Коэффициент объемного расширения этиленгликоля: Коррекция объема расширительного бака

Содержание

Коррекция объема расширительного бака

Во многих регионах России устойчивая работа автономной системы теплоснабжения в осенне-зимний период  обеспечивается применением теплоносителя с низкой температурой замерзания. В подавляющем большинстве случаев  используются гликолевые смеси, физико-химические характеристики которых отличаются от параметров воды.

Подписаться на статьи можно на главной странице сайта.

Уже более полутораста лет назад в России стали широко применяться системы отопления с теплоносителем. В большинстве случаев это  было водяное или паровое отопление. Еще примерно через сто лет начался переход от открытых систем отопления к закрытым, важным элементом которых стал расширительный бак (экспансомат), назначение которого состояло в компенсации температурного расширения теплоносителя (рис.1).

Рис.  1. Конструкция современных мембранных баков

В том случае, если автономная система теплоснабжения была изначально спроектирована в расчете на использование в качестве теплоносителя воды, исходя из ее физических параметров подбирался тип и главное объем расширительного  бака. Однако гликолевые смеси имеют другой коэффициент объемного теплового расширения, кинематическую вязкость и теплоемкость (табл.1). Поэтому смена типа теплоносителя с переходом на гликолевые смеси требует и корректировки отопительной системы, в частности, проверки емкости расширительного бака и при необходимости ее коррекции (замены бака).

Для определения массового расхода (М) теплоносителя требуется рассчитать необходимое отопительной системой количества тепла. Затем расход определяется по формуле:

M = 3,6 × ΣQi/c × ∆t), кг/ч,

где ΣQi – требуемый тепловой поток , Вт; с – удельная теплоемкость теплоносителя, кДж/кг•˚С, ∆t = t – t – разность температур теплоносителя на входе и выходе из системы, ˚С.

Объемный расход в м3/ч определяется делением полученного значения на удельный вес теплоносителя. При смене теплоносителя значение имеет увеличение объемного  расхода относительно воды – Va/Vв, где Vа и Vв – соответственно, объемы гликолевой смеси и воды. Причем объем первой зависит также от типа гликоля и его концентрации, которые в свою очередь подбираются, исходя из условий эксплуатации. Например, при понижении температуры замерзания смеси на основе этиленгликоля от –20 до –67 ˚С объемные расходы возрастают на 6 и 12 %, соответственно (рис. 2).

Рис. 2. Зависимость  относительного объемного расширения от температуры теплоносителя:

а – вода; б – водный раствор моноэтиленгликоля 45 %

А в системах ГВС с бойлером косвенного нагрева можно применять только нетоксичный, но, увы, более дорогой пропиленглиголь. Коэффициент теплового расширения его растворов, значительно отличающийся от водяного, близок к соответствующим  значениям моноэтиленгликолевых водных растворов (табл.2).

Опасный воздух

Переход на антифриз может приводить к завоздушиванию отопительных систем: ведь он имеет более высокий по сравнению с водой коэффициент объемного расширения и емкости расширительного бака, рассчитанного на ее использование, что может оказаться недостаточно.  Поэтому при нагреве теплоносителя до рабочих температур (в среднем 85 ˚С) его излишек может быть сброшен через предохранительный клапан. Затем при снижении тепловой нагрузки потребуется подпитка системы, которая обычно осуществляется водой. Растворенные в ней газы выделятся при нагреве и приведут к образованию  воздушных пробок, появление которых чревато уже серьезными авариями.

Минимально необходимый объем расширительного бака в закрытой системе отопления можно рассчитать по формуле:

Vb = (V1b + ∆Vr) × (P2 + 1)/( P2 + P1), м3,

где V1b – начальный объем теплоносителя в баке при холодной системе отопления, м3; ∆Vr – значение расширения теплоносителя при нагреве до рабочей температуры, м3; P2 – давление в расширительном баке при рабочей температуре, бар; P1 – давление в расширительном баке до заполнения системы теплоносителем, бар.

Значение ∆Vr рассчитывается как произведение общего объема теплоносителя в системе, среднего в рабочем температурном диапазоне коэффициента объемного расширения (k)  и этого диапазона. Его значение обычно принимается равным 60 ˚С (∆t = tср – t0 = 80 – 20, ˚С).

При переходе с воды на антифриз важно соотношение V2b/V1b, где V2b и V1b  –соответственно, объемы расширительного бака для низкотемпературного теплоносителя и воды. Замена ее на гликолевые растворы концентрацией 40–45 % и, соответственно, с температурой начала кристаллизации 30–35 ˚С в отопительных системах мощностью до 100 кВт потребует увеличения номинальных объемов расширительных баков на 5–15 %, в более производительных системах коррекцию лучше проводить, используя графики зависимости объема от мощности и типа теплоносителя (рис.3) или таблицы пересчета.

Рис. 3. Зависимость объема расширительного бака от мощности системы отопления:

а – вода; б – водный раствор моноэтиленгликоля 45 %

Важнейший параметр для антифризов – максимальные рабочие температуры. Кипеть при атмосферном давлении большинство гликолевых растворов начинает при 104–112 °C. Однако некоторые производители заявляют рабочие температуры значительно выше, до 150 ˚С и даже больше,  вполне приемлемые для гелиосистем. Принципиальное значение этот параметр имеет потому, что в отличие от воды при превышении допустимой температуры происходит необратимое разложение гликолевых растворов.

Поэтому выбор расширительного бака с запасом на запредельное увеличение температуры смысла не имеет: даже небольшой локальный перегрев приводит к столь серьезным деструктивным изменениям, что должен в принципе потребовать замены всего гликолевого теплоносителя.

Очень важно то, что гликолевые смеси имеют повышенную по сравнению с водой проницаемость или текучесть. Причем вероятность возникновения протечек тем больше, чем больше в отопительной системе соединений. А течи часто обнаруживаются при ее остывании, когда возникают проницаемые для антифриза микроканалы. Поэтому все соединения, выполненные ранее при установке расширительного бака, должны быть доступны для ревизии, не скрыты под облицовкой или замоноличены.

Таблица. 1. Физические характеристики теплоносителей







Параметр

Единица измерения

Вода

Моноэтиленгликоль

45 %

Моноэтиленгликоль

60 %

Температура замерзания

         °С

     0

               –30

               –48

Плотность*

      кг/м3

  972

                1029

                1048

Теплоемкость*

кДж/кг×°С

  4,2

                 3,7

                   3,5

Кинематическая вязкость*

       сСт

  0,37

                 1,4

                  1,8

Коэффициент объемного теплового расширения

        °С-1

4,5×10-4

               5,3×10-4

                6,0×10-4

*При t = 80 °С

Таблица 2. Физические характеристики водного раствора пропиленгликоля 47 %






               Параметр

      Единица измерения

                 Значение

Температура замерзания

                        °С

                        –30

Плотность*

                     кг/м3

                          999

Теплоемкость*

                 кДж/кг×°С

                          3,82

Коэффициент расширения

                      °С-1

                        6,73×10–4

Статья опубликована в журнале «Аква-Терм» №3 (87) 2015, рубрика «Мастер-класс»

Опубликовано: 02 ноября 2015 г.

вернуться назад

Читайте также:

Этиленгликоль, моноэтиленгликоль, МЭГ.

Описание продукта (химическая формула, назначение):
—  Формула: HO-Ch3-Ch3-OH
—  Молекулярная масса: 62,07
ГОСТ 19710-83 Этиленгликоль.
Этиленгликоль получают при гидратации окиси этилена.

1. Технические характеристики.

№     Наименование показателя                                Норма          высший сорт                            1-й сорт
                                                                                                            ОКП 24 2212 0120               ОКП 24 2212 0130
1. Массовая доля этиленгликоля, %, не менее                                    99,8                                        99,5
2. Массовая доля диэтиленгликоля, %, не более                                 0,05                                         1,0
3. Цвет, единицы Хазена, не более
    — В обычном состоянии                                                                               5                                          20
    — После кипячения с соляной кислотой                                                  20                             не нормируется
4. Массовая доля остатка после прокаливания, %, не более           0,001                                     0,002
5. Массовая доля железа (Fe), %, не более                                        0,00001                                 0,0005
6. Массовая доля воды, %, не более                                                       0,1                                          0,5
7. Массовая доля кислот в пересчете на уксусную кислоту, %,
    не более                                                                                                    0,0006                                   0,005
8. Показатель преломления при 20 С                                                1,431 — 1,432                       1,430 — 1,432

   Настоящий стандарт распространяется на этиленгликоль, получаемый гидратацией окиси этилена, и устанавливает требования к этиленгликолю, изготовленному для нужд народного хозяйства и экспорта.
Этиленгликоль применяют в производстве синтетических волокон, смол, растворителей, низкозамерзающих и гидравлических жидкостей, косметике и для других целей.
По внешнему виду этиленгликоль представляет собой прозрачную жидкость.
Моноэтиленгликоль — это двухатомный спирт, бесцветная, вязкая, сладковатая на вкус жидкость, с температурой кипения 197 oС, плотностью при 20 oС = 1,112-1,113 г/см3, температурой начала замерзания минус 12-13 oС.
Этиленгликоль — основа охлаждающих жидкостей обладает уникальной возможностью не замерзать при пониженных температурах.
Исключительно важным свойством этиленгликоля является его способность понижать температуру замерзания водных растворов. При определенном соотношении системы «вода — этиленгликоль» можно получить жидкость с необходимой температурой замерзания от минус 1 до минус 70 oС. Водные растворы этиленгликоля не расширяются при замерзании и не образуют сплошной твердой массы, а превращаются в кашицеобразную рыхлую массу, объем которой больше первоначального только на 0,25%-0,30%.
Чтобы разбавленный водой этиленгликоль стал охлаждающей автожидкостью, в него необходимо добавить еще около 7-8, а то и больше компонентов, и отсутствие какого-либо из них может не только существенно снизить качество антифриза, но и просто стать опасной для автомобильных систем охлаждения.
                                                                     2. Плотность этиленгликоля в зависимости от температуры

