5 примеров теплопроводности: «Какие примеры учёта теплопроводности в жизни можно привести?» – Яндекс.Кью
«Какие примеры учёта теплопроводности в жизни можно привести?» – Яндекс.Кью
Сегодня существует несколько основных зарекомендовавших себя материалов и технологий для строительства малоэтажных зданий.
Дом из кирпича тёплый, но дорогой вариант. Технология моностены практически не используется в строительстве в чистом виде (вся площадь полностью выкладывается из кирпича). На выходе слишком большой расход недешёвого материала и неэффективное использование пространства. Рекомендуемая толщина стен жилого здания зависит от климатических условий. В России этот показатель колеблется от 300-400 мм в южных городах и до 800-1500 мм – в умеренных и северных широтах (Урал, Сибирь).
В большинстве случаев дом из кирпича нуждается в дополнительном наружном утеплении. Подходит исключительно для строительства зданий для постоянного проживания, так как внутри надо постоянно поддерживать микроклимат. Длительная консервация объекта губительно сказывается на кирпичной кладке: материал начинает впитывать влагу и разрушаться. Да и зимой быстро прогреть такой дом не получится, чтобы добиться окончательного результата процесс должен длиться не менее 72 часов.
Дом из газобетонных блоков
Отличный вариант для строительства дома. Подойдёт и тем, кто собирается строить сезонную дачу, и тем, кто выбирает проект дома для постоянного проживания. Если для вас главным критерием является теплоёмкость будущего дома, то газобетон и его производные – один из лучших вариантов.
Расчеты специалистов и практика использования этого материала доказали, что такой блок подходит для строительства однослойной стены, которую не придётся дополнительно утеплять снаружи. Налицо экономия времени и средств. В отличие от кирпича стены из газобетона делают толщиной до полуметра, что позволяет комфортно эксплуатировать дом даже в северных регионах страны.
Деревянный дом
Ещё один фаворит на рынке строительства – деревянный дом. Наряду с кирпичным, он имеет свою армию приверженцев. Но и среди них существует раскол, и ведутся постоянные споры, какой деревянный дом теплее. Дом из бруса Толщина стен должна быть от 150 до 240 мм шириной. Определяется это опять же исходя из климатических особенностей территории, где будет строиться дом. Брус имеет большую площадь соприкосновения друг с другом, поэтому и стены допускается делать тоньше, чем при строительстве дома из брёвен. Более простой и практичный вариант деревянных домов. Несмотря на хорошие теплосберегающие показатели, дома из бруса всё же рекомендуют дополнительно утеплять.
Дом из бревна
Диаметр используемых брёвен для строительства дома для постоянного проживания – 240-280 мм. Для дачных вариантов цифра может быть меньше. Дом, расположенный в северных уголках страны, лучше строить из брёвен потолще. Важную роль играет не сам диаметр бревна, сколько площадь соприкосновения их друг с другом, то есть ширина паза-замка. Именно это место является слабым звеном в таком доме. Утеплять бревенчатый дом можно, но нерационально. Во-первых, за слоем утеплителя прячется вся естественная красота сруба. Во-вторых, профессионально утеплить именно сруб из брёвен достаточно сложно, но можно.
Между тем, натуральное дерево – отличный материал для строительства домов для постоянного и сезонного использования.
Каркасный дом
Технология строительства, проверенная временем на зарубежном строительном рынке. В России набирает популярность, но пока ещё встречает очень много скептиков и приверженцев классических способов возведения домов. Быстро, просто и недорого – основные преимущества, характеризующие строительство каркасных домов. По такой технологии могут быть построены дома в регионах с жарким климатом, так и на северных окраинах страны.
В основе – деревянный каркас из бруса, а стены – это многослойные сэндвичи, собранные согласно потребностям конкретного климата. Необходимый слой утеплителя – от 50 до нескольких сот миллиметров – уложен в горизонтальную и вертикальную обрешётку, обшит паро- и гидроизоляционными плёнками, внутри и снаружи закрыт выбранным заказчиком материалом: доска, вагонка, гипс, плиты ОСБ и прочие доступные наименования. Дополнительно утеплять такой дом нет необходимости. Если возникают сомнения, будет ли в нём достаточно тепло, можно на этапе строительства добавить в стены дома дополнительный слой утеплителя.
Современные комбинированные технологии
Позволяют осуществить строительство дома из желаемых материалов с минимальной толщиной стен, при этом сделать его максимально тёплым. Для этого используется принцип многослойности. Когда на этапе строительства слой конструкционного материала утепляется, а затем выкладывается фасад.
- Такую технологию используют для строительства дома из кирпича, не выдерживая минимально допустимую ширину стен. Собирая сэндвич из опорного кирпича, утеплителя и отделочного кирпича.
- Также экономят на строительстве домов из газобетона, когда для дома в северных широтах строят стены в один блок, но затем дополнительно утепляют его и закрывают фасадом.
- Возможно строительство дома из бруса, со стенами меньше допустимой ширины, закрытыми фасадами, но дополнительно утеплёнными снаружи.
- Кроме того, возможно каркасно-заливное строительство. В первом варианте каркас делается из пустотелых пенопластовых блоков, внутрь которых заливается армированный бетон. А во втором варианте выставляются две кирпичные стенки – внешняя и внутренняя, а пространство между ними заполняется жидким утеплителем.
Примеры теплопередачи в природе, в быту
Тепловая энергия является термином, который мы используем для описания уровня активности молекул в объекте. Повышенная возбужденность, так или иначе, связана с увеличением температуры, в то время как в холодных объектах атомы перемещаются намного медленней.
Примеры теплопередачи можно встретить повсюду — в природе, технике и повседневной жизни.
Примеры передачи тепловой энергии
Самым большим примером передачи тепла является солнце, которое согревает планету Земля и все, что на ней находится. В повседневной жизни можно встретить массу подобных вариантов, только в гораздо менее глобальном смысле. Итак, какие же примеры теплопередачи можно наблюдать в быту?
Вот некоторые из них:
- Газовая или электрическая плита и, например, сковорода для жарки яиц.
