Золото | 2.24 x 10 -8 | |||
Графит | 800 x 10 -8 | -2,0 x 10 -4 | ||
Гафний (0,35K) | 30,4 x 10 — 8 | |||
Hastelloy C | 125 x 10 -8 | |||
Гольм (0 o C) | 90 x 10 -8 | |||
Индий ( 3.35K) | 8 x 10 -8 | |||
Инконель | 103 x 10 -8 | |||
Иридий | 5,3 x 10 -8 | |||
Железо | 9.71 x 10 -8 | 6.41 x 10 -3 | 1.03 x 10 7 | |
Лантан (4.71K) | 54 x 10 -8 | |||
Свинец | 20.6 x 10 -8 | 0,45 x 10 7 | ||
Литий | 9,28 x 10 -8 | |||
Лютеция | 54 x 10 -8 | |||
Магний | 4.45 x 10 -8 | |||
Магниевый сплав AZ31B | 9 x 10 -8 | |||
Марганец | 185 x 10 -8 | 1.0 x 10 -5 | ||
Меркурий | 98,4 x 10 -8 | 8,9 x 10 -3 | 0,10 x 10 7 | |
Слюда (проблеск) | 1 x 10 13 | |||
Мягкая сталь | 15 x 10 -8 | 6,6 x 10 -3 | ||
Молибден | 5,2 x 10 -8 | |||
Монель | 58 x 10 -8 | |||
Неодим | 61 x 10 -8 | |||
Нихром (сплав никеля и хрома) | 100 — 150 х 10 -8 | 0.40 x 10 -3 | ||
никель | 6,85 x 10 -8 | 6,41 x 10 -3 | ||
Nickeline | 50 x 10 -8 | 2,3 x 10 -4 | ||
Ниобий (колумбий) | 13 x 10 -8 | |||
Осмий | 9 x 10 -8 | |||
Палладий | 10.5 x 10 -8 | |||
Фосфор | 1 x 10 12 | |||
Платина | 10,5 x 10 -8 | 3,93 x 10 -3 | 0,943 x 10 7 | |
Плутоний | 141,4 x 10 -8 | |||
Полоний | 40 x 10 -8 | |||
Калий | 7.01 x 10 -8 | |||
Празеодим | 65 x 10 -8 | |||
Прометий | 50 x 10 -8 | |||
Протактиний (1,4 K) | 17,7 x 10 -8 | |||
Кварц (плавленый) | 7,5 x 10 17 | |||
Рений (1,7 К) | 17.2 x 10 -8 | |||
Родий | 4,6 x 10 -8 | |||
Резина — жесткая | 1 — 100 x 10 13 | |||
Рубидий | 11,5 x 10 -8 | |||
Рутений (0,49 К) | 11,5 x 10 -8 | |||
Самарий | 91.4 x 10 -8 | |||
Скандий | 50,5 x 10 -8 | |||
Селен | 12,0 x 10 -8 | |||
Силикон 1 ) | 0,1-60 | -70 x 10 -3 | ||
Серебро | 1,59 x 10 -8 | 6,1 х 10 -3 | 6,29 х 10 7 | |
Натрий | 4.2 x 10 -8 | |||
Почва, типичная земля | 10 -2 — 10 -4 | |||
Припой | 15 x 10 -8 | |||
Нержавеющая сталь | 10 6 | |||
Стронций | 12,3 x 10 -8 | |||
Сера | 1 x 10 17 | |||
Тантал | 12.4 x 10 -8 | |||
Тербий | 113 x 10 -8 | |||
Таллий (2,37K) | 15 x 10 -8 | |||
Торий | 18 x 10 -8 | |||
Тулий | 67 x 10 -8 | |||
Олово | 11,0 x 10 -8 | 4.2 x 10 -3 | ||
Титан | 43 x 10 -8 | |||
Вольфрам | 5,65 x 10 -8 | 4,5 x 10 -3 | 1,79 x 10 7 | |
Уран | 30 x 10 -8 | |||
Ванадий | 25 x 10 -8 | |||
Вода, дистиллированная | 10 -4 | |||
Вода свежая | 10 -2 | |||
Вода, соль | 4 | |||
Иттербий | 27.7 x 10 -8 | |||
Иттрий | 55 x 10 -8 | |||
Цинк | 5,92 x 10 -8 | 3,7 x 10 -3 | ||
Цирконий (0,55 К) | 38,8 x 10 -8 |
1) Примечание! — удельное сопротивление сильно зависит от наличия примесей в материале.
2 ) Примечание! — удельное сопротивление сильно зависит от температуры материала. Приведенная выше таблица основана на 20 o C.
Электрическое сопротивление в проводе
Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:
R = ρ L / A (1)
где
R = сопротивление (Ом, Ω )
ρ = коэффициент удельного сопротивления (Ом, Ом, м)
L = длина провода (м)
A = площадь поперечного сечения провода (м 2 )
Фактором сопротивления, который учитывает природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления проволоки заданной геометрии при различных температурах.