                   оС        кг/дм3        оС        кг/дм3        оС        кг/дм3

                   -10      1,1352        12        1,1194        34        1,1042

                   -9        1,1346        13        1,1188        35        1,1036

                   -8        1,134          14        1,1182        36        1,103

                   -7        1,1334        15        1,1176        37        1,1022

                   -6        1,1328        16        1,117          38        1,1014

                   -5        1,1322        17        1,1162        39        1,1006

                   -4        1,1316        18        1,1154        40        1,0998

                   -3        1,131          19        1,1146        41        1,099

                   -2        1,1304        20        1,1138        42        1,0984

                   -1        1,1298        21        1,113          43        1,0978

                    0         1,129          22        1,1124        44        1,0972

                    1         1,127          23        1,1118        45        1,0966

                    2         1,1266        24        1,1112        46        1,096

                    3         1,1261        25        1,1106        47        1,0954

                    4         1,1257        26        1,11            48         1,0948

                    5         1,1253        27        1,1092        49         1,0942

                    6         1,1249        28        1,1084        50         1,0936

                    7         1,1245        29        1,1076        51         1,093

                    8         1,124          30        1,1068        52         1,092

                    9         1,1227        31        1,106          53         1,091

                  10         1,1214        32        1,1054        54         1,09

                  11         1,12            33        1,1048        55         1,089

 

Температура замерзания водно-гликолевой смеси

 

Температура замерзания водно-гликолевого раствора

 

3. Сравнительная характеристика физико-химических свойств воды и моноэтиленгликоля

                          Показатель                                                     Вода                  МЭГ
                          Молярная масса                                            18,01                 62,07
                          Плотность при 20оС, кг/м3                           998,2                1113
                          Температура замерзания, оС                          0                       -12
                          Температуры кипения при 0,1 МПа, оС        100                  197,7
                          Теплоемкость при 20оС, кДж/(кг*оС)          4,184                 2,422
                          Коэффициент теплопроводности,
                          кДж/(ч*м*оС)                                                  2,179                 0,955
                          Вязкость при 20оС, мм2/с                              1,0                  19-20
                          Теплота испарения, кДж/кг                           2,258                 0,800
                          Коэффициент объемного
                          расширения (0-100оС)                                0,00046              0,00062

4. Свойства водных растворов этиленгликоля

Концентрация этиленгликоля,         Плотность кг/дм3,              Температура замерзания, оС
% по массе                                             при 20оС   
          26,4                                                 1,0340                                            -10
          36,4                                                 1,0506                                            -20
          45,6                                                 1,0627                                            -30
          52,6                                                 1,0713                                            -40
          58,0                                                 1,0780                                            -50
          63,1                                                 1,0833                                            -60
          66,0                                                 1,0848                                            -65
          66,7                                                 1,0856                                            -73
          72,1                                                 1,0923                                            -60                 
          78,4                                                 1,0983                                            -50

Этиленгликоль в очищенном виде – это прозрачная бесцветная жидкость маслянистой консистенции без запаха.
Этиленгликоль применяют в качестве теплоносителя в системах нагрева и отопления, используют в системах охлаждения как холодоноситель в производстве антифризов, тосолов, гидравлических, тормозных жидкостей для автомобилей. Еще несколько сфер использования этиленгликоля: производство смол, синтетических волокон, растворителей, полиуретанов, душистых и взрывчатых веществ, кожевенная промышленность и фармакология.

Особо отметим, что этиленгликоль как низкозамерзающая жидкость (антифриз) заменяет воду из-за низкой температуры замерзания и более высокой температуры кипения. Этиленгликоль т.о., применяется, как охлаждающая жидкость в ДВС, антиобледенитель в авиации, хладоноситель в системах охлаждения.

                                                                      Вернуться к списку…

Коэффициент расширения теплоносителя пропиленгликоля | teplonositeli-pro.ru

Под коэффициентом теплового расширения любого тела понимают физическую величину, которая характеризует относительное изменение его объёма или линейных размеров при изменении (увеличении) температуры на 1К (˚С) при постоянном давлении. На практике более заметно расширение либо уменьшение объёма на примере жидкостей при их нагреве либо охлаждении, соответственно, по сравнению с твёрдыми телами. Изменение объёма обозначается показателем в виде коэффициента объёмного расширения: β = 1/V, К-1 (˚С-1).

Поскольку пропиленгликоль не может использоваться в чистом виде в качестве теплоносителя (состава низкозамерзающего всесезонного), ввиду его повышенной вязкости и коррозионной активности по отношению к металлам и сплавам, правильнее говорить о применении его водных растворах различной концентрации, в которые вводится пакет антикоррозионных присадок.

Водопропиленгликолевые составы низкозамерзающие всесезонные или жидкости охлаждающие для теплообменных систем относятся к одной из наиболее востребованной группе теплообменных жидкостей (после воды), применяемых в отопительной аппаратуре. Это обусловлено их довольно низкой температурой начала кристаллизации, что позволяет применять их и в зимний период (отопительный сезон).

К тому же они не столь токсичны как растворы этиленгликоля и не наносят вреда окружающей среде, хотя и обладают свойствами присущими гликолям. При низких отрицательных температурах окружающего воздуха они не переходят в твёрдую структуру льда (как это происходит с водой) и сохраняют работоспособность теплообменных систем.

Для чего необходимо знать коэффициент расширения?

Большинство автономных систем теплоснабжения спроектированы для применения воды, либо иногда — составов низкозамерзающих всесезонных, в качестве теплоносителя. Поэтому при расчётах и выборе аппаратов системы теплообмена (расширительной ёмкости) для них, учитываются и физические параметры.

Но если в качестве альтернативы будет использоваться не обычная техническая вода, нужно учитывать, что коэффициент расширения теплоносителя на основе пропиленгликоля (антифриза) будет другим. Его вычисляют для внесения необходимых корректировок, проверки соответствия объёма емкости расширительного бака.

Использование антифриза может привести к «завоздушиванию» отопительной системы. Этот процесс – результат более высокого (если сравнивать с водой) коэффициента температурного расширения теплоносителя на основе пропиленгликоля. В итоге объёма емкости расширительного бака оказывается недостаточно для его заполнения. Поэтому излишки антифриза при нагреве его до рабочей температуры (обычно это около 85 °C) сбрасываются путем слива через предохраняющий клапан.

После снижения тепловой нагрузки требуется подпитка системы теплообмена рабочей средой. Для этого используется вода, в которой содержатся растворённый воздух, который выделяется из жидкой фазы в результате нагрева. Все это провоцирует образование воздушных пробок, вызывающих серьезные аварии в системе отопления и поломки отдельной аппаратуры. На практике этот процесс хорошо демонстрируется во время эксплуатации двигателей внутреннего сгорания автотранспортной техники, когда система их охлаждения не обеспечивает нормальной работы и начинает «закипать».

Зависимость величины коэффициента расширения от температуры

Величина коэффициента объёмного теплового расширения теплоносителей на базе водных растворов пропиленгликоля зависит не только от его концентрации (содержании) в растворе, но и от температурного диапазона системы теплообмена в которой применяется теплоноситель. Существуют материалы и диапазоны температур, даже для воды когда, в узком интервале температур от 0˚С до + 4˚С, величина коэффициента отрицательная. Рассматриваемый коэффициент для теплоносителей на основе пропиленгликоля увеличивается с ростом температуры. Конкретные величины коэффициента объёмного расширения и динамику его увеличения при повышении температур для антифризов можно найти в справочной литературе.

Теплоноситель, в основе которого содержится пропиленгликоль, имеет значительно больший коэффициент расширения при нагреве, по сравнению с водой, поэтому рекомендуется подбирать бак для такой системы отопления большего объема. В отличие от воды, теплоемкость такого теплоносителя меньше на 15%. Это приводит к ухудшению условий теплообмена и требует монтажа дополнительных радиаторов, обладающих максимальной мощностью.

Кроме теплового расширения в результате нагрева, в теплоносителе на базе пропиленгликоля могут происходить необратимые изменения его химического состава в результате перегрева. Поэтому допускать повышение температуры антифриза до максимальных показателей не рекомендуется. Для объектов, где в отопительных системах требуется применение теплоносителей на основе водных растворов пропиленгликоля, гарантирующих экологическую безопасность, можно приобрести такую продукцию у компании «Савиа», которая занимается производством теплоносителей широкой номенклатуры.

Предлагаемые теплоносители сертифицированы, соответствуют международным и российским нормам качества. Составы подходят для обеспечения работы отопительных установок в жилых домах, на предприятиях пищевой промышленности. В случае утечки пропиленгликолевого антифриза исключается вероятность отравления.