- Автомобильные виды топлива, такие как бензин, являются источниками тепловой энергии для двигателя.
- Включенный тостер превращает кусок хлеба в тост. Это связано с лучистой тепловой энергией тоста, который вытягивает влагу из хлеба и делает его хрустящим.
- Горячая чашка дымящегося какао согревает руки.
- Любое пламя, начиная от спичечного пламени и заканчивая массивными лесными пожарами.
- Когда лед помещают в стакан с водой, тепловая энергия из воды его плавит, то есть сама вода является источником энергии.
- Система радиатора или отопления в доме обеспечивает тепло в течение долгих и холодных зимних месяцев.
- Обычные печи являются источниками конвекции, в результате чего помещенный в них пищевой продукт нагревается, и запускается процесс приготовления.
- Примеры теплопередачи можно наблюдать и в своем собственном теле, взяв в руку кусочек льда.
- Тепловая энергия есть даже внутри у кошки, которая может согреть колени хозяина.
Тепло — это движение
Тепловые потоки находятся в постоянном движении. Основными способами их передачи можно назвать конвенцию, излучение и проводимость. Давайте рассмотрим эти понятия более подробно.
Что такое проводимость?
Возможно, многие не раз замечали, что в одном и том же помещении ощущения от прикосновения с полом могут быть совершенно разные. Приятно и тепло ходить по ковру, но если зайти в ванную комнату босыми ногами, ощутимая прохлада сразу дает чувство бодрости. Только не в том случае, где есть подогрев полов.
Так почему же плиточная поверхность мерзнет? Это все из-за теплопроводности. Это один из трех типов передачи тепла. Всякий раз, когда два объекта различных температур находятся в контакте друг с другом, тепловая энергия будет проходить между ними. Примеры теплопередачи в этом случае можно привести следующие: держась за металлическую пластину, другой конец которой будет помещен над пламенем свечи, со временем можно почувствовать жжение и боль, а в момент прикосновения к железной ручке кастрюли с кипящей водой можно получить ожог.
Факторы проводимости
Хорошая или плохая проводимость зависит от нескольких факторов:
- Вид и качество материала, из которого сделаны предметы.
- Площадь поверхности двух объектов, находящихся в контакте.
- Разница температур между двумя объектами.
- Толщина и размер предметов.
В форме уравнения это выглядит следующим образом: скорость передачи тепла к объекту равна теплопроводности материала, из которого изготовлен объект, умноженной на площадь поверхности в контакте, умноженной на разность температур между двумя объектами и деленной на толщину материала. Все просто.
Примеры проводимости
Прямая передача тепла от одного объекта к другому называются проводимостью, а вещества, которые хорошо проводят тепло, называются проводниками. Некоторые материалы и вещества плохо справляются с этой задачей, их называют изоляторами. К ним относят древесину, пластмассу, стекловолокно и даже воздух. Как известно, изоляторы фактически не останавливают поток тепла, а просто его замедляют в той или иной степени.
Конвекция
Такой вид теплопередачи, как конвекция, происходит во всех жидкостях и газах. Можно встретить такие примеры теплопередачи в природе и в быту. Когда жидкость нагревается, молекулы в нижней части набирают энергию и начинают двигаться быстрее, что приводит к уменьшению плотности. Теплые молекулы текучей среды начинают двигаться вверх, в то время как охладитель (более плотная жидкость) начинает тонуть. После того как прохладные молекулы достигают дна, они опять получают свою долю энергии и снова стремятся к вершине. Цикл продолжается до тех пор, пока существует источник тепла в нижней части.
Примеры теплопередачи в природе можно привести следующие: при помощи специального оборудованной горелки теплый воздух, наполняя пространство воздушного шара, может поднять всю конструкцию на достаточно большую высоту, все дело в том, что теплый воздух легче холодного.
Излучение
Когда вы сидите перед костром, вас согревает исходящее от него тепло. То же самое происходит, если поднести ладонь к горящей лампочке, не дотрагиваясь до нее. Вы тоже почувствуете тепло. Самые крупные примеры теплопередачи в быту и природе возглавляет солнечная энергия. Каждый день тепло солнца проходит через 146 млн. км пустого пространства вплоть до самой Земли. Это движущая сила для всех форм и систем жизни, которые существуют на нашей планете сегодня. Без этого способа передачи мы были бы в большой беде, и мир был бы совсем не тот, каким мы его знаем.
Излучение — это передача тепла с помощью электромагнитных волн, будь то радиоволны, инфракрасные, рентгеновские лучи или даже видимый свет. Все объекты излучают и поглощают лучистую энергию, включая самого человека, однако не все предметы и вещества справляются с этой задачей одинаково хорошо. Примеры теплопередачи в быту можно рассмотреть при помощи обычной антенны. Как правило, то, что хорошо излучает, также хорошо и поглощает. Что касается Земли, то она принимает энергию от солнца, а затем отдает ее обратно в космос. Эта энергия излучения называется земной радиацией, и это то, что делает возможной саму жизнь на планете.
Примеры теплопередачи в природе, быту, технике
Передача энергии, в частности тепловой, является фундаментальной областью исследования для всех инженеров. Излучение делает Землю пригодной для обитания и дает возобновляемую солнечную энергию. Конвекция является основой механики, отвечает за потоки воздуха в зданиях и воздухообмен в домах. Проводимость позволяет нагревать кастрюлю, всего лишь поставив ее на огонь.
Многочисленные примеры теплопередачи в технике и природе очевидны и встречаются повсюду в нашем мире. Практически все из них играют большую роль, особенно в области машиностроения. Например, при проектировании системы вентиляции здания инженеры высчитывают теплоотдачу здания в его окрестностях, а также внутреннюю передачу тепла. Кроме того, они выбирают материалы, которые сводят к минимуму или максимизируют передачу тепла через отдельные компоненты для оптимизации эффективности.
Испарение
Когда атомы или молекулы жидкости (например, воды) подвергаются воздействию значительного объема газа, они имеют тенденцию самопроизвольно войти в газообразное состояние или испариться. Это происходит потому, что молекулы постоянно движутся в разных направлениях при случайных скоростях и сталкиваются друг с другом. В ходе этих процессов некоторые из них получают кинетическую энергию, достаточную для того, чтобы отталкиваться от источника нагревания.