Обратное сопротивление называется проводимостью и может быть выражено как:
σ = 1 / ρ (2)
где
σ = проводимость (1 / Ом м)
Пример — сопротивление алюминиевого провода
Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как
R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))
= 0,09 Ом
Сопротивление
Электрическое сопротивление элемента схемы или устройства определяется как отношение напряжения, приложенного к электрическому току, который протекает через него:
R = U / I (3)
, где
R = сопротивление (Ом)
U = напряжение (В)
I = ток (A)
Закон Ом
a, если сопротивление постоянное больше, чем постоянное диапазон напряжения, а затем закон Ома,
I = U / R (4)
можно использовать для прогнозирования поведения материала.
Удельное сопротивление в зависимости от температуры
Изменение удельного сопротивления в зависимости от температуры можно рассчитать как
dρ = ρ α дт (5)
, где
dρ = изменение удельного сопротивления ( м 2 / м)
α = температурный коэффициент (1/ o C)
dt = изменение температуры ( o C)
Пример — изменение удельного сопротивления
Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом м 2 / м нагревают с 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как
dρ = (2,65 10 -8 Ом м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) — (20 o C))
= 0.8 10 -8 Ом м 2 / м
Конечное сопротивление можно рассчитать как
ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом м 2 / м)
= 3,45 10 -8 Ом м 2 / м
Коэффициент удельного сопротивления по сравнению с калькулятором температуры
Этот сосуд может использоваться для расчета удельного сопротивления в материале проводника по сравнению стемпература.
ρ — коэффициент удельного сопротивления (10 -8 Ом м 2 / м)
α — температурный коэффициент (10 -3 1/ o C)
dt — Изменение температуры ( o C)
Сопротивление и температура
Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как
dR / R с = α dT (6)
, где
dR = изменение сопротивления (Ом)
9122 с = стандартное сопротивление согласно эталонным таблицам (Ом)
α = температурный коэффициент сопротивления ( o C -1 )
dT = изменение температура от базовой температуры ( o C, K)
(5) можно изменить на:
dR = α dT R с (6b)
«Температурный коэффициент сопротивления» — α — материала — это увеличение сопротивления резистора 1 Ом этого материала при повышении температуры 9 0013 1 o C .
Пример — сопротивление медного провода в жаркую погоду
Медный провод с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревают до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как
dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) — (20 o C) ) (0.5 кОм)
= 0,13 (кОм)
Результирующее сопротивление для медного провода в жаркую погоду составит
R = (0,5 кОм) + (0,13 кОм)
= 0,63 ( кОм)
= 630 (Ω)
Пример — сопротивление углеродного резистора при изменении температуры
Углеродный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o C .Температурный коэффициент для углерода отрицателен -4,8 x 10 -4 (1/ o C) — сопротивление уменьшается с ростом температуры.
Изменение сопротивления можно рассчитать как
dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) — (20 o C) ) (1 кОм)
= — 0,048 (кОм)
Результирующее сопротивление для резистора будет
R = (1 кОм) — (0.048 кОм)
= 0,952 (кОм)
= 952 (Ом)
Калькулятор сопротивления в зависимости от температуры
Этот калькулятор можно использовать для расчета сопротивления в проводнике в зависимости от температуры.
R с — сопротивление (10 3 (Ом)
α — температурный коэффициент (10 -3 1/ o C)
dt — изменение температуры ( o C)
Коэффициенты поправки на температуру для сопротивления проводника
Температура проводника
(° C) Преобразование в 20 ° C Взаимное преобразование в 20 ° C 5 1.064 0.940 6 1.059 0.944 7 1.055 0.948 8 1.050 0.952 9 9005 9 1.056 9005 0 964 10 1,042 0,960 11 1,037 0,964 12 1.033 0,968 13 1,029 0,972 14 1,025 0,976 15 1,020 0,980 16 1,0184 0,984 1,0184 17 1,012 0,988 18 1,008 0,992 19 1.004 0.996 20 1.000 1.000 21 0.996 1.004 22 0.992 1.008 23 1.9800 24 0,984 1,016 25 0,980 1,020 26 0.977 1,024 27 0,973 1,028 28 0,969 1,032 29 0,965 1,036 30 0,962 1,0,962 0,962 9 31 0,958 1,044 32 0,954 1,048 33 0.951 1,052
.
Вода — теплопроводность
Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как
«количество тепла, передаваемого через единицу толщины материала — в направлении, перпендикулярном поверхности единицы площади — из-за градиента температуры единицы в установившемся режиме»
Теплопроводность единица измерения
Теплопроводность воды зависит от температуры и давления, как показано на рисунках и в таблицах ниже:
См. также другие свойства Вода при при различных температурах и давлении : Точки кипения при высоком давлении, Точки кипения при давлении вакуума, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , для нормальной и тяжелой воды, Точки плавления при высоком давлении, Число Прандтля, Свойства в газе Условия жидкого равновесия, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, термо коэффициент диффузии и давление пара при равновесии газ-жидкость, а также теплофизические свойства при стандартных условиях ,
, а также теплопроводность воздуха, аммиака, бутана, диоксида углерода, этилена, водорода, метана, азота и пропана.Теплопроводность строительных материалов приведена в соответствующих документах внизу страницы.