АНТИФРИЗЫ на основе этилен- и пропиленгликолей и ВОДА. Растворы этиленгликоля. Растворы пропиленгликоля. Температуры замерзания. Вязкости. Плотности. Теплоемкости

АНТИФРИЗЫ на основе этилен- и пропиленгликолей и ВОДА. Растворы этиленгликоля. Растворы пропиленгликоля. Температуры замерзания. Вязкости. Плотности. Теплоемкости.

Антифризы это — жидкости, применяемые для охлаждения двигателей внутреннего сгорания, радиоэлектронной аппаратуры, промышленных теплообменников и других установок, работающих при температурах ниже 0°С. Основные требования к антифризам: низкая температура замерзания, высокие теплоемкость и теплопроводность, небольшая вязкость при низких температурах, малая вспениваемость, высокие температуры кипения и воспламенения. Кроме того, антифризы не должны вызывать разрушения конструкционных материалов, из которых изготовлены детали систем охлаждения.

Наиболее распространены антифризы на основе водных растворов этиленгликоля и пропиленгликоля (см.ниже). Однако такие растворы вызывают значительную коррозию металлов, поэтому в них добавляют ингибиторы коррозии — Na2HPO4, Na2MoO4, Na2B4O7, KNO3, декстрин, бензоат К, меркаптобензотиазол и другие. В ряде случаев, в качестве антифризов используют водные растворы солей; наиболее широко распространен раствор СаСl2. Недостатки таких антифризов – исключительно высокая коррозионная активность и кристаллизация солей при испарении воды.

СВОЙСТВА АНТИФРИЗОВ НА ОСНОВЕ ВОДНЫХ РАСТВОРОВ СОЛЕЙ (справочная таблица для интереса, такие антифризы практически вышли из употребления)







Соль Содержание соли, % по массе Температура замерзания, °С
NH4Cl 18,7 -15,8
NaCl 22,4 -21,2
MgCI2*6H2O 20,6 -33,6
CaCl2*6H2O 29,9 -55,0
К2С03*1,5Н20 39,9 -16,5

ЭТИЛЕНГЛИКОЛЬ (1,2-этандиол) НОСН2СН2ОН, бесцветная вязкая гигроскопичная жидкость без запаха, сладковатого вкуса; температура плавления -12,7 °С, температура кипения 197,6 °С. При растворении этиленгликоля в воде выделяется теплота и происходит уменьшение объема. Водные растворы замерзают при низких температурах. Этиленгликоль токсичен при попадании внутрь, действует на центральную нервную систему и почки; смертельная доза 1,4 г/кг. ПДК в воздухе рабочей зоны 5 мг/м3.

ПРОПИЛЕНГЛИКОЛИ (пропандиолы) С3Н6 (ОН)2 Известны 2 изомера: 1,2-П. СН3СНОНСН2ОН (1,2-пропандиол) и 1,3-П. СН2ОНСН2СН2ОН. Пропиленгликоли бесцветные вязкие гигроскопичные жидкости сладковатого вкуса, без запаха. Для 1,2-П. температура плавления -60 °С, температура кипения 189 °С. Для 1,3-П. температура плавления -32°С, температура кипения 213,5°С. 1,2-П. растворим в воде, диэтиловом эфире, одноатомных спиртах, карбоновых кислотах, альдегидах, аминах, ацетоне, этиленгликоле, ограниченно растворим в бензоле. При смешении его с водой или аминами резко снижается температура замерзания растворов. Токсичность 1,2-П. (ЛД50 34,6 мг/кг, крысы) ниже, чем у этиленгликоля.

Уровни безопасности для усредненных сроков хранения (биохимической активности) продуктов при добавлении в них 0,2% массового количества хладоносителя приведены ниже.

Показатель оценивается по пятибалльной шкале. Пятерка не означает, что продуктом нельзя отравиться в принципе.

Физические свойства этиленгликоля C2h5(OH)2 — водный раствор (антифриз)

Физические свойства водного раствора этиленгликоля

В таблице представлены следующие теплофизические и физические свойства этиленгликоля в виде водного раствора различной концентрации ζ: плотность ρ, температура замерзания tз, теплоемкость C, динамическая вязкость μ, кинематическая вязкость ν, теплопроводность λ, температуропроводность a, число Прандтля Pr этиленгликоля.

Физические свойства раствора этиленгликоля приведены в таблице в зависимости от температуры и его концентрации в растворе.

По данным таблицы видно, что с увеличением концентрации этиленгликоля в растворе его теплоемкость и теплопроводность уменьшаются, а температура замерзания раствора снижается при концентрации этиленгликоля до 66,3%. При дальнейшем увеличении концентрации этиленгликоля, температура замерзания раствора начинает повышаться.

В случаях применения раствора этиленгликоля в качестве антифриза в системе охлаждения автомобиля, снижение величин этих физических свойств этиленгликоля приведет к меньшему теплоотводу от двигателя. Таким образом, чем более концентрированный раствор этиленгликоля применяется в качестве охлаждающей жидкости, тем менее эффективно будет работать система охлаждения автомобиля в части отвода тепла от двигателя.

Физические свойства этиленгликоля даны в диапазоне температуры от минус 30 до 50°С и при концентрации этиленгликоля в растворе от 4,6 до 46,4 %.

Плотность и температура замерзания раствора этиленгликоля

В таблице даны значения плотности и температуры замерзания смеси технического этиленгликоля и воды в зависимости от концентрации. Следует отметить, что с увеличением содержания этиленгликоля в растворе, увеличивается плотность раствора. Температура замерзания раствора этиленгликоля при увеличении его концентрации в растворе снижается (до содержания этиленгликоля 66,3%), а затем начинает расти.

Таким образом, раствор этиленгликоля обладает свойством не замерзать до температуры -68°С при концентрации этиленгликоля в растворе 66,3%. Такие свойства раствора этиленгликоля в воде позволяют применять его в качестве антифриза во множестве систем.

Источники:

  1. Данилова Г.Н. и др. Сборник задач по процессам теплообмена в пищевой и холодильной промышленности. М.: «Пищевая промышленность» 1976.- 240 с.
  2. Лиханов В.А., Лопатин О.П. Технические жидкости: Учебное пособие. – Киров: Вятская ГСХА, 2005. – 43 с.

Расчет мембранного расширительного бака | Вентпортал

 

РАСЧЕТ МЕМБРАННЫХ РАСШИРИТЕЛЬНЫХ БАКОВ (СИСТЕМА ОТОПЛЕНИЯ)

      Для определения рабочего объема мембранного расширительного бака необходимо определить суммарный объем системы отопления VL сложением водяных объемов котла, отопительных приборов и трубопроводов.

 

Ориентировочные значения содержания воды в системах отопления

 

Вид отопительных приборов Объем системы, литр/кВт
Конвекторы 7,0
Радиаторы 10,5
Греющие поверхности, совмещенные со строительными конструкциями (теплые полы) 17,0

 

Объем расширительного бака V = (VL x E) / D, где

VL — емкость расширительной системы (емкость котла, всех труб и аккумуляторов тепла, если есть)
Е — коэффициент расширения жидкости, %
D — эффективность мембранного расширительного бака

1. Однако емкость системы отопления вычислить достаточно сложно, поэтому приблизительный расчет можно получить, зная мощность системы отопления, использовав формулу — 1КW = 15 л.
Например: мощность котла для коттеджа 30 кВт, тогда емкость системы отопления (без теплоаккумулятора) VL = 15 х 30 = 450 л.

2. Расширение жидкости — 4 % приблизительно, для водяных систем отопления с максимальной температурой до 95°С (данные достаточно точные и неопасные)

      Если в системе в качестве теплоносителя используется этиленгликоль (тосол), то приблизительный расчет коэффициента расширения можно произвести по следующей формуле:
этиленгликоль
10% — 4% х 1,1 = 4,4%
20% — 4% х 1,2 = 4,8% и т.д.;

эффективность мембранного расширительного бака D = (PV — PS) / (PV + 1), где

РV — максимальное рабочее давление системы отопления (расчетное давление предохранительного клапана равно максимальному рабочему давлению), для коттеджей обычно достаточно 2,5 бар;
PS — давление зарядки мембранного расширительного бака (должно быть равно статическому давлению системы отопления; (0,5 бар = 5 метров)
Например: площадь коттеджа составляет 300 м², высота системы , мощность котла 30 кВт, объем теплоаккумулятора 1000 л; тогда объем необходимого расширительного бака составит:
VL = 30 х 15 + 1000 = 1450 л.
PV = 2,5 бар; PS = 0,5 бар;
D = (2,5 — 0,5)/(2,5+1) = 0,57
V = 1450 х 0,04/0,57 = 101,75

Выбираем расширительный мембранный бак 110 л, давление зарядки 0,5 бар

 

Коэффициент увеличения объема воды/водогликолевой смеси в зависимости от температуры

 

Т, °С Содержание гликоля, %
  0 10 20 30 40 50 70 90
0 0,00013 0,0032 0,0064 0,0096 0,0128 0,0160 0,0224 0,0288
10 0,00027 0,0034 0,0066 0,0098 0,0130 0,0162 0,0226 0,0290
20 0,00177 0,0048 0,0080 0,0112 0,0144 0,0176 0,0240 0,0304
30 0,00435 0,0074 0,0106 0,0138 0,0170 0,0202 0,0266 0,0330
40 0,0078 0,0109 0,0141 0,0173 0,0205 0,0237 0,0301 0,0365
50 0,0121 0,0151 0,0183 0,0215 0,0247 0,0279 0,0343 0,0407
60 0,0171 0,0201 0,0232 0,0263 0,0294 0,0325 0,0387 0,0449
70 0,0227 0,0258 0,0288 0,0318 0,0348 0,0378 0,0438 0,0498
80 0,0290 0,0320 0,0349 0,0378 0,0407 0,0436 0,0494 0,0552
90 0,0359 0,0389 0,0417 0,0445 0,0473 0,0501 0,0557 0,0613
100 0,0434 0,0465 0,0491 0,0517 0,0543 0,0569 0,0621 0,0729

 

Вы можете скачать программу расчета по ссылке ниже:

Расширительный мембранный бак.xls

АНТИФРИЗЫ на основе этилен- и пропиленгликолей и ВОДА. Температуры замерзания. Вязкости. Плотности. Теплоемкости.