Однако не все молекулы успевают испариться и стать водяным паром. Все зависит от температуры. Так, вода в стакане будет испаряться медленнее, чем в нагреваемой на плите кастрюле. Кипение воды значительно увеличивает энергию молекул, что, в свою очередь, ускоряет процесс испарения.
Основные понятия
- Проводимость — это передача тепла через вещество при непосредственном контакте атомов или молекул.
- Конвекция — это передача тепла за счет циркуляции газа (например, воздуха) или жидкости (например, воды).
- Излучение — это разница между поглощенным и отраженным количеством тепла. Эта способность сильно зависит от цвета, черные объекты поглощают больше тепла, чем светлые.
- Испарение — это процесс, при котором атомы или молекулы в жидком состоянии получают достаточно энергии, чтобы стать газом или паром.
- Парниковые газы — это газы, которые задерживают тепло солнца в атмосфере Земли, производя парниковый эффект. Выделяют две основные категории — это водяной пар и углекислый газ.
- Возобновляемые источники энергии — это безграничные ресурсы, которые быстро и естественно пополняются. Сюда можно отнести следующие примеры теплопередачи в природе и технике: ветры и энергию солнца.
- Теплопроводность — это скорость, с которой материал передает тепловую энергию через себя.
- Тепловое равновесие — это состояние, в котором все части системы находятся в одинаковом температурном режиме.
Применение на практике
Многочисленные примеры теплопередачи в природе и технике (картинки выше) указывают на то, что эти процессы должны быть хорошо изучены и служили во благо. Инженеры применяют свои знания о принципах передачи тепла, исследуют новые технологии, которые связаны с использованием возобновляемых ресурсов и являются менее разрушительными для окружающей среды. Ключевым моментом является понимание того, что перенос энергии открывает бесконечные возможности для инженерных решений и не только.
ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ
БИЛЕТ №1
ТЕПЛОВОЕ ДВИЖЕНИЕ. ТЕМПЕРАТУРА. ТЕРМОМЕТРЫ. ТЕМПЕРАТУРНЫЕ ШКАЛЫ.
Тепловые явления – явления, связанные с изменением температуры тел.
Тепловое движение – хаотическое движение частиц, из которых состоят тела.
Интенсивность теплового движения очень высока. Например, при комнатной температуре средняя скорость молекул – несколько сотен метров в секунду (скорость пули).
Температура – физическая величина, определяющая направление теплопередачи: при теплопередаче внутренняя энергия всегда переходит от тела с большей температурой к телу с меньшей температурой.
Тела с одинаковой температурой находятся в состоянии теплового равновесия.
Температуру измеряют с помощью термометров. Часто используют жидкостные термометры, действие которых основано на том, что жидкость при нагревании расширяется. Измеряют температуру в градусах.
В шкале Цельсия за 0° принята температура плавления льда. Градусы Цельсия обозначают °С.
В шкале Фаренгейта за 0° принята температура плавления льда, а за 100° температура кипения воды при атмосферном давлении. Градусы Фаренгейта обозначают °F.
В шкале Кельвина за 0° принята температура абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела). Градусы Кельвина обозначают K.
0°С = 32°F = 273 К
БИЛЕТ №2
ВНУТРЕННЯЯ ЭНЕРГИЯ И СПОСОБЫ ЕЕ ИЗМЕРЕНИЯ. ОБЪЯСНЕНИЕ ВНУТРЕННЕЙ ЭНЕРГИИ НА ОСНОВЕ УЧЕНИЯ О МОЛЕКУЛЯРНОМ СТРОЕНИИ ВЕЩЕСТВА.
Энергия характеризует способность тела или системы взаимодействующих тел совершить работу.
Частицы, из которых состоят тела, движутся и взаимодействуют друг с другом. Поэтому они обладают и кинетической, и потенциальной энергией.
Внутренняя энергия тела – сумма кинетической энергии хаотического движения и потенциальной энергии взаимодействия частиц, из которых состоит тело. U – внутренняя энергия
Внутренняя энергия тела изменяется при его нагревании или охлаждении, изменении агрегатного состояния и при химических реакциях.
Внутренняя энергия
Кинетическая энергия движущихся молекул Потенциальная энергия взаимодействия молекул
Внутренняя энергия зависит от
t тела агрегатного состояния тела m тела
m1 < m2
U1 < U2
Способы изменения внутренней энергии
Совершение работы Теплопередача
трение, деформация передача тепла от более нагретого
тела к менее нагретому без совершения
работы
Е – энергия (Дж)
Еп = mgh (А — работа)
Ек =
U = Еп + Ек
БИЛЕТ №3
ТЕПЛОПРОВОДНОСТЬ. ПРИМЕРЫ ТЕПЛОПРОВОДНОСТИ В ПРИРОДЕ, БЫТУ, ТЕХНИКЕ.
Теплопроводность – вид теплопередачи, обусловленный передачей энергии от одного тела к другому в результате теплового движения и взаимодействия молекул.
Передача энергии посредством теплопередачи может происходить и между частями одного тела.
При теплопроводности происходит передача энергии, но не происходит переноса вещества.
Теплопроводностью называют также способность вещества проводить тепло. Высокой теплопроводностью обладают все металлы. Намного хуже проводят тепло: вода, кирпич и стекло. Вакуум тепло не проводит.
Особенно мала теплопроводность газов. Дело в том, что в газах молекулы находятся далеко друг от друга, а теплопроводность обусловлена взаимодействием молекул между собой.
Примеры:
1. Птицы зимой сидят нахохлившись. Перья задерживают воздух, а он обладает плохой теплопроводностью.
2. Ручки чайников, сковородок и т.д. из пластмассы, т.к. она плохо нагревается; корпус посуда из металла – он лучше проводит тепло и еда быстрее нагревается.
3. Пористые вещества (пенопласт, ткани, паралон и т.д.) – хорошая теплоизоляция, т.к. воздух обладает плохой теплопроводностью.