Вернуться к началу
Теплопроводность воды при заданных температурах (° C) и 1 бара:
Состояние
воды Температура Теплопроводность [° C] [мВт / м К] [ккал (IT) / (hm K)] [Btu (IT) / (h ft ° F)] Жидкость 0.01 555,75 0,4779 0,3211 10 578,64 0,4975 0,3343 20 598,03 0,5142 0,3455 0,5 6 04847
0,5 6 04847 9004
0,3551 40 628,56 0,5405 0,3632 50 640.60 0,5508 0,3701 60 650,91 0,5597 0,3761 70 659,69 0,5672 0,3812 80 0,3735 0,3735 0,3735 06735 06735 0,567 800 900 900 900 90 672,88 0,5786 0,3888 99,6 677,03 0.5821 0,3912 Газ 100 24,57 0,0211 0,0142 125 26,66 0,0229 0,0154 2848 900 900 900 0,0148 9003 0,0154
0,0248
0,0167 175 31,09 0,0267 0,0180 200 33.43 0,0287 0,0193 225 35,85 0,0308 0,0207 250 38,34 0,0330 0,0222 275 40,92 40,92 40,92 40,92 405 0507 405 0507 300 43,53 0,0374 0,0252 350 48,98 0,0421 0.0283 400 54,65 0,0470 0,0316 450 60,52 0,0520 0,0350 500 66,58 0,0573 0,0573 0,0383 0,0383 0,0383 0,0383 0,0573 0,0383 0,0383 72,81 0,0626 0,0421 600 79,17 0,0681 0,0457 700 92.28 0,0794 0,0533 800 105,81 0,0910 0,0611 900 119,67 0,1029 0,0691
В начало страницы
при теплопроводности температура (° F) и 14,5 фунтов на квадратный дюйм:
Состояние воды Температура Теплопроводность [° F] [Btu (IT) / ( h ft ° F)] [Btu (IT) in / (h ft 2 ° F)] [мВт / м К] [x 10 -3
кал (IT) / (s см 2 K)] Жидкость 32 0.3211 3.853 555.73 1.327 40 0.3273 3.927 566.39 1.353 60 0.3408 4.089 9009.
8056
9009
9009
9009
9009
9009
9009.
0.3520 4.225 609.30 1.455 100 0.3615 4.338 625.62 1.494 120 0.3694 4.433 639.35 1.527 140 0.3761 4.513 650.91 1.555 4.580 4.580 900 800 660,57 1,57 180 0,3862 4,635 668,45 1,559 9009 200 0.3897 4.677 674.49 1.611 211.3 0.3912 4.694 677.03 1.617 газ 212 0 0 900 900 048 900 900 900 900 48 900 900 900 900 48 900 8 0 900 9 0 9007 0 9007 9008 3897 0,059 250 0,0152 0,183 26,33 0,063 300 0.0166 0.199 28.73 0.069 350 0,0181 0,217 31,25 0,075 400 0,0196 0,235 33,86 0,08 900 450 900 0,0211 0,254 36,56 0,087 550 0,024 0,293 42.24 0,101 600 0,0261 0,313 45,20 0,108 650 0,0279 0,334 48,24 0,115 700 0,0297 0,356 51,35 0,13 750 0,0315 0,378 54,52 0,130 800 0.0334 0,400 57,76 0,138 900 0,0372 0,447 64,41 0,154 1000 0,0412 0,494 71,27 0,170 0474
0,0453 0,543 78,32 0,187 1200 0,0494 0,593 85.53 0,204 1400 0,0580 0,696 100,35 0,240 1600 0,0668 0,802 115,63 0,276
преобразователь температуры 9000 наверх
.
пластмасс — коэффициенты теплопроводности
Пластмассы. Коэффициенты теплопроводности
Engineering ToolBox — ресурсы, инструменты и основная информация для проектирования и проектирования технических приложений!
— поиск — самый эффективный способ навигации по Инженерному ящику!
Теплопроводность пластмасс
Похожие темы
Связанные документы
Поиск меток
- ru: Пластмассы теплопроводности
Search the Engineering ToolBox
— search — самый эффективный способ навигации по Engineering ToolBox!
Переведите эту страницу на
Об инструменте «Инженерные инструменты»!
Мы не собираем информацию от наших пользователей.В нашем архиве сохраняются только электронные письма и ответы. Файлы cookie используются только в браузере для улучшения взаимодействия с пользователем.
Некоторые из наших калькуляторов и приложений позволяют сохранять данные приложений на локальном компьютере. Из-за ограничений браузера эти приложения будут отправлять данные между вашим браузером и нашим сервером. Мы не сохраняем эти данные.
Google использует файлы cookie для показа наших объявлений и обработки статистики посещений. Пожалуйста, прочитайте Конфиденциальность и Условия Google для получения дополнительной информации о том, как вы можете контролировать размещение рекламы и собранной информации.