АНТИФРИЗЫ на основе этилен- и пропиленгликолей и ВОДА. Температуры замерзания. Вязкости. Плотности. Теплоемкости.

Антифризы это — жидкости, применяемые для охлаждения двигателей внутреннего сгорания, радиоэлектронной аппаратуры, промышленных теплообменников и других установок, работающих при температурах ниже 0°С. Основные требования к антифризам: низкая температура замерзания, высокие теплоемкость и теплопроводность, небольшая вязкость при низких температурах, малая вспениваемость, высокие температуры кипения и воспламенения. Кроме того, антифризы не должны вызывать разрушения конструкционных материалов, из которых изготовлены детали систем охлаждения.

Наиболее распространены антифризы на основе водных растворов этиленгликоля и пропиленгликоля (см.ниже). Однако такие растворы вызывают значительную коррозию металлов, поэтому в них добавляют ингибиторы коррозии — Na2HPO4, Na2MoO4, Na2B4O7, KNO3, декстрин, бензоат К, меркаптобензотиазол и другие. В ряде случаев, в качестве антифризов используют водные растворы солей; наиболее широко распространен раствор СаСl2. Недостатки таких антифризов – исключительно высокая коррозионная активность и кристаллизация солей при испарении воды.

СВОЙСТВА АНТИФРИЗОВ НА ОСНОВЕ ВОДНЫХ РАСТВОРОВ СОЛЕЙ (справочная таблица для интереса, такие антифризы практически вышли из употребления)









Соль Содержание соли, % по массе Температура замерзания, °С
NH4Cl 18,7 -15,8
NaCl 22,4 -21,2
MgCI2*6H2O 20,6 -33,6
CaCl2*6H2O 29,9 -55,0
К2С03*1,5Н20 39,9 -16,5

ЭТИЛЕНГЛИКОЛЬ (1,2-этандиол) НОСН2СН2ОН, бесцветная вязкая гигроскопичная жидкость без запаха, сладковатого вкуса; температура плавления -12,7 °С, температура кипения 197,6 °С. При растворении этиленгликоля в воде выделяется теплота и происходит уменьшение объема. Водные растворы замерзают при низких температурах. Этиленгликоль токсичен при попадании внутрь, действует на центральную нервную систему и почки; смертельная доза 1,4 г/кг. ПДК в воздухе рабочей зоны 5 мг/м3.

ПРОПИЛЕНГЛИКОЛИ (пропандиолы) С3Н6 (ОН)2 Известны 2 изомера: 1,2-П. СН3СНОНСН2ОН (1,2-пропандиол) и 1,3-П. СН2ОНСН2СН2ОН. Пропиленгликоли бесцветные вязкие гигроскопичные жидкости сладковатого вкуса, без запаха. Для 1,2-П. температура плавления -60 °С, температура кипения 189 °С. Для 1,3-П. температура плавления -32°С, температура кипения 213,5°С. 1,2-П. растворим в воде, диэтиловом эфире, одноатомных спиртах, карбоновых кислотах, альдегидах, аминах, ацетоне, этиленгликоле, ограниченно растворим в бензоле. При смешении его с водой или аминами резко снижается температура замерзания растворов. Токсичность 1,2-П. (ЛД50 34,6 мг/кг, крысы) ниже, чем у этиленгликоля.

Уровни безопасности для усредненных сроков хранения (биохимической активности) продуктов при добавлении в них 0,2% массового количества хладоносителя приведены ниже.
Показатель оценивается по пятибалльной шкале. Пятерка не означает, что продуктом нельзя отравиться в принципе.




















Антифриз Показатель Расшифровка
Вода 5 Нейтрален
Этанол 5 Нейтрален
Пропиленгликоль 5 Нейтрален
Хлорид натрия 5 Нейтрален
Формиат калия 4 Слабо опасен
Ацетат калия 4 Слабо опасен
Метанол 3 Умеренно опасен
Этиленгликоль 3 Умеренно опасен
Глицерин 3 Умеренно опасен
Аммиак 3 Умеренно опасен
Хлорид магния 2 Опасен
Хлорид кальция 1 Очень опасен

Температура замерзания водных растворов этиленгликоля и пропиленгликоля















Массовая концентрация
гликоля %
ЭТИЛЕНГЛИКОЛЬ ПРОПИЛЕНГЛИКОЛЬ
° C ° C
10 -3 -3
15 -5 -5
20 -8 -7
25 -11 -10
30 -14 -13
40 -22 -21
50 -34 -33
60 -48 -51

Физические свойства водного раствора этиленгликоля.

Присадки антифризов могут несколько изменить параметры, подстрахуйтесь.


















































Объемная доля
в смеси
%
Минимальная
рабочая температура
t, °C
Температура
раствора
t, °C
Плотность

кг/м3

Теплоемкость

КДж/кг*K

Теплопроводность

Вт/м*K

Динамическая вязкость
сПуаз=мПа*с=10-3*Н*с/м2
Кинематическая вязкость
сСт=мм2/с=10-6м2
20 -10 -10 1038 3,85 0,498 5,19 5,0
0 1036 3,87 0,500 3,11 3,0
20 1030 3,90 0,512 1,65 1,6
40 1022 3,93 0,521 1,02 1,0
60 1014 3,96 0,531 0,71 0,7
80 1006 3,99 0,540 0,523 0,52
100 997 4,02 0,550 0,409 0,41
34 -20 -20 1069 3,51 0,462 11,76 11,0
0 1063 3,56 0,466 4,89 4,6
20 1055 3,62 0,470 2,32 2,2
40 1044 3,68 0,473 1,57 1,5
60 1033 3,73 0,475 1,01 0,98
80 1022 3,78 0,478 0,695 0,68
100 1010 3,84 0,480 0,515 0,51
52 -40 -40 1108 3,04 0,416 110,8 100
-20 1100 3,11 0,409 27,50 25
0 1092 3,19 0,405 10,37 9,5
20 1082 3,26 0,402 4,87 4,5
40 1069 3,34 0,398 2,57 2,4
60 1057 3,41 0,394 1,59 1,5
80 1045 3,49 0,390 1,05 1,0
100 1032 3,56 0,385 0,722 0,7

Физические свойства водного раствора пропиленгликоля ( 1,2-Пропиленгликоль C3H6(OH)2)
Присадки антифризов могут несколько изменить параметры, подстрахуйтесь.



















































Объемная доля
в смеси
%
Минимальная
рабочая температура
t, °C
Температура
раствора
t, °C
Плотность

кг/м3

Теплоемкость

КДж/кг*K

Теплопроводность

Вт/м*K

Динамическая вязкость
сПуаз=мПа*с=10-3*Н*с/м2
Кинематическая вязкость
сСт=мм2/с=10-6м2
25 -10 -10 1032 3,93 0,466 10,22 9,9
0 1030 3,95 0,470 6,18 6,0
20 1024 3,98 0,478 2,86 2,8
40 1016 4,00 0,491 1,42 1,4
60 1003 4,03 0,505 0,903 0,9
80 986 4,05 0,519 0,671 0,68
100 979 4,08 0,533 0,509 0,52
38 -20 -20 1050 3,68 0,420 47,25 45
0 1045 3,72 0,425 12,54 12
20 1036 3,77 0,429 4,56 4,4
40 1025 3,82 0,433 2,26 2,2
60 1012 3,88 0,437 1,32 1,3
80 997 3,94 0,441 0,897 0,9
100 982 4,00 0,445 0,687 0,7
47 -30 -30 1066 3,45 0,397 160 150
-20 1062 3,49 0,396 74,3 70
-10 1058 3,52 0,395 31,74 30
0 1054 3,56 0,395 18,97 18
20 1044 3,62 0,394 6,264 6
40 1030 3,69 0,393 2,978 2,9
60 1015 3,76 0,392 1,624 1,6
80 999 3,82 0,391 1,10 1,1
100 984 3,89 0,390 0,807 0,82

Физические свойства воды.
Присадки водоподготовки (и санитарные) могут несколько изменить параметры, подстрахуйтесь.




























































































