БИЛЕТ №4
Виды теплопередачи – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)
- Участник: Ромашов Владимир Михайлович
- Руководитель: Гурьянова Галина Александровна
Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.
Техника безопасности по теме «Тепловые явления»
- Будьте внимательны, дисциплинированны, аккуратны, точно выполняйте указания учителя.
- До начала работы приборы не трогать и не приступать к выполнению лабораторной работы до указания учителя.
- Перед тем как приступить к выполнению работы, тщательно изучите её описание, уясните ход её выполнения.
- Не оставляйте рабочего места без разрешения учителя.
- Располагайте приборы, материалы, оборудование на рабочем месте в порядке, указанном учителем.
- Не держите на рабочем столе предметы, не требующиеся при выполнении задания.
- При выполнение опытов нельзя пользоваться разбитой стеклянной посудой или посудой с трещинами.
- Стеклянные колбы при нагревании нужно ставить на асбестовые сетки. Воду можно нагревать до 60–70°С.
- Осколки стекла нельзя собирать со стола руками. Для этого нужно использовать щетку с совком.
- Нельзя оставлять без присмотра нагревательные приборы.
- Не устанавливайте на краю стола штатив, во избежание его падения.
- Будьте внимательны и осторожны при работе с колющими и режущимися предметами.
- Берегите оборудование и используйте его по назначению.
- При получении травмы обратитесь к учителю.
Введение
В своей работе по теме «Виды теплопередачи» я проведу и объясню три эксперимента, описанные в учебнике Перышкина А.В. Физика. 8класс.
Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.
Выдвигаемая гипотеза: внутреннюю энергию тел можно изменять путем теплопередачи. Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.
Опыт № 1. Теплопроводность
На примере этого опыта я хотел показать действие теплопроводности наглядно. При нормальных условиях тепло должно передаваться равномерно вследствие колебательных движений частиц.
К металлической линейке с помощью воска я прикрепил несколько кнопок. Закрепив линейку в штативе, я начал нагревать один конец линейки с помощью спиртовки. Линейка начала постепенно нагреваться, это можно доказать тем, что воск начал таять постепенно и кнопки поочерёдно начали отпадать.
Вывод из опыта № 1
Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура в следующей части линейки. При теплопроводности не происходит переноса самого вещества. Теплопроводность металла хорошая, у жидкостей невелика, у газов еще меньше.
Применения теплопроводности
- Теплопроводность используется при плавлении металлов.
- В электронике используют настолько плотное расположение плат, что теплоноситель проникает туда с трудом. Поэтому приходится тепло от электронных чипов отводить теплопроводностью.
- Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. В кухонной посуде ручки чайников и кастрюль обычно делают деревянными или пластмассовыми в связи с тем, что у дерева и пластмассы плохая теплопроводность.
- Поверхность утюга, которой гладят металлическая, чтобы хорошо прогревалась, а вся остальная часть утюга пластмассовая, чтобы не обжечься.
- Плохую теплопроводность газов в основном используют, как теплоизоляцию, чтобы предохранять помещения от замерзания.
- Плохая теплопроводность газов используется в окнах. Между двумя стёклами в окне находится воздух, поэтому воздух долгое время сохраняет тепло.
- Термос работает по такому же принципу, что и окно. Между внутренними стенками и внешними находится воздух, и тепло очень медленно уходит.
- Теплопроводность газов используется во многих строительных материалах, например, в кирпичах. В кирпиче находятся отверстия не просто так, а для сохранения тепла. Стены состоят из двух слоёв, между которыми находится воздух, это сделано для сохранения тепла.
- Дома в зонах вечной мерзлоты строят на сваях.
- Тонкой полиэтиленовой плёнкой можно защищать растения от холода, потому что полиэтилен – плохой проводник тепла.
- Материалы, не пропускающие тепло, используются при космических полётах, чтобы пилоты не замерзали.
- Горячие предметы лучше брать сухой тряпкой, нежели мокрой, потому что воздух хуже проводит тепло, чем вода.
Теплопроводность в природе
У многих не перелётных птиц температура лапок и тела может различаться до 30 °С. Это связано с тем, что им приходится ходить по холодной земле или по снегу, чтобы не замёрзнуть, низкая температура лап сильно понижает теплоотдачу.
Образование ветра это тоже теплопроводность. Зарождаются ветра обычно около водоёмов. Днём суша нагревается быстрее чем вода, то есть над водой воздух более холодный, следовательно, его давление выше, чем у воздуха, который над сушей, и ветер начинает дуть в сторону суши. Ночью же суша остывает быстрее, чем над водой, и воздух над ней становится холоднее, чем тот, что над водой и ветер дует в сторону воды.
Мех животных обладает плохой теплопроводностью, что защищает их от перегрева и замерзания.
Снег, будучи плохим проводником тепла, предохраняет озимые посевы от вымерзания.
Внешняя температура тела у человека держится постоянной благодаря теплопроводности и её свойству, согласно которому, при взаимодействии микрочастиц они передают друг другу тепло.
Интересные факты о теплопроводности
Самую большую теплопроводность имеет алмаз. Его теплопроводность почти в 6 раз больше чем у меди. Если алмазную ложечку опустить в горячий чай, то вы сразу обожжётесь из-за того, что тепло дошло до конца ложки.
Теплопроводность стекла настолько мала, что вы можете взять стеклянную палочку, раскаленную посередине, за концы, и при этом даже не почувствовать тепла.
Итальянские учёные изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Лето в ней не буде жарко, а зимой – холодно. Это связано с тем, что она сшита из специального материала, не пропускающего тепло.
Опыт № 2. Излучение
В этом опыте я хотел показать способ передачи тепла без взаимодействия двух тел. Тепло должно передаваться приёмнику, а тот в свою очередь пускать его через трубку в жидкостный манометр. Вследствие нагрева воздуха в колене соединённом с жидкостным манометром, жидкость должна опуститься.