AddThis использует куки для обработки ссылок на социальные сети. Пожалуйста, прочитайте AddThis Privacy для получения дополнительной информации.
Цитирование
На эту страницу можно сослаться как
- Engineering ToolBox, (2011). Пластмассы — Коэффициенты теплопроводности . [онлайн] Доступно по адресу: https://www.engineeringtoolbox.com/thermal-conductivity-plastics-d_1786.html [Доступный день, год, год].
Изменить дату доступа.
,
закрыть
Научный онлайн калькулятор
7 3
.,
Теплопроводность — определение и подробное объяснение- Классы
- Класс 1 — 3
- Класс 4 — 5
- Класс 6 — 10
- Класс 11 — 12
- КОНКУРСЫ
- BBS
- 000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса 9
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12
9000al Aggar
Agard
Agard
Agard
Agard
Agulis Class 12
- RS Решения Aggarwal класса 10
- RS Решения Aggarwal класса 11
- RS Решения Aggarwal класса 10
90 003 Решения RS Aggarwal Class 9
- Решения RS Aggarwal Class 8
- Решения RS Aggarwal Class 7
- Решения RS Aggarwal Class 6
- Решения RD Sharma
- Решения RD Sharma класса 9
- Решения RD Sharma Class 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- 80003 Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Предыдущий год Вопросник
- CBSE Предыдущий год Вопросники Класс 10
- CBSE Предыдущий год Вопросник класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
Примечания пересмотра CBSE Редакция CBSE CBSE Class 10 Примечания к пересмотру CBSE Class 11 Примечания к пересмотру 9000 4 Замечания по пересмотру CBSE класса 12 Дополнительные вопросы CBSE- Дополнительные вопросы CBSE 8 класса
- Дополнительные вопросы CBSE 8 по естественным наукам
- CBSE 9 класса Дополнительные вопросы
- CBSE 9 дополнительных вопросов по науке CBSE
9000 Класс 10 Дополнительные вопросы по математике
CBSE Класс 10 Дополнительные вопросы по науке Класс CBSE- Класс 3
- Класс 4
- Класс 5
- Класс 6
- Класс 7
- Класс 8
- Класс 9
- Класс 10
- Класс 11
- Класс 12
Решения для учебников Решения NCERT- Решения NCERT для класса 11
Решения NCERT для физики класса 11
- Решения NCERT для класса 11 Химия
Решения для класса 11 Биология
NCERT Решения для класса 11 Математика 9 0003 NCERT Solutions Class 11 Бухгалтерия
NCERT Solutions Class 11 Бизнес исследования NCERT Solutions Class 11 Экономика NCERT Solutions Class 11 Статистика NCERT Solutions Class 11 Коммерция NCERT Solutions для класса 12- NCERT Solutions для Класс 12 Физика
- Решения NCERT для 12 класса Химия
- Решения NCERT для 12 класса Биология
- Решения NCERT для 12 класса Математика
- Решения NCERT Класс 12 Бухгалтерский учет
- Решения NCERT Класс 12 Бизнес исследования
- Решения NCERT Класс 12 Экономика
- NCERT Solutions Class 12 Бухгалтерский учет Часть 1
- NCERT Solutions Class 12 Бухгалтерский учет Часть 2
- NCERT Solutions Class 12 Микроэкономика
- NCERT Solutions Class 12 Коммерция
- NCERT Solutions Class 12 Макроэкономика
NCERT Solutions Для Класс 4- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
Решения NCERT для класса 5- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
Решения NCERT для класса 6- Решения NCERT для класса 6 Maths
- Решения NCERT для класса 6 Science
- Решения NCERT для класса 6 Общественные науки
- Решения NCERT для класса 6 Английский
Решения NCERT для класса 7- Решения NCERT для класса 7 Математика
- Решения NCERT для 7 класса Science
- Решения NCERT для 7 класса Общественные науки
- Решения NCERT для 7 класса Английский
Решения NCERT для 8 класса Математические решения- для 8 класса Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для класса 8 Общественные науки
- NCERT Solutio ns для класса 8 Английский
Решения NCERT для класса 9- Решения NCERT для класса 9 Общественные науки
Решения NCERT для класса 9 Математика- Решения NCERT для класса 9 Математика Глава 1
- Решения NCERT Для класса 9 Математика 9 класса Глава 2
- Решения NCERT для математики 9 класса Глава 3
- Решения NCERT для математики 9 класса Глава 4
- Решения NCERT для математики 9 класса Глава 5
- Решения NCERT для математики 9 класса Глава 6