Температура
t,(°C)
Давление
насыщенных паров
103*Па
Плотность

кг/м3

Удельный объем
(м3/кг)x105
Теплоемкость

КДж/кг*K

Энтропия

КДж/кг*K

Динамическая вязкость
сПуаз=мПа*с=10-3*Н*с/м2
Кинематическая вязкость
сСт=мм2/с=10-6м2
Коэффициент
объемного расширения
K-1*10-3
Энтальпия

КДж/кг*K

Число Прандтля
0 0,6 1000 100 4,217 0 1,78 1,792 -0,07 0 13,67
5 0,9 1000 100 4,204 0,075 1,52     21,0  
10 1,2 1000 100 4,193 0,150 1,31 1,304 0,088 41,9 9,47
15 1,7 999 100 4,186 0,223 1,14     62,9  
20 2,3 998 100 4,182 0,296 1,00 1,004 0,207 83,8 7,01
25 3,2 997 100 4,181 0,367 0,890     104,8  
30 4,3 996 100 4,179 0,438 0,798 0,801 0,303 125,7 5,43
35 5,6 994 101 4,178 0,505 0,719     146,7  
40 7,7 991 101 4,179 0,581 0,653 0,658 0,385 167,6 4,34
45 9,6 990 101 4,181 0,637 0,596     188,6  
50 12,5 988 101 4,182 0,707 0,547 0,553 0,457 209,6 3,56
55 15,7 986 101 4,183 0,767 0,504     230,5  
60 20,0 980 102 4,185 0,832 0,467 0,474 0,523 251,5 2,99
65 25,0 979 102 4,188 0,893 0,434     272,4  
70 31,3 978 102 4,190 0,966 0,404 0,413 0,585 293,4 2,56
75 38,6 975 103 4,194 1,016 0,378     314,3  
80 47,5 971 103 4,197 1,076 0,355 0,365 0,643 335,3 2,23
85 57,8 969 103 4,203 1,134 0,334     356,2  
90 70,0 962 104 4,205 1,192 0,314 0,326 0,698 377,2 1,96
95 84,5 962 104 4,213 1,250 0,297     398,1  
100 101,33 962 104 4,216 1,307 0,281 0,295 0,752 419,1 1,75
105 121 955 105 4,226 1,382 0,267     440,2  
110 143 951 105 4,233 1,418 0,253     461,3  
115 169 947 106 4,240 1,473 0,241     482,5  
120 199 943 106 4,240 1,527 0,230 0,249 0,860 503,7 1,45
125 228 939 106 4,254 1,565 0,221     524,3  
130 270 935 107 4,270 1,635 0,212     546,3  
135 313 931 107 4,280 1,687 0,204     567,7  
140 361 926 108 4,290 1,739 0,196 0,215 0,975 588,7 1,25
145 416 922 108 4,300 1,790 0,190     610,0  
150 477 918 109 4,310 1,842 0,185     631,8  
155 543 912 110 4,335 1,892 0,180     653,8  
160 618 907 110 4,350 1,942 0,174 0,189 1,098 674,5 1,09
165 701 902 111 4,364 1,992 0,169     697,3  
170 792 897 111 4,380 2,041 0,163     718,1  
175 890 893 112 4,389 2,090 0,158     739,8  
180 1000 887 113 4,420 2,138 0,153 0,170 1,233 763,1 0,98
185 1120 882 113 4,444 2,187 0,149     785,3  
190 1260 876 114 4,460 2,236 0,145     807,5  
195 1400 870 115 4,404 2,282 0,141     829,9  
200 1550 863 116 4,497 2,329 0,138 0,158 1,392 851,7 0,92
220             0,149 1,597   0,88
225 2550 834 120 4,648 2,569 0,121     966,8  
240             0,142 1,862   0,87
250 3990 800 125 4,867 2,797 0,110     1087  
260             0,137 2,21   0,87
275 5950 756 132 5,202 3,022 0,0972     1211  
300 8600 714 140 5,769 3,256 0,0897     1345  
325 12130 654 153 6,861 3,501 0,0790     1494  
350 16540 575 174 10,10 3,781 0,0648     1672  
360 18680 526 190 14,60 3,921 0,0582     1764  

Объемные или кубические коэффициенты расширения жидкостей

Объемные коэффициенты теплового расширения для некоторых распространенных жидкостей указаны ниже.

900 Дисульфид углерода

хладагент R

-900 0,0026

Жидкость Объемный коэффициент расширения
(1 / K, 1/ o C) (1/ o F)
Уксусная кислота 0,00110 0,00061
Ацетон 0.00143 0,00079
Спирт этиловый (этанол) 0,00109 0,00061
Спирт метиловый (метанол, древесный спирт, древесная нафта, древесные спирты, CH 3 OH) 0,00149 0,00083
Аммиак 0,00245 0,00136
Анилин 0,00085 0,00047
Бензол 0,00125 0.00069
Бром 0,00110 0,00061
Хлорид кальция, 5,8% раствор 0,00025
Хлорид кальция, 40,9% раствор 0,00046
0,00066
Тетрахлорметан 0,00122 0,00068
Хлороформ 0.00127 0,00071
Эфир 0,00160 0,00089
Этилацетат 0,00138 0,00077
Этиленгликоль 0,00057 0,00032
0,00144
н-гептан 0,00124 0,00069
Соляная кислота, 33.2% раствор 0,00046
Изобутиловый спирт 0,00094 0,00052
Бензин 0,00095 0,00053
Глицерин (глицерин) 0,00050 0,00050 Кер11 0,00050

реактивное топливо 0,00099 0,00055
Ртуть 0,00018 0,00010
Метилиодид 0.0012 0,00067
н-октан 0,00114 0,00063
Масло (неиспользованное моторное масло) 0,00070 0,00039
Оливковое масло 0,00070
0,000764 0,00042
Нефть 0,0010 0,00056
н-Пентан 0,00158 0.00088
Фенол 0,0009 0,00050
Хлорид калия, 24,3% раствор 0,00035
Хлорид натрия, 20,6% раствор 0,00041
раствор сульфата натрия 0,00041
Кислота серная, концентрированная 0,00055 0,00031
Толуол 0.00108 0,00060
Трихлорэтилен 0,001170 0,00065
Скипидар 0,001000 0,00056
Вода прибл. 20 o C (68 o F) 1)
0,000214 0,00012

1) Коэффициент объемного расширения воды зависит от температуры

.

Объемное или кубическое тепловое расширение

Volumetric temperature expansion

Удельный объем единицы может быть выражен как

v = 1 / ρ = V / m (1)

, где

v = удельный объем 3 / кг, футов 3 / фунт)

ρ = плотность (кг / м 3 , фунт / фут 3 )

V = объем агрегата (м 3 , фут 3 )

м = масса агрегата (кг, фунты)

Изменение объема агрегата при изменении температуры может быть выражается как

dV = V 0 β (t 1 — t 0 ) (2)

где

90 009 dV = V 1 — V 0 = изменение объема (м 3 , фут 3 )

β = Коэффициент объемного температурного расширения 3 / м 3 o C, футов 3 / футов 3 o F)

t 1 = конечная температура ( o C, o F)

t 0 = начальная температура ( o C, o F)

Плотность жидкости при изменении температуры может быть выражена как

ρ 1 = m / V 0 (1 + β (t 1 — t 0 ))

= ρ 0 / (1 + β (t 1 — t 0 )) (3)

где

ρ 1900 65 = конечная плотность (кг / м 3 , фунт / фут 3 )

ρ 0 = начальная плотность (кг / м 3 , фунт / фут 3 )

Онлайн-калькулятор теплового кубического расширения — коэффициент расширения и температуры

Имейте в виду, что коэффициент расширения для некоторых жидкостей, например воды, может изменяться в зависимости от температуры.Калькулятор, представленный ниже, является общим и может использоваться для метрических и британских единиц, если они используются последовательно.

Обратите внимание, , что коэффициент объемного расширения, используемый в калькуляторе, является постоянным. Если вы хотите рассчитать объемное изменение для жидкости в диапазоне температур, в котором коэффициент объемного расширения для жидкости сильно изменяется — интерполируйте значения коэффициента или разделите расчет в разных диапазонах температур. Пример: вода — это жидкость, у которой коэффициент объемного расширения сильно зависит от температуры.Вода имеет самую высокую плотность и наименьший объем при температуре 4 o C (39,2 o F) . Объемный коэффициент для воды отрицателен ниже 4 o C и указывает на то, что объем уменьшается при изменении температуры от 0 o C ( 32 o F ) до 4 o C .