Я соединил колено жидкостного манометра с теплоприемником. Зажёг спиртовку и поднёс к ней теплоприёмник светлой стороной, но на определённое расстояние. Жидкость в колене манометра, соединённом с приёмником, немного уменьшилась. Выровняв количество жидкости в манометре, я снова поднёс теплоприемник к источнику тепла, но уже тёмной стороной. Жидкость в колене манометра, соединённом с приёмником, уменьшилась, но значительно сильнее и быстрее. Воздух в теплоприемнике нагрелся и расширился, стал давить на жидкость в колене манометра.
Вывод из опыта № 2
Энергия передавалась не теплопроводностью. Между нагретым телом и теплоприемником находился воздух – плохой проводник тепла. Следовательно, в данном случае передача энергии происходит путем излучения.
Передача тепла излучением отличается от других видов теплопередачи. Она может осуществляться даже в полном вакууме.
Важным и отличительным свойством теплового излучения является равновесный характер излучения. Это значит, что если поместить тело в теплоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии. Часть тепла полученного излучением поглощается, а часть отражается.
Применения излучения
Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных шаров, крылья самолетов красят в серебристой краской, чтобы они не нагревались солнцем.
Лучевой нагрев помещения специальными инфракрасными радиаторами. Такой нагрев более эффективный, чем нагрев конвекцией, так как лучи свободно проходят сквозь воздух.
Излучение используют на космических аппаратах. Так как там нет воздуха, не получится по-другому передать тепло.
Если находиться рядом с лампой накаливания можно почувствовать тепло исходящее от неё.
Солнечные батареи работают по принципу излучения. Солнце испускает мощные тепловые лучи. Солнечные батареи принимают тепловые лучи и перерабатывают их в энергию. Такие батареи хорошие приёмники для солнечных лучей, потому что их поверхность тёмного цвета, и они хорошо нагреваются. Такие батареи используются на космических станциях и спутниках.
От компьютеров и мобильных телефонов тоже исходит тепловые лучи.
Приборы ночного видения. Такие приборы сделаны из материалов способных превращать тепловые излучения в видимые. Такие приборы используются для съёмки в абсолютной темноте. Они способны улавливать различные участки, температура которых различается на сотые доли градуса.
Интересные факты
Чем более тёмное тело, тем лучше оно поглощает тепло. Зеркальные поверхности отражают тепло полученное излучением. Абсолютно черное тело – физическое тело, которое при любой температуре поглощает всё падающее на него электромагнитное излучение во всех диапазонах.
Когда объект нагревается до высокой температуры, он начинает светиться красным цветом. В процессе дальнейшего нагревания объекта, цвет его излучения меняется, проходя через оранжевый, желтый, и дальше по спектру, чем горячее — тем меньше длина волны излучения.
Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.
Змеи отлично воспринимают тепловое излучение, но не глазами, а кожей. Поэтому и в полной темноте они способны обнаружить теплокровную жертву. Гремучие змеи и сибирские щитомордники реагируют на изменения температуры до тысячной доли градуса.
80 процентов тепла тела излучается головой человека.
Если бы не свойства излучения, то земля бы замёрзла. Так как земля постоянно излучает тепловые лучи в бесконечное пространство.
Глаза таракана чувствуют колебания температуры в сотую долю градуса.
На каждый квадратный метр земной поверхности попадает около 1 кВт тепловой энергии Солнца, что достаточно, чтобы вскипятить чайник за считанные минуты.
Опыт № 3. Конвекция
Рассмотрю явление передачи тепла с помощью конвекции. Этим опытом я хочу показать, как действует конвекция. Если опыт пройдёт успешно, то тепло должно передаваться снизу вверх.
Я налил холодную воду в колбу и добавил туда марганцовокислого калия для того, чтобы видно было процесс нагрева. Зажег спиртовку и начал подогревать колбу. Видно, как струи подкрашенной воды поднимаются вверх. Нагретые слои жидкости – менее плотные и поэтому более легкие – вытесняются более тяжелыми, холодными слоями. Холодные слои жидкости, опустившись вниз, в свою очередь нагреваются от источника тепла и вновь вытесняются менее нагретой водой. Благодаря такому движению вся вода равномерно прогревается.
Вывод из опыта № 3
При конвекции энергия переносится самими струями жидкости или газа. При конвекции происходит перенос вещества в пространстве. Для того чтобы в жидкостях и газах происходила конвекция, необходимо их нагревать снизу. Конвекция в твердых телах происходить не может.
Конвекция бывает двух видов: естественная – нагревание жидкости или газа и его самостоятельное движение; принудительная – смешивание жидкостей или газов с помощью насосов или вентиляторов.
Применение конвекции
Нагрев дна кастрюли на плите газом. Горящий газ греет дно кастрюли, а тепло передается через стенку дна путем теплопроводности. Далее тепло от дна кастрюли поступает в воду и распространяется по всему объему воды путем конвекции.
Конвекция используется в конвекционных печах или микроволновках. Суть работы конвекционных печей состоит в том, что благодаря вмонтированному в заднюю стенку нагревательному элементу и вентилятору, при включении происходит принудительная циркуляция горячего воздуха. Под воздействием этой циркуляции внутреннее пространство разогревается намного быстрее и равномернее, а, значит, и воздействие на продукты будет одновременным со всех сторон.
В холодильных устройствах также работает принцип конвекции, только в этом случае требуется заполнение внутренних отделений не теплым воздухом, а холодным.
Батареи отопления в жилых помещениях располагаются снизу, а не сверху, потому что тёплый воздух поднимается вверх и помещение прогревается везде одинаково, если бы батареи располагались у потолка, то помещение бы не нагревалось вовсе.
Батареи располагаются именно под окнами, потому что горячий воздух поднимается и распространяется по комнате, а сам уступает место холодному воздуху, поступающему из окна.
Конвекция используется в двигателях внутреннего сгорания. Если воздух не будет поступать в камеру сгорания, то горение прекратится. Из-за горения воздух там расширяется, давление уменьшается и холодный воздух поступает внутрь. К двигателю внутреннего сгорания обязательно должен поступать воздух.
Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло препятствует движению тёплого воздуха вверх, то есть осуществлению конвекции. Таким образом, теплица является ловушкой энергии.