- Решения NCERT для Математика 9 класса Глава 7
- Решения NCERT для математики 9 класса Глава 8
- Решения NCERT для математики 9 класса Глава 9
- Решения NCERT для математики 9 класса Глава 10
- Решения NCERT для математики 9 класса Глава 11
- Решения NCERT для Математика 9 класса Глава 12
- Решения NCERT для математики 9 класса Глава 13
- Решения NCERT для математики 9 класса Глава 14
- Решения NCERT для математики класса 9 Глава 15
Решения NCERT для науки 9 класса- Решения NCERT для науки 9 класса Глава 1
- Решения NCERT для науки 9 класса Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для 9 класса Наука Глава 4
- Решения NCERT для 9 класса Наука Глава 5
- Решения NCERT для 9 класса Наука Глава 6
- Решения NCERT для 9 класса Наука Глава 7
- Решения NCERT для 9 класса Научная глава 8
- Решения NCERT для 9 класса Научная глава
- Научные решения NCERT для 9 класса Научная глава 10
- Научные решения NCERT для 9 класса Научная глава 12
- Научные решения NCERT для 9 класса Научная глава 11
- Решения NCERT для 9 класса Научная глава 13
- Решения NCERT для 9 класса Научная глава 14
- Решения NCERT для класса 9 Science Глава 15
Решения NCERT для класса 10- Решения NCERT для класса 10 Общественные науки
Решения NCERT для математики класса 10- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- решения NCERT для математики класса 10 глава 3
- решения NCERT для математики класса 10 глава 4
- решения NCERT для математики класса 10 глава 5
- решения NCERT для математики класса 10 глава 6
- решения NCERT для математики класса 10 Глава 7
- решения NCERT для математики класса 10 глава 8
- решения NCERT для математики класса 10 глава 9
- решения NCERT для математики класса 10 глава 10
- решения NCERT для математики класса 10 глава 11
- решения NCERT для математики класса 10, глава 12
- Решения NCERT для математики класса 10, глава 13
- соль NCERT Решения для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
Решения NCERT для науки 10 класса- Решения NCERT для науки 10 класса Глава 1
Решения NCERT для науки 10 класса Глава 2
Решения NCERT для науки 10 класса, глава 3 Решения NCERT для науки 10 класса, глава 4 Решения NCERT для науки 10 класса, глава 5 Решения NCERT для науки 10 класса, глава 6 Решения NCERT для науки 10 класса, глава 7 Решения NCERT для науки 10 класса, глава 8 Решения NCERT для науки 10 класса, глава 9 Решения NCERT для науки 10 класса, глава 10 Решения NCERT для науки 10 класса, глава 11 Решения NCERT для науки 10 класса, глава 12 Решения NCERT для 10 класса Science Глава 9 Решения NCERT для 10 класса Science Глава 14 Решения NCERT для науки 10 класса Глава 15 Решения NCERT для науки 10 класса Глава 16 Программа NCERT NCERT Коммерция- Класс 11 Коммерческая программа Syllabus
- Учебный курс по бизнес-классу 11000
- Учебная программа по экономическому классу
Учебная программа по коммерческому классу- Учебная программа по 12 классу
- Учебная программа по 12 классу
- Учебная программа по экономическому классу
000000
000000
000000
Образцы коммерческих документов класса 11 Образцы коммерческих документов класса 12 Решения TS Grewal- Решения TS Grewal Класс 12 Бухгалтерский учет
- Решения TS Grewal Класс 11 Бухгалтерский учет
Отчет о движении денежных средств eurship Защита потребителей Что такое фиксированный актив Что такое баланс Формат баланса Что такое акции Разница между продажами и маркетингом P000S Документы ICSE ML Решения Aggarwal- ML Решения Aggarwal Class 10 Maths
- ML Решения Aggarwal Class 9 Математика
- ML Решения Aggarwal Class 8 Maths
- ML Решения Aggarwal Class 7 Математические решения
- ML 6 0004
- ML 6
Selina Solutions- Selina Solution для 8 класса
- Selina Solutions для 10 класса
- Selina Solution для 9 класса 9
Frank Solutions- Frank Solutions для класса 10 Maths
- Frank Solutions для класса 9 Maths
ICSE Class 9000 2 ICSE Class 6 ICSE Class 7 ICSE Class 8 ICSE Class 9 ICSE Class 10 ISC Class 11 ISC Class 12 IAS Сервисный экзамен UPSC Syllabus Бесплатно IAS Prep Текущая информация Список статей IAS IAS 2019 Mock Test- IAS 2019 Mock Test 1