Онлайн-калькулятор теплового кубического расширения — Плотности

Этот калькулятор можно использовать для расчета объема расширения, когда известны начальный объем, начальная и конечная плотности жидкости

V 0 — начальный объем (м 3 , фут 3 )

ρ 0 — начальная плотность (кг / м 3 , фунт / фут 3 )

ρ 1 — конечная плотность (кг / м 3 , фунт / фут 3 )

Объемные температурные коэффициенты — β для некоторых жидкостей

  • вода при 0 o C : -0.00005 0 (1/ o C)
  • вода при 4 o C : 0 (1/ o C)
  • вода при 10 o C : 0,000088 (1/ o C)
  • вода при 20 o C : 0,000207 (1/ o C)
  • вода при 30 o C : 0,000303 ( 1/ o C)
  • вода при 40 o C : 0.000385 (1/ o C)
  • вода при 50 o C : 0,000457 (1/ o C)
  • вода при 60 o C : 0,000522 (1/ o C)
  • вода при 70 o C : 0,000582 (1/ o C)
  • вода при 80 o C : 0,000640 (1/ o C)
  • вода при 90 o C : 0.000695 (1/ o C)
  • этиловый спирт: 0,00109 (1/ o C), 0,00061 (1/ o F)
  • масло: 0,00070 (1 / o C), 0,00039 (1/ o F)

Преобразование между метрическими и имперскими объемными температурными коэффициентами

  • 1 (1/ o C) = 0,56 (1/ o F )
  • 1 (1/ o F) = 1.8 (1/ o C)

Пример — кубическое расширение масла

Volumetric temperature expansion oil

100 литров 0,1 м 3 — масла с объемным коэффициентом расширения 0,00070 1 / o C нагревается от 20 o C до 40 o C . Объемное расширение можно рассчитать с помощью уравнения (2)

dV = (0,1 м 3 ) (0.00070 1/ o C) ((40 o C) — (20 o C))

= 0,0014 м 3

= 1,4 литра

Конечный объем составляет

100 литров + 1,4 литра = 101,4 литра

Пример — кубическое расширение масла

30 галлонов США масла нагревается от 7 0 o F до 100 o F . Объемное расширение можно рассчитать с помощью уравнения (2)

dV = (30 галлонов) (0.00039 1/ o F) ((100 o F) — (70 o F))

= 0,351 галлона

Окончательный объем

30 галлонов + 0,351 галлон = 30,351 галлона

.

Плотность, удельный вес и коэффициент теплового расширения

Плотность — это отношение массы к объему вещества:

ρ = м / В [1]

, где
ρ = плотность, обычно единицы [ г / см 3 ] или [фунт / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
V = объем, обычно единицы [см 3 ] или [фут 3 ]

Чистая вода имеет максимальную плотность 1000 кг / м 3 или 1.940 снарядов / фут 3 при температуре 4 ° C (= 39,2 ° F).

Удельный вес отношение веса к объему вещества:

γ = (м * г) / V = ​​ρ * г [2]

где
γ = удельный вес, ед. обычно [Н / м 3 ] или [фунт-сила / фут 3 ]
м = масса, обычно единицы [г] или [фунт]
g = ускорение свободного падения, обычно единицы [м / с 2 ] и значение на Земле обычно дается как 9.80665 м / с 2 или 32,17405 фут / с 2
V = объем, типичные единицы [см 3 ] или [футы 3 ]
ρ = плотность, типичные единицы [г / см 3 ] или [фунт / фут 3 ]

Пример 1: Удельный вес воды
В системе SI удельный вес воды при 4 ° C будет:

γ = 1000 [кг / м3] * 9.807 [ м / с2] = 9807 [кг / (м2 с2)] = 9807 [Н / м3] = 9.807 [кН / м3]

В английской системе единицей измерения массы является снаряд [sl] , и она получается из фунт-сила, определив его как , масса, которая будет ускоряться со скоростью 1 фут в секунду в квадрате, когда на нее действует сила в 1 фунт :

1 [фунт f ] = 1 [сл] * 1 [фут / s2] и 1 [sl] = 1 [фунт f ] / 1 [фут / с2]

Плотность воды равна 1.940 сл / фут 3 при 39 ° F (4 ° C), а удельный вес в британских единицах измерения составляет

γ = 1,940 [сл / фут3] * 32,174 [фут / с2] = 1,940 [фунт f ] / ([фут / с2] * [фут3]) * 32,174 [фут / с2] = 62,4 [фунт f / фут3]

Подробнее о разнице между массой и весом

Онлайн-калькулятор плотности воды

Калькулятор ниже можно использовать для расчета плотности жидкой воды при заданных температурах.
Плотность на выходе указывается в г / см 3 , кг / м 3 , фунт / фут 3 , фунт / галлон (жидкий раствор США) и сл / фут 3 .

Примечание! Температура должна быть в пределах 0–370 ° C, 32–700 ° F, 273–645 K и 492–1160 ° R, чтобы получить допустимые значения.

Плотность воды зависит от температуры и давления, как показано ниже:

Термодинамические свойства при стандартных условиях см. В разделе «Вода и тяжелая вода».
См. Также другие свойства Water при меняющейся температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, точки плавления при высоком давлении, число Прандтля, свойства в условиях равновесия газ-жидкость, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, теплопроводность, температуропроводность и давление пара в газе -жидкое равновесие.
Для других веществ см. Плотность и удельный вес ацетона, воздуха, аммиака, аргона, бензола, бутана, диоксида углерода, монооксида углерода, этана, этанола, этилена, гелия, водорода, метана, метанола, азота. , кислород, пентан, пропан и толуол.
Плотность сырой нефти , плотность мазута , плотность смазочного масла и плотность реактивного топлива в зависимости от температуры.

water_density

water_density

water_density_pressure

Как показано на рисунках, изменение плотности не является линейным с температурой — это означает, что коэффициент объемного расширения воды не является постоянным во всем диапазоне температур.

Плотность воды, удельный вес и коэффициент теплового расширения при температурах, указанных в градусах Цельсия:

Для полной таблицы с удельным весом и коэффициентом теплового расширения — поверните экран!

Коэффициент теплового расширения

[фунт м / фут 3 ]

-0,68

2

12165

5,9431

Температура Плотность (0-100 ° C при 1 атм,> 100 ° C при давлении насыщения)
Удельный вес
[° C] [г / см 3 ] [кг / м 3 ] [сл / фут 3 ] [фунт м / галлон (жидкий раствор США)] [кН / м 3 ] [фунт f / фут 3 ] [ * 10 — 4 K -1 ]
0.1 0,9998495 999,85 1,9400 62,4186 8,3441 9,8052 62,419
1 0,9999017 999,90 1,9401 62,4218 8,3446 9,8057 62,422 -0,50
4 0,9999749 999,97 1,9403 62,4264 8.3452 9,8064 62,426 0,003
10 0,9997000 999,70 1,9397 62,4094 8,3429 1,9386 62,3719 8,3379 9,7978 62,372 1,51
20 0.9982067 998,21 1,9368 62,3160 8,3304 9,7891 62,316 2,07
25 0,9970470 997,05 1,9346 62,2436 8,3208 9,7777 62,244 2,57
30 0,9956488 995,65 1,9319 62,1563 8,3091 9.7640 62,156 3,03
35 0,9940326 994,03 1,9287 62,0554 8,2956 9,7481 62,055 3,45
40 0,9 992,22 1,9252 61.9420 8.2804 9.7303 61.942 3.84
45 0.99021 990.21 1,9213 61,8168 8,2637 9,7106 61,817 4,20
50 0,98804 988,04 1,9171 61,6813 8,2456 9,6894 61,681 4,54
55 0,98569 985,69 1,9126 61,5346 8,2260 9,6663 61.535 4,86 ​​
60 0,98320 983,20 1,9077 61,3792 8,2052 9,6419 65168

8,1831 9,6159 61,214 5,44
70 0,97776 977,76 1.8972 61,0396 8,1598 9,5886 61,040 5,71
75 0,97484 974,84 1,8915 60,8573 8,1354 9,5599 60,857 5,97
80 0,97179 971,79 1.8856 60,6669 8,1100 9,5300 60,667 6.21
85 0,96861 968,61 1,8794 60,4683 8,0834 9,4988 60,468 9,4988 9,4665 60,262 6,66
95 0,96189 961,89 1,8664 60.0488 +8,0274 9,4329 60,049 6,87
100 0,95835 958,35 1,8595 59,8278 7,9978 9,3982 59,828 7,03
110 0,95095 950,95 1,8451 59,3659 7,9361 9,3256 59,366 8,01
120 0.94311 943,11 1,8299 58,8764 7,8706 9,2487 58,876 8,60
140 0,

926,13 1,7970 57,8164 7,7289 9,0822 57,816 9,75
160 0,

907,45 1,7607 56,6503 7,5730 8.8990 56.650 11.0
180 0.88700 887.00 1.7211 55.3736 7.4024 8.6985 53.9790 7.2159 8.4794 53.979 13.9
220 0.84022 840.22 +1,6303 52,4532 7,0120 8,2397 52,453 16,0
240 0,81337 813,37 1,5782 50,7770 6,7879 7,9764 50,777 18,6
260 0,78363 783,63 1,5205 48,9204 6,5397 7,6848 48.920 22,1
280 0,75028 750,28 1,4558 46,8385 6,2614 7,3577 46,838 6,9837 44,457
320 0,66709 667,09 1,2944 41.6451 5,5671 6,5419 41,645
340 0,61067 610,67 1,1849 38,1229 5,0963 5,9886 38,123
360 0,52759 527,59 1,0237 32,9364 4,4030 5,1739 32,936
373,946 0.3220 322,0 0,625 20,102 2,6872 3,1577 20,102

Таблица плотности воды, удельного веса и коэффициента теплового расширения при температурах, 000 в градусах Фаренгейта, для полного веса 7 9000 и коэффициент теплового расширения — поверните экран!