Вентилятор фена прогоняет воздух через трубу с тонкой длинной нагревательной спиралью. Спираль нагревается проходящим по ней электрическим током. Далее происходит передача тепла от разогретой спирали окружающему её воздуху. Здесь используется явление принудительной вентиляции воздуха и явление теплопередачи.
Конвекция в природе
Конвекция участвует в образовании ветра. Если бы работала только теплопроводность, то ветров бы почти не было, но благодаря конвекции теплый воздух поднимается над сушей и уступая холодному воздуху.
Благодаря конвекции появляются облака и тучи. Так как вода испаряется, конвекция подгоняет пар высоко вверх, и там образуются облака под воздействием холодного воздуха и низкого давления.
Конвекция участвует в возникновении волн. Волны появляются благодаря ветру, а ветер в свою очередь благодаря конвекции и теплопередачи, следовательно, без конвекции волн не могло бы быть.
Стекло начинает замерзать снизу раньше, чем сверху. Это происходит потому, что холодный воздух более плотный и опускается вниз и тем самым замораживает поверхность стекла.
Листья осины дрожат даже в безветренную погоду. У листьев осины длинные, тонкие и сплющенные черенки, имеющие очень малую изгибную жесткость, поэтому листья осины чувствительны к любым, незначительным потокам воздуха. Даже в безветренную погоду, особенно в жару, над землей имеются вертикальные конвекционные потоки. Они и заставляют дрожать осину.
Интересные факты
В сильные морозы глубокие водоемы не промерзают до дна, и вода внизу имеет температуру +4 градуса Цельсия. Вода при такой температуре имеет наибольшую плотность и опускается на дно. Поэтому дальнейшая конвекция теплой воды наверх становится невозможной и вода более не остывает.
Выводы из проделанных опытов
Если изменение внутренней энергии происходит путем теплопередачи, то переход энергии от одних тел к другим осуществляется теплопроводностью, конвекцией или излучением. Когда температуры тел выравниваются, теплопередача прекращается.
Документ «Теплопроводность различных тел»
Проектная работа по физике
на тему
Теплопроводность
Содержание:
Введение.
Глава 1. Явление теплопроводности :
1.1 Примеры теплопроводности в природе
1.2 Теплопроводность в быту
Глава 2. Проводимые опыты и выводы:
2.1 Опыт № 1. Определение теплопроводности алюминия и железа с помощью горячей воды
2.2 Опыт №2. Определение теплопроводности алюминия и шерсти с помощью холода
Заключение
Список использованной литературы
Введение.
Гипотеза
Цель : — изучить явление теплопроводность
— заинтересовать класс в изучении данного явления
Задачи: — объяснить пользу и вред данного явления
— рассказать, где применяется теплопроводность в нашей жизни
Глава 1. Явление теплопроводность.
Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.
Нагревание металлической ложки от горячего чая – пример теплопроводности
Объяснение явления. Возьмем и начнем нагревать на огне конец медной палки, а другой конец возьмем в руки, через короткое время мы не сможем ее удержать так как не нагревающий конец тоже стал горячим. Вот это явление перехода тепла по поверхности от одного конца проволоки к другому и называется теплопроводность.
Глава 1.1 Теплопроводность в природе.
Наблюдать явление мы можем на примере животных, которые впадают в зимнюю спячку: медведи. Эти представителя животного мира не погибают от переохлаждения . Почему? Ответ прост: они спят в берлогах под толстым слоем снега, который обладает плохой теплопроводностью (из-за наличия воздуха между снежинками) , что мешает холоду проникнуть к животному , а жир и шерсть не дают теплу покинуть тело.
Место ночевки тетерева
Глава 1.2 Теплопроводность в быту.
Явление очень широко используется в повседневной жизни. Примеров огромное число, вот некоторые из них:
— На кухне для приготовления пищи используют посуду из материалов ( в основном из различных металлов) , которые обладают хорошей теплопроводностью, для того чтобы пища быстро и равномерно готовилась. А детали, которые мы берем руками во избежание ожогов делают из материалов с плохой теплопроводностью(ручки, крышки из пластмассы ), или используют перчатки , прихватки из ткани
— В автомобилях для того, чтобы не перегреть детали двигателя его блок цилиндров делают из алюминия или чугуна, у которых хорошая теплопроводность
— Зимняя одежда делается из материалов с плохой теплопроводностью – из шерсти и меха, а летняя – наоборот из материалов с хорошей ( чтобы не было перегревания тела)
— При строительстве жилья используют для стен дерево, кирпич, бетон, камень из-за их низкой теплопроводности
Глава 2. Проводимые опыты и выводы.
Для того, чтобы правильно применять явление теплопроводности в нашей жизни необходимо знать, что нам нужно, чтобы материал хорошо или плохо проводил тепло. А для этого нужно знать какие материалы обладают хорошей, а какие плохой теплопроводностью. Для этого ученные провели большое количество опытов и определили две основные группы.
2.1 Опыт №1. Определение теплопроводности алюминия и железа с помощью горячей воды
Цель опыта: Определить какие из представленных материалов ( алюминий или железо) обладают лучшей теплопроводностью.
Оборудование : Стакан с горячей водой, железная и алюминиевая ложка , пластилин и два болтика
Работа: С помощью пластилина закрепляем на ложках скрепки, важно, чтобы ложки были одинакового размера. Затем ставим их в стакан, в который заливаем кипяток.
Через минуту болт с алюминиевой ложки отлетел, а на ложке остался след от растаявшего пластилина.
Вывод: В ходе опыта мы убедились в том, что болт с алюминиевой ложки упал быстрее. Это значит, что алюминий обладает лучшей теплопроводностью чем железо.
2.2 Опыт №2. Определение теплопроводности алюминия и шерсти с помощью холода
Цель опыта: Определить , что обладает худшей теплопроводностью шерсть или алюминий.
Оборудование : Шерстяной платок, алюминиевая фольга, два маленьких полиэтиленовых пакетика, вода.