- IAS 2019 Mock Test 2
- KPSC KAS экзамен
- UPPSC PCS экзамен
- MPSC экзамен
- RPSC RAS экзамен
- TNPSC группа 1
- APPSC группа 1
- BPSC экзамен
- экзамен
- JPS
- экзамен
- PMS
- экзамен
- экзамен
- экзамен
- экзамен
- PMS
- экзамен
- экзамен
- экзамен
- экзамен
- экзамен
Вопросник UPSC 2019- Ключ ответа UPSC 2019
Коучинг IAS- IA S Коучинг Бангалор
- IAS Коучинг Дели
- IAS Коучинг Ченнаи
- IAS Коучинг Хайдарабад
- IAS Коучинг Мумбаи
JEE- Бумага
- JEE JEE 9000
- JEE
- JEE-код
- JEE-код
- JEE J000
- J0004 JEE
- JEE Вопрос бумаги
- бином
- JEE Статьи
- Квадратное уравнение
NEET- BYJU’S NEET Программа
- NEET 2020
- NEET КРИТЕРИИ 2020
- NEET Примеры Papers
- NEET Подготовка
- NEET Программа курса
- Поддержка
- Жалоба Разрешение
- Customer Care
- Поддержка центр
Государственные платы- GSEB
- GSEB Силабус
- GSEB Вопрос бумаги
- GSEB образец бумаги
- GSEB Книги
90 004
- MSBSHSE
- MSBSHSE Syllabus
- MSBSHSE Учебники
- MSBSHSE Образцы документов
- MSBSHSE Вопросные записки
- AP Board
- -й год APSERT
- -й год SBSUS
- -й год
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
SUBSUS
- SUBSUS
SUBSUS
- SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS SUBSUS SUBSUS SUBSUS
SUBSUS
SUBSUS Всеобщая справка MP Board- MP Board Syllabus
- MP Board Образцы документов
- MP Board Учебники
Assam Board- Assam Board Syllabus
- Assam Board Учебники
Sample Board Paperss
Sample3 P0003
BSEB
- Бихарская доска Syllabus
- Бихарская доска Учебники
- Бихарская доска Вопросные бумаги
- Бихарская модель Бумажные макеты
БСЭ Одиша- доска
- Sislabus
- Совет 9408 S0008
- Sisplus
- S0008
- Sample P000S
- Sample
- S000S PSEB Syllabus
- Учебники PSEB
- Документы PSEB
RBSE- Учебное пособие Раджастхана Syllabus
- Учебники RBSE
- Документы RBSE
PCB HPE HPSBE JKBOSE- JKBOSE Программа курса
- JKBOSE Примеры Papers
- JKBOSE экзамен Pattern
TN Board- TN Совет Силабус
- TN Совет вопрос Papers
- TN Board Примеры Papers
- Samacheer Kalvi Книги
JAC- JAC Силабус
- JAC учебники
- JAC Вопрос Papers
Telangana Совет- Telangana Совет Силабус
- Telangana совет учебники
- Telangana Совет Вопрос Papers
- KSEEB KSEEB Силабус
- KSEEB Модель Вопрос Papers
KBPE- KBPE Силабус
- KBPE Учебники
- KBPE Вопрос Papers
UPMSP- UP Совет Силабус
- UP Совет Книги
- UP Совет Вопрос Papers
Западная Бенгалия Совет- Западная Бенгалия Совет Силабус
- Западная Бенгалия Совет учебниками
- West Bengal совет Вопрос документы
UBSE TBSE Goa Board NbSe CGBSE MBSE Meghalaya Совет Manipur Совет Харьяны Совет Государственные экзамены- Банк экзаменов
- SBI Exams
- PIL, Exams
- RBI Exams
- PIL, РРБ экзамен
- SSC Exams
- SSC JE
- SSC GD
- SSC CPO 900 04
- SSC CHSL
- SSC CGL
- RRB экзаменов
- RRB JE
- RRB NTPC
- RRB ALP
- L0003000000 L0003000000000000 UPSC CAPF
- Список государственных экзаменов Статьи
Дети учатся- Класс 1
- Класс 2
- Класс 3
Академические вопросы- Физические вопросы
- Вопросы химии
- Химические вопросы
- Химические вопросы
- Вопросы химии
- Химические науки
- Вопросы химии
- Вопросы
- Вопросы по науке
- Вопросы ГК
Обучение онлайн- Обучение на дому
Полные формы CAT- Программа CAT BYJU’S
- CAT
- CAT
- CAT
- CAT
- CAT
- CAT
- CAT
- CAT
- FreeBS
40004 CAT 2020 Exam Pattern
Обзор приложения Byju на CAT КУПИТЬ КУРС +919243500460 - Химия
- Органическая химия
- Неорганическая химия
- Химическая химия
- Химическая химия ,
I = U / R (4)
dR / R с = α dT (6)
, где
dR = изменение сопротивления (Ом)
9122 с = стандартное сопротивление согласно эталонным таблицам (Ом)
α = температурный коэффициент сопротивления ( o C -1 )
dT = изменение температура от базовой температуры ( o C, K)
(° C)
, а также теплопроводность воздуха, аммиака, бутана, диоксида углерода, этилена, водорода, метана, азота и пропана.Теплопроводность строительных материалов приведена в соответствующих документах внизу страницы.
воды
6 04847
6 04847 9004
0,0154
0,0248
при теплопроводности температура (° F) и 14,5 фунтов на квадратный дюйм:
кал (IT) / (s см 2 K)]
9009.
8056
9009
9009
9009
9009
9009
9009.