3,66

9,0168

6,31

8245

8245

8245

67168 5,663

5,663

5,663

Температура Плотность (0-212 ° F при 1 атм,> 212 ° F при давлении насыщения)
Удельный вес Коэффициент теплового расширения
[° F] [фунт м / фут 3 ] [сл / фут 3 ] [фунт м / галлон (США) жидкий)] [г / см 3 ] [кг / м 3 ] [фунт f / фут 3 ] [кН / м 3 ] [ * 10 -4 K -1 ]
32.2 62,42 1,9400 8,3441 0,99985 999,9 62,42 9,805 -0,68
34 9,806 -0,50
39,2 62,43 1,9403 8,3452 0,99997 1000,0 62.43 9,806 0,0031
40 62,42 1,9402 8,3450 0,99995 1000,0 62,42 9806 62,42 9806 0,99970 999,7 62,41 9,804 0,88
60 62,36 1,9383 8.3369 0,99898 999,0 62,36 9,797 1,59
70 62,30 1,9364 8,3283 0,9364 8,3283 0,9364 8,3283 0,9168 62,22 1,9338 8,3172 0,99662 996,6 62,22 9,773 2,72
90 62.11 1,9306 8,3035 0,99498 995,0 62,11 9,757 3,21
100 62,00 1,9268
110 61,86 1,9227 8,2697 0,99093 990,9 61,86 9.718 4,08
120 61,71 1,9181 8,2499 0,98855 988,6 61,71 9,694 130168

986,0 61,55 9,669 4,81
140 61,38 1,908 8.205 0,9832 983,2 61,38 9,642 5,16
150 61,19 1,902 8,180 0,9168

61,00 1,896 8,154 0,9771 977,1 61,00 9,582 5,71
170 60.79 1,890 8,127 0,9738 973,8 60,79 9,550 6,05
180 60,58 1,88168
190 60,35 1,876 8,068 0,9668 966,8 60,35 9.481 6,57
200 60,12 1,869 8,037 0,9630 963,0 60,12 9,444 6,716 59168

958,4 59,83 9,398 7,07
220 59,63 1,853 7,971 0.9552 955,2 59,63 9,367
240 59,10 1,837 7,900 0,9467 946,7 7,824 0,9375 937,5 58,53 9,194
280 57,93 1.800 7,744 0,9279 927,9 57,93 9,100
300 57,29 1,781 7,659

55,59 1,728 7,431 0,8905 890,5 55,59 8,733
400 53.67 1,668 7,175 0,8598 859,8 53,67 8,432
450 51,45 1,599 500 48,92 1,521 6,540 0,7836 783,6 48,92 7,685
550 45.95 1,428 6,142 0,7360 736,0 45,95 7,218
600 42,36 1,317 625 40,12 1,247 5,363 0,6426 642,6 40,12 6,302
650 37.35 1,161 4,993 0,5982 598,2 37,35 5,867
675 33,79 1,050 33,79

Плотность воды и удельный вес при 1000 psi и данных температурах:

Для полного стола с удельным весом — поверните экран!

1,9

9665

9665

Температура Плотность (при 1000 psi или 68.1 атм) Удельный вес
[° C] [° F] [г / см 3 ]

23 [кг / ]

[сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (лик США)] [ фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,0031 1003,1 1,946 62,62 8,371 62,62 9,837
4,4 40 62,62 9,837
10,0 50 1,0031 1003,1 1,946 62,62 8,371 62.62 9,837
15,6 60 1,0024 1002,4 1,945 62,58 8,366 62,58 9,8165

62,50 8,355 62,50 9,818
26,7 80 0,9999 999,9 1.940 62,42 8,344 62,42 9,805
32,2 90 0,9981 998,1 1,937 998,1 1,937 62168 8,316 0,9962 996,2 1,933 62,19 8,314 62,19 9,769
43,3 110 0.9944 994,4 1,928 62,03 8,292 62,03 9,744
48,9 120 0,9912 120
54,4 130 0,9888 988,8 1,919 61,73 8,252 61,73 9.697
60,0 140 0,9864 986,4 1,914 61,58 8,232 61,58 98165 8,232 61,58 9,673 8,207 61,39 9,644
71,1 160 0,9803 980,3 1,902 61.20 8,181 61,20 9,614
76,7 170 0,9768 976,8 1,895 60,98 8,1169 973,1 1,888 60,75 8,121 60,75 9,543
87,8 190 0.9696 969,6 1.881 60,53 8,092 60,53 9,509
93,3 200 0,9661
121,1 250 0,9456 945,6 1,835 59,03 7,891 59,03 9.273
148,9 300 0,9217 921,7 1,788 57,54 7,692 57,54 9,039 7,463 55,83 8,770
204,4 400 0,8636 863,6 1,676 53.91 7.207 53.91 8.469
260.0 500 0,7867 786,7 1,526 49,11 6.5164 точка

Плотность воды и удельный вес при 10 000 psi и данных температурах:

Для полного стола с удельным весом — поверните экран!

62,4

Температура Плотность (при 10 000 фунтов на квадратный дюйм или 681 атм) Удельный вес
[° C] [° C]

[г / см 3 ] [кг / м 3 ] [сл / фут 3 ] [фунт м / фут 3 ] [фунт м / галлон (жидкий раствор США)] [фунт f / фут 3 ] [кН / м 3 ]
0.0 32 1,033 1033 2,004 64,5 8,62 64,5 10,13
4,4 40 64,4 10,12
10,0 50 1,031 1031 2.000 64,4 8,60 64.4 10,11
15,6 60 1,029 1029 1,997 64,3 8,59 64,3 10,09 64,1 8,58 64,1 10,08
26,7 80 1,026 1026 1,990 64.0 8,56 64,0 10,06
32,2 90 1,024 1024 1,986 63,9 8,54 63,9 8,54 63,9 63,9 1021 1,982 63,8 8,52 63,8 10,02
43,3 110 1,019 1019 1.977 63,6 8,51 63,6 9,99
48,9 120 1,017 1017 1,973 63,5 1,014 1014 1,968 63,3 8,46 63,3 9,94
60,0 140 1.011 1011 1,962 63,1 8,44 63,1 9,92
65,6 150 1,008 1008
71,1 160 1,005 1005 1,951 62,8 8,39 62,8 9,86
76.7 170 1,002 1002 1,945 62,6 8,37 62,6 9,83
82,2 180 9,80
87,8 190 0,996 996 1,932 62,2 8,31 62.2 9,77
93,3 200 0,992 992 1,926 62,0 8,28 62,0 9,73 60,8 8,13 60,8 9,55
148,9 300 0,953 953 1,849 59.5 7,95 59,5 9,35
176,7 350 0,930 930 1.805 58,1 7,716,16

905 1,756 56,5 7,55 56,5 8,88
260,0 500 0,847 847 1.643 52,9 7,07 52,9 8,31
315,6 600 0,774 774 1,501 48,3 US галлон основан на 7,48 галлона на кубический фут .

  • 1 галлон (жидкий раствор США) = 3,7854 л = 0,8327 галлона (Великобритания) = 0,8594 галлона (сухой раствор США) = 0,1074 галлона (сухой раствор США) = 0,4297 уп (сухой раствор США) = 4 кварты (жидкий раствор США) = 8 пунктов (США) liq) = 16 c (США) = 32 gi (жидкий раствор США) = 128 жидких унций (США) = 1024 жидких унций (США) = 3.7854×10 -3 м 3 = 0,1337 фута 3 = 4,951×10 -3 ярдов 3

Для преобразования плотности в кг / м 3 в другие единицы плотности — или между единицами измерения — используйте приведенные ниже значения преобразования:

  • 1 кг / м 3 = 1 г / л = 0,001 кг / л = 0,000001 кг / см 3 = 0,001 г / см 3 = 0,99885 унций / фут 3 = 0,0005780 унций / дюйм 3 = 0,16036 унций / галлон (Великобритания) = 0,1335 унций / галлон (жидкий раствор США) = 0.06243 фунт / фут 3 = 3,6127×10-5 фунт / дюйм 3 = 1,6856 фунт / ярд3 = 0,010022 фунт / галлон (Великобритания) = 0,008345 фунт / галлон (жидкий раствор США) = 0,00194032 сл / фут 3 = 0,0007525 тонна (длинная) / ярд 3 = 0,0008428 тонна (короткая) / ярд 3

См. также преобразователь плотности

Пример 2: Плотность воды в унциях / дюйм 3
Плотность воды при температуре 20 o C составляет 998,21 кг / м 3 (таблица выше). Плотность в единицах унций / дюйм 3 может быть вычислена с помощью приведенного выше значения преобразования в

998.21 [кг / м 3 ] * 0,0005780 [(унция / дюйм 3 ) / (кг / м 3 )] = 0,5797 [унция / дюйм 3 ]

Пример 3: Масса горячего Вода
Бак объемом 10 м 3 содержит горячую воду с температурой 190 ° F. Из приведенной выше таблицы плотность воды при 190 ° F составляет 966,8 кг / м 3 . Общая масса воды в баке может быть рассчитана

10 [м 3 ] * 966,8 [кг / м 3 ] = 9668 [кг]

См. Также гидростатическое давление в воде и энергию, запасенную в горячей воде

.