Работа: Заливаем в каждый пакетик одинаковое количество воды
Затем заворачиваем один пакетик в платок, а другой в фольгу. И убираем их в морозильник.
Через 10 минут вынимаем свертки из морозильника. В платке вода только начала подмерзать,
А в фольге уже превратилась в лед
Вывод: Исходя из результата опыта можно сказать, что алюминиевая фольга обладает худшей теплопроводностью, чем шерсть. То есть зимой нужно одевать шерстяные вещи, они плохо пропускают холод.
Заключение:
Мы еще раз закрепили свои знания по казалось бы простой и изученной теме. Но польза теплопроводности еще долго будем волновать людей. Ради экономии тепла в домах, для изготовления более теплой и комфортной одежды и для решения многих других задач ученные будут продолжать изучать это явление и создавать новые материалы. Я хочу, чтобы все мы с пользой пользовались полученными знаниями, особенно в зимнее время.
Список использованной литературы:
Учебник по физике 8 класс. А.В. Перышкин . 2014 год
Интернет
Ю.Г.Павленко. Начала физики. «Экзамен», М. 2005
Кл. Э. Суорц. Необыкновенная физика обыкновенных явлений. Наука, М. 1986
«Здравствуй, физика», Л. Гальперштейн;
Ф.Рабиза «Опыты без приборов»
Теплопроводность – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)
- Участник: Шароглазова Ксения Сергеевна
- Руководитель: Печерская Светлана Юрьевна
Цель данной работы: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Актуальность: В наше время разрабатываются новые материалы. Знания о теплопроводности различных веществ позволяет не только широко использовать их, но и предотвращать их вредное воздействие в быту, технике и природе.
Цель: изучение явления теплопроводности, проделав ряд опытов с твердыми телами, жидкостями и газами.
Задачи:
- изучить теоретический материал по данному вопросу;
- исследовать теплопроводность твердых тел;
- исследовать теплопроводность жидкостей;
- исследовать теплопроводность газов;
- сделать выводы о полученных результатах.
Гипотеза: все вещества (твердые, жидкие и газообразные) имеют разную теплопроводность.
Оборудование: спиртовка, штатив, деревянная палочка, стеклянная палочка, медная проволока, пробирка с водой.
Элементы УМК к учебнику А.В.Перышкина: учебник «Физика. 8 класс» А.В.Перышкина
Содержание работы
Внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку. Явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их непосредственном контакте называется теплопроводностью.
Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.
Видео: https://cloud.mail.ru/public/JCFY/CFTcCeqhE
Опыт 1. Исследование теплопроводности твердых тел на примере деревянной палочки, стеклянной палочки и медного стержня
Внесем в огонь конец деревянной палки. Он воспламенится.
Вывод: дерево обладает плохой теплопроводностью.
Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец останется холодным.
Вывод: стекло имеет плохую теплопроводность.
Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.
Вывод: металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. Наибольшей теплопроводностью обладают серебро и медь.
Рассмотрим передачу тепла от одной части твердого тела к другой на следующем опыте. Закрепим один конец толстой медной проволоки в штативе. К проволоке прикрепим воском несколько гвоздиков (рис. 6). При нагревании свободного конца проволоки в пламени спиртовки воск будет таять. Гвоздики начнут постепенно отваливаться. Сначала отпадут те, которые расположены ближе к пламени, затем по очереди все остальные.
Выясним, как происходит передача энергии по проволоке. Скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Поскольку частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и т. д. Следует помнить, что при теплопроводности не происходит переноса вещества от одного конца тела к другому.
Опыт 2. Исследование теплопроводности жидкостей на примере воды
Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой и станем нагревать ее верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется (рис. 7). Значит, у жидкостей теплопроводность невелика, за исключением ртути и расплавленных металлов. Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.
Вывод: теплопроводность жидкостей меньше теплопроводности металлов.
Опыт 3. Исследование теплопроводности газов
Исследуем теплопроводность газов.
Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх (рис. 8). Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел.
Вывод: теплопроводность у газов еще меньше, чем у жидкостей. Итак, теплопроводность у различных веществ различна.
Выводы и их обсуждение
Вывод: Проведенные опыты показывают, что теплопроводность у различных веществ различна. Наибольшей теплопроводность обладают металлы, у жидкостей теплопроводность невелика и самая малая теплопроводность у газов.
Используя §4 учебника физики для 8 класса, представим результаты в виде таблицы:
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Объяснение явления теплопроводности с молекулярно-кинетической точки зрения: теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В металлах частицы расположены близко, они постоянно взаимодействуют друг с другом. Скорость колебательного движения в нагретой части металла увеличивается и быстро передается соседним частицам. Повышается температура следующей части проволоки. В жидкостях и газах молекулы расположены на больших расстояниях, чем в металлах. В пространстве, где нет частиц, теплопроводность осуществляться не может.
Применение теплопроводности
Теплопроводность на кухне
Теплопроводность и ее регулировка важны в процессе приготовления пищи. Часто во время тепловой обработки продукта необходимо поддерживать высокую температуру, поэтому на кухне используют металлы (медь, алюминий…), так их теплопроводность и прочность выше, чем у других материалов. Из металла делают кастрюли, сковородки, противни, и другую посуду. Когда они соприкасаются с источником тепла, это тепло легко передается пище. Иногда бывает необходимо уменьшить теплопроводность — в этом случае используют кастрюли из материалов с более низкой теплопроводностью, или готовят способами, при которых пище передается меньшее количество тепла. Приготовление блюд на водяной бане — один из примеров уменьшения теплопроводности. Для посуды, предназначенной для приготовления пищи, не всегда используют материалы с высокой теплопроводностью. В духовом шкафу, например, часто используют керамическую посуду, теплопроводность которой намного ниже, чем у металлической посуды. Их самое главное преимущество — способность держать температуру. Хороший пример использования материалов с высокой теплопроводностью на кухне — плита. Например, конфорки электроплиты сделаны из металла, чтобы обеспечить хорошую передачу тепла от раскаленной спирали нагревательного элемента к кастрюле или сковородке. Люди используют материалы с низкой теплопроводностью между руками и посудой, чтобы не обжечься. Ручки многих кастрюль сделаны из пластмасс, а противни вынимают из духовки прихватками из ткани или пластмассы с низкой теплопроводностью.