0474
- Классы
- Класс 1 — 3
- Класс 4 — 5
- Класс 6 — 10
- Класс 11 — 12
- КОНКУРСЫ
- BBS
- 000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса 9
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12
9000al Aggar
- Классы
- RS Решения Aggarwal класса 10
- RS Решения Aggarwal класса 11
- RS Решения Aggarwal класса 10
- Решения RS Aggarwal Class 8
- Решения RS Aggarwal Class 7
- Решения RS Aggarwal Class 6
- Решения RD Sharma
- Решения RD Sharma класса 9
- Решения RD Sharma Class 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- 80003 Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Предыдущий год Вопросник
- CBSE Предыдущий год Вопросники Класс 10
- CBSE Предыдущий год Вопросник класс 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
- CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
Agard
Agard
Agard
Agard
Agulis Class 12
90 003 Решения RS Aggarwal Class 9
- Дополнительные вопросы CBSE 8 класса
- Дополнительные вопросы CBSE 8 по естественным наукам
- CBSE 9 класса Дополнительные вопросы
- CBSE 9 дополнительных вопросов по науке CBSE
9000 Класс 10 Дополнительные вопросы по математике
- Класс 3
- Класс 4
- Класс 5
- Класс 6
- Класс 7
- Класс 8
- Класс 9
- Класс 10
- Класс 11
- Класс 12
- Решения NCERT для класса 11
- Решения NCERT для физики класса 11
- Решения NCERT для класса 11 Химия
Решения для класса 11 Биология
9 0003 NCERT Solutions Class 11 Бухгалтерия
- NCERT Solutions для Класс 12 Физика
- Решения NCERT для 12 класса Химия
- Решения NCERT для 12 класса Биология
- Решения NCERT для 12 класса Математика
- Решения NCERT Класс 12 Бухгалтерский учет
- Решения NCERT Класс 12 Бизнес исследования
- Решения NCERT Класс 12 Экономика
- NCERT Solutions Class 12 Бухгалтерский учет Часть 1
- NCERT Solutions Class 12 Бухгалтерский учет Часть 2
- NCERT Solutions Class 12 Микроэкономика
- NCERT Solutions Class 12 Коммерция
- NCERT Solutions Class 12 Макроэкономика
- Решения NCERT для математики класса 4
- Решения NCERT для класса 4 EVS
- Решения NCERT для математики класса 5
- Решения NCERT для класса 5 EVS
- Решения NCERT для класса 6 Maths
- Решения NCERT для класса 6 Science
- Решения NCERT для класса 6 Общественные науки
- Решения NCERT для класса 6 Английский
- Решения NCERT для класса 7 Математика
- Решения NCERT для 7 класса Science
- Решения NCERT для 7 класса Общественные науки
- Решения NCERT для 7 класса Английский
- для 8 класса Математика
- Решения NCERT для класса 8 Science
- Решения NCERT для класса 8 Общественные науки
- NCERT Solutio ns для класса 8 Английский
- Решения NCERT для класса 9 Общественные науки
- Решения NCERT для класса 9 Математика Глава 1
- Решения NCERT Для класса 9 Математика 9 класса Глава 2
- Решения NCERT для математики 9 класса Глава 3
- Решения NCERT для математики 9 класса Глава 4
- Решения NCERT для математики 9 класса Глава 5
- Решения NCERT для математики 9 класса Глава 6
- Решения NCERT для Математика 9 класса Глава 7
- Решения NCERT для математики 9 класса Глава 8
- Решения NCERT для математики 9 класса Глава 9
- Решения NCERT для математики 9 класса Глава 10
- Решения NCERT для математики 9 класса Глава 11
- Решения NCERT для Математика 9 класса Глава 12
- Решения NCERT для математики 9 класса Глава 13
- Решения NCERT для математики 9 класса Глава 14
- Решения NCERT для математики класса 9 Глава 15
- Решения NCERT для науки 9 класса Глава 1
- Решения NCERT для науки 9 класса Глава 2
- Решения NCERT для класса 9 Наука Глава 3
- Решения NCERT для 9 класса Наука Глава 4
- Решения NCERT для 9 класса Наука Глава 5
- Решения NCERT для 9 класса Наука Глава 6
- Решения NCERT для 9 класса Наука Глава 7
- Решения NCERT для 9 класса Научная глава 8
- Решения NCERT для 9 класса Научная глава
- Научные решения NCERT для 9 класса Научная глава 10
- Научные решения NCERT для 9 класса Научная глава 12
- Научные решения NCERT для 9 класса Научная глава 11
- Решения NCERT для 9 класса Научная глава 13
- Решения NCERT для 9 класса Научная глава 14
- Решения NCERT для класса 9 Science Глава 15
- Решения NCERT для класса 10 Общественные науки
- Решения NCERT для математики класса 10 Глава 1
- Решения NCERT для математики класса 10 Глава 2
- решения NCERT для математики класса 10 глава 3
- решения NCERT для математики класса 10 глава 4