Плотность жидкости

Плотность некоторых распространенных жидкостей:

78

6 Спирт, этил (этанол)

9306 930 900

9 Бутан

7

8536 Carene

900

900

6

901

0

Дихлордифторметан

Муравьиная кислота с концентрацией 80%

Масло фундука Алкоголь

9propyyl

6

6656 900

9000 Азотная кислота

90 006

9000

12036 Пропиленарбонат

76

0

7

Жидкость Температура
т
( o C)
Плотность
ρ
(кг / м 3 )

Ацетальдегид 18 783
Уксусная кислота 25 1049
Ацетон 25 784.6
Ацетонитрил 20 783
Акролеин 20 840
Акролонитрил 25 801
Спирт метил (метанол) 25 786,5
Спирт пропил 25 800,0
Масло из косточек миндаля 25 910
Алилламин 758
Аммиак (водный) 25 823.5
Анилин 25 1019
Анизол 20 994
Масло из косточек абрикоса 25 910
Масло из семян арганы 20 912
Автомобильные масла 15 880 — 940
Масло из целлюлозы авакадо 25 912
Пальмовое масло Бабассу 25 914
Говяжий жир (наземные животные) 25 902
Пиво (разное) 10 1010
Бензальдегид 25 1040
Бензол 25 873.8
Benzil 15 1230
Масло черной смородины 20 923
Сало борнео 100 855
Рассол 15
Бром 25 3120
Бутанал 20 802
Масляный жир (наземные животные) 15 934
Масляная кислота 20 959
25 599
2,3-бутандион 18 981
2-бутанон 25 800
н-бутилацетат 20 880
н-Бутиловый спирт (бутанол) 20 810 90 037
н-Бутилхлорид 20 886
Масло Cameline 15 924
Рапсовое масло рапса 20 915
Капроновая кислота 9
Карболовая кислота (фенол) 15 956
Дисульфид углерода 25 1261
Тетрахлорид углерода 25 1584
7 25
Масло кешью 15 914
Касторовое масло 25 952
Масло из косточек вишни 25 918
Куриный жир 15 918
Китайский овощной жир 25 887
Хлорид 25 1560
Хлорбензол 20 1106
Хлороформ 20 1489
Лимонная кислота, 50% водный раствор 15 1220
Масло какао 25 974
Кокосовое масло 40 930
Масло печени трески 15 924
Масло ореха кохун 25 914
Кукурузное масло 20 919
Масло семян Corriander 25 908
Масло семян хлопка 20 920
Крамбе масло 25 906
Крезол 25 1024
Креозот 15 1067
Сырая нефть, 48 o API 60 o F (15 ,6 o C) 790
Сырая нефть, 40 o API 60 o F (15,6 o C) 825
Сырая нефть, 35,6 o API 60 o F (15,6 o C) 847
Сырая нефть, 32,6 o API 60 o F (15,6 o C) 862
Сырая нефть, Калифорния 60 o F (15.6 o C) 915
Сырая нефть, мексиканская 60 o F (15,6 o C) 973
Сырая нефть, Техас 60 o F ( 15,6 o C) 873
Кумол 25 860
Циклогексан 20 779
Циклопентан 20 745
726.3
Дизельное топливо от 20 до 60 15 820 — 950
Диэтаноламин 20 1097
Диэтиловый эфир 20 714
о-Дихлорбензол

20 1306
Дихлорметан 20 1326
Диэтиловый эфир 20 714
Диэтиленгликоль 15 1120
Диэтиловый диэтиловый эфир 20 906
Дихлорметан 20 1326
Диизопропиловый эфир 25 719
Диметилацетамид 20 942
Nform, Nform, 20 949 9003 7
Диметилсульфат 20 1332
Диметилсульфид 20 848
Диметилсульфоксид 20 1100
Додекан 75
Этан -89 570
Эфир 25 713,5
Этиламин 16 681
Этилацетат 20
Этиловый спирт (этанол, чистый спирт, зерновой спирт или питьевой спирт) 20 789
Этиловый эфир 20 713
Дихлорид этилена 20 1253
Этилен гликоль 25 1097
Масло семян Euphorbia lagascae 25 952
Трихлорфторметановый хладагент R-11 25 1476
Хладагент дихлордифторметан

1311
шасси лородифторметановый хладагент R-22 25 1194
Формальдегид 45 812
Муравьиная кислота с концентрацией 10% 20 1025
20

1221
Мазут 60 o F (15.6 o C) 890
Furan 25 1416
Furforal 25 1155
Бензин, природный 60 o F (15,6 o C) 711
Бензин, Транспортное средство 60 o F (15,6 o C) 737
Газойль 60 o F (15,6 o C) 890
Глюкоза 60 o F (15.6 o C) 1350-1440
Глицерин 25 1259
Глицерин 25 1126
Масло из виноградных косточек 20 923
25 909
Мазут 20 920
Конопляное масло 25 921
Гептан 25 679.5
Масло сельди 20 914
Гексан 25 654,8
Гексанол 25 811
Гексен 25
671

0 Гексиламин

20 766
Гидразин 25 795
Масло Иллипе Маура 100 862
Ионен 25 932
20 802
Изооктан 20 692
Изопропиловый спирт 20 785
Изопропилбензол гидропероксид 20 1030
Mypropylбензола 853
Масло семян капока 15 926
Керосин 60 o F (15.6 o C) 820,1
Линоленовая кислота 25 897
Льняное масло 25 924
Машинное масло 20 910
масло семян 15 912
Menhaden oil 15 920
Mercury 13590
Метан -164 465
Метанол 791
Метиламин 25 656
Метил изоамилкетон 20 888
Метил-изобутилкетон 20- 801 Methyl Ketone n 20 808
Метил tB утиловый эфир 20 741
N-Метилпирролидон 20 1030
Метилэтилкетон 20 805
Молоко 15 1020 — 9000 — 9000

Масло семян Moringa peregrina 24 903
Масло семян горчицы 20 913
Сало баранины 15 946
Нафта 15
Нафта, древесина 25 960
Нафталин 25 820
Масло нима 30 912
Масло семян Нигера 15 924
0 1560
Овсяное масло 25 904
Овсяное масло 25 917
Оцимен 25 798
Октан 15 698.6
Смоляное масло 20 940
Скипидарное масло 20 870
Масло смазочное 20 900
Oiticica oil 20 972
Оливковое масло 20 911
Кислород (жидкость) -183 1140
Пальмоядровое масло 15 922
Пальмовое масло 15 914
Пальмовый олеин 40 910
Пальмовый стеарин 60 884
Паральдегид 20 994
Пальмитиновая кислота 25 851
Арахисовое масло 20 914
Пентан 20 626
Пентан 25 625
Перхлор этилен 20 1620
25 924
Петролейный эфир 20 640
Бензин, природный 60 o F (15.6 o C) 711
Бензин, Автомобиль 60 o F (15,6 o C) 737
Фенол (карболовая кислота) 25 1072
Фосген 0 1378
Фитадиен 25 823
Масло Phulwara 100 862
Пинен 25 857 Пинен 25 857 15 919
Маковое масло 25 916
Сало свиное 20 898
Пропанал 25 866
— Пропан 40 493.5
Пропан, R-290 25 494
Пропанол 25 804
Пропиламин 20 717
20 900
Пропилен 25 514,4
Пропиленгликоль 25 965,3
Пиридин 25 979
Пиррол 25 966 966

0 Семена масло

20 920
Резорцин 25 1269
Масло рисовых отрубей 25 916
Канифольное масло 15 98037
Лососевое масло 900

15 924
Масло сардины 25 915
Морская вода 25 1025
Масло из семян морепродуктов 15 924
Масло печени акулы 25 917
Шианутовое масло 100 863
Силан 25 718
Силиконовое масло 25 965 — 980
Гидроксид натрия (каустическая сода) 15 1250
Сорбальдегид 25 895
Соевое масло 20 920
Стеариновая кислота 25 891
25
Дихлорид серы 1620
Серная кислота 95% концентрация 20 1839
Серная кислота -20 1490
Сульфурилхлорид 1680
Раствор сахара 68 брикса 15 1338
Подсолнечное масло 20 919
Стирол 25 903
Талловое масло 25 969
Терпинен 25 847
Тетрагидрофуран 20 888
Толуол 20 867
Трихлор этилен 20 1470

7

Триэтиламин Трифторуксусная кислота d 20 1489
Тунговое масло 25 912
Скипидар 25 868.2
Масло масло Ucuhuba 100 870
Масло семян вернонии 30 901
Масло грецкого ореха 25 921
Вода тяжелая 11,6 900

1105
Вода — чистая 4 1000
Вода — морская 77 o F (25 o C) 1022
Китовое масло 15 925
Масло пшеничных зародышей 25 926
о-ксилол 20 880
м-ксилол 20 864
p-ксилол 20 861
  • 1 кг / м 3 = 0.001 г / см 3 = 0,0005780 унций / дюйм 3 = 0,16036 унций / галлон (английская система мер) = 0,1335 унций / галлон (США) = 0,0624 фунта / фут 3 = 0,000036127 фунта / дюйм 3 = 1,6856 фунта / ярд 3 = 0,010022 фунта / галлон (британская система мер) = 0,008345 фунта / галлон (США) = 0,0007525 тонна / ярд 3

Обратите внимание, что даже если фунты на кубический фут часто используются в качестве меры плотности в В США фунты на самом деле являются мерой силы, а не массы. Слизни — верное средство измерения массы. Вы можете разделить фунты на кубический фут на 32.2 за приблизительную стоимость в слагах.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.