Материалы с невысокой теплопроводностью также используют для поддержания температуры пищи неизменной. Так, например, чтобы утренний кофе или суп, который берут в путешествие или на обед на работу, оставался горячим, его наливают в термос, чашку или банку с хорошей теплоизоляцией. Чаще всего в них пища остается горячей (или холодной) благодаря тому, что между их стенками находится материал, плохо проводящий тепло. Это может быть пенопласт или воздух, который находится в закрытом пространстве между стенками сосуда. Он не дает теплу перейти в окружающую среду, пище — остыть, а рукам — получить ожог. Пенопласт используют также для стаканчиков и контейнеров для пищи навынос. В вакуумном сосуде Дьюара (известном как «термос», по названию торговой марки) между наружной и внутренней стенкой почти нет воздуха — это еще больше уменьшает теплопроводность.
Отопительная система
Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Для этого используют специальные элементы системы отопления – радиаторы. Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Основные характеристики радиатора отопления: материал изготовления, тип конструкции, габаритные размеры (кол-во секций), теплоотдача. Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Лучший материал для изготовления радиаторов – это медь. Наиболее часто используют чугунные радиаторы; алюминиевые радиаторы; стальные радиаторы; биметаллические радиаторы.
Теплопроводность для тепла
Мы используем материалы с низкой теплопроводностью для поддержания постоянной температуры тела. Примеры таких материалов — шерсть, пух, и синтетическая шерсть. Кожа животных покрыта мехом, а птиц — пухом с низкой теплопроводностью, и мы заимствуем эти материалы у животных или создаем похожие на них синтетические ткани, и делаем из них одежду и обувь, которые защищают нас от холода. Кроме этого мы делаем одеяла, так как спать под ними удобнее, чем в одежде. Воздух имеет низкую теплопроводность, но проблема с холодным воздухом в том, что обычно он может свободно двигаться в любом направлении. Он вытесняет теплый воздух вокруг нас, и нам становится холодно. Если движение воздуха ограничить, например, заключив его между внешней и внутренней стенками сосуда, то он обеспечивает хорошую термоизоляцию. У снега и льда тоже низкая теплопроводность, поэтому люди, животные и растения используют их для теплоизоляции. В свежем не утрамбованном снеге внутри находится воздух, что еще больше уменьшает его теплопроводность, особенно потому, что теплопроводность воздуха ниже теплопроводности снега. Благодаря этим свойствам, ледяной и снежный покров защищает растения от замерзания. Животные роют ямки и целые пещеры для зимовья в снегу. Путешественники, переходящие через заснеженные районы, иногда роют подобные пещеры, чтобы в них переночевать. С древнейших времен люди строили убежища изо льда, а сейчас создают целые развлекательные центры и гостиницы. В них часто горит огонь, и люди спят в мехах и синтетических спальных мешках.
Для обеспечения нормальной жизнедеятельности в организме людей и животных необходимо поддерживать определенную температуру в очень узких пределах. У крови и других жидкостей, а также у тканей разная теплопроводность и ее можно регулировать в зависимости от потребностей и окружающей температуры. Так, например, организм может изменить количество крови на участке тела или во всем организме с помощью расширения или сужения сосудов. Наше тело также может сгущать и разжижать кровь. При этом теплопроводность крови, а, следовательно, и части тела, где эта кровь течет, изменяется.
Теплолечение
Современные методы лечения теплом могут быть разделены на три большие группы: 1) контактное приложение нагретых сред; 2) светотепловое облучение и 3) использование теплоты, образующейся в тканях при прохождении высокочастотного электрического тока. Остановимся на использовании нагретых сред. Для теплолечения выбираются среды, позволяющие создать в них значительный запас теплоты. Эта теплота затем должна медленно и постепенно передаваться организму во все время процедуры. Для этого среда должна иметь, возможно, высокую теплоемкость и сравнительно низкие теплопроводность и конвекционную способности. Для теплолечения в основном применяют следующие среды: воздух, воду, торф, лечебные грязи и парафин.
Теплопроводность в бане
Многие любят отдыхать в саунах или банях, но сидеть там на скамейках из материала с высокой теплопроводностью — было бы невозможно. Требуется много времени, чтобы сравнять температуру таких материалов с температурой тела, поэтому вместо них используют материалы с низкой теплопроводностью, например дерево, верхние слои которого намного быстрее принимают температуру тела. Так как в сауне температура поднимается достаточно высоко, люди часто надевают на голову шапочки из шерсти или войлока, чтобы защитить голову от жары. В турецких банях хамамах температура намного ниже, поэтому там для скамеек используют материал с более высокой теплопроводностью — камень.
Интересные факты о теплопроводности
Тепло ли колючим зверям в иголках?
Шерсть не только спасает зверей от холода, но и служит средством защиты. А чтобы защита была внушительнее и надежнее, волосяной покров порой видоизменяется, превращаясь в своеобразные доспехи. Иглы, например. Но вот сохраняет ли такое облачение присущие шерсти свойства, не зябнут ли ежи и дикобразы в своих колючих шубках?
Ученые Института проблем экологии и эволюции им. А.Н. Северова РАН обстоятельно изучили теплопроводные и теплоизоляционные свойства иголок, взятых со спины взрослого самца североамериканского дикобраза из коллекции Зоологического музея МГУ, и убедились, что греют эти самые иголки очень даже неплохо. Чтобы понять внутреннюю структуру игл, на них делали тонкие срезы, на которые напыляли золото для исследования в электронном микроскопе. Кератин — главная составляющая иголок — проводит тепло в 10 раз лучше, чем воздух. И благодаря этому иглы увеличивают теплопроводность «доспехов». Следовательно, возрастают и потери тепла с тела животного. Однако внутренняя пористая структура игл создает дополнительное экранирование теплового излучения, что, скорее всего, и компенсирует увеличение теплопроводности. Так что дикобраз, как и другие колючие звери, вовсе