- решения NCERT для математики класса 10 глава 5
- решения NCERT для математики класса 10 глава 6
- решения NCERT для математики класса 10 Глава 7
- решения NCERT для математики класса 10 глава 8
- решения NCERT для математики класса 10 глава 9
- решения NCERT для математики класса 10 глава 10
- решения NCERT для математики класса 10 глава 11
- решения NCERT для математики класса 10, глава 12
- Решения NCERT для математики класса 10, глава 13
- соль NCERT Решения для математики класса 10 Глава 14
- Решения NCERT для математики класса 10 Глава 15
- Решения NCERT для науки 10 класса Глава 1
Решения NCERT для науки 10 класса Глава 2
- Класс 11 Коммерческая программа Syllabus
- Учебный курс по бизнес-классу 11000
- Учебная программа по экономическому классу
- Учебная программа по 12 классу
- Учебная программа по 12 классу
- Учебная программа по экономическому классу
000000
000000
000000
- Решения TS Grewal Класс 12 Бухгалтерский учет
- Решения TS Grewal Класс 11 Бухгалтерский учет
- ML Решения Aggarwal Class 10 Maths
- ML Решения Aggarwal Class 9 Математика
- ML Решения Aggarwal Class 8 Maths
- ML Решения Aggarwal Class 7 Математические решения
- ML 6 0004
- ML 6
- Selina Solution для 8 класса
- Selina Solutions для 10 класса
- Selina Solution для 9 класса 9
- Frank Solutions для класса 10 Maths
- Frank Solutions для класса 9 Maths
- IAS 2019 Mock Test 1
- IAS 2019 Mock Test 2
- KPSC KAS экзамен
- UPPSC PCS экзамен
- MPSC экзамен
- RPSC RAS экзамен
- TNPSC группа 1
- APPSC группа 1
- BPSC экзамен
- экзамен
- JPS
- экзамен
- PMS
- экзамен
- экзамен
- экзамен
- экзамен
- PMS
- экзамен
- экзамен
- экзамен
- экзамен
- экзамен
- Ключ ответа UPSC 2019
- IA S Коучинг Бангалор
- IAS Коучинг Дели
- IAS Коучинг Ченнаи
- IAS Коучинг Хайдарабад
- IAS Коучинг Мумбаи
- Бумага
- JEE JEE 9000
- JEE
- JEE-код
- JEE-код
- JEE J000
- J0004 JEE
- JEE Вопрос бумаги
- бином
- JEE Статьи
- Квадратное уравнение
- BYJU’S NEET Программа
- NEET 2020
- NEET КРИТЕРИИ 2020
- NEET Примеры Papers
- NEET Подготовка
- NEET Программа курса
- Поддержка
- Жалоба Разрешение
- Customer Care
- Поддержка центр
- GSEB
- GSEB Силабус
- GSEB Вопрос бумаги
- GSEB образец бумаги
- GSEB Книги
90 004
- MSBSHSE
- MSBSHSE Syllabus
- MSBSHSE Учебники
- MSBSHSE Образцы документов
- MSBSHSE Вопросные записки
- AP Board
- -й год APSERT
- -й год SBSUS
- -й год
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
- SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
SUBSUS
- MP Board Syllabus
- MP Board Образцы документов
- MP Board Учебники
- Assam Board Syllabus
- Assam Board Учебники
Sample Board Paperss
Sample3 P0003
BSEB
- Бихарская доска Syllabus
- Бихарская доска Учебники
- Бихарская доска Вопросные бумаги
- Бихарская модель Бумажные макеты
- доска
- Sislabus
- Совет 9408 S0008
- Sisplus
- S0008
- Sample P000S
- Sample
- S000S PSEB Syllabus
- Учебники PSEB
- Документы PSEB
- Учебное пособие Раджастхана Syllabus
- Учебники RBSE
- Документы RBSE
- JKBOSE Программа курса
- JKBOSE Примеры Papers
- JKBOSE экзамен Pattern
- TN Совет Силабус
- TN Совет вопрос Papers
- TN Board Примеры Papers
- Samacheer Kalvi Книги
- JAC Силабус
- JAC учебники
- JAC Вопрос Papers
- Telangana Совет Силабус
- Telangana совет учебники
- Telangana Совет Вопрос Papers
- KSEEB KSEEB Силабус
- KSEEB Модель Вопрос Papers
- KBPE Силабус
- KBPE Учебники
- KBPE Вопрос Papers
- UP Совет Силабус
- UP Совет Книги
- UP Совет Вопрос Papers
- Западная Бенгалия Совет Силабус
- Западная Бенгалия Совет учебниками
- West Bengal совет Вопрос документы
- Банк экзаменов
- SBI Exams
- PIL, Exams
- RBI Exams
- PIL, РРБ экзамен
- SSC Exams
- SSC JE
- SSC GD
- SSC CPO 900 04
- SSC CHSL
- SSC CGL
- RRB экзаменов
- RRB JE
- RRB NTPC
- RRB ALP
- L0003000000 L0003000000000000 UPSC CAPF
- Список государственных экзаменов Статьи
- Класс 1
- Класс 2
- Класс 3
- Физические вопросы
- Вопросы химии
- Химические вопросы
- Химические вопросы
- Вопросы химии
- Химические науки
- Вопросы химии
- Вопросы
- Вопросы по науке
- Вопросы ГК
- Обучение на дому
- Программа CAT BYJU’S
- CAT
- CAT
- CAT
- CAT
- CAT
- CAT
- CAT
- CAT
- FreeBS
40004 CAT 2020 Exam Pattern
- Химия
- Органическая химия
- Неорганическая химия
- Химическая химия
- Химическая химия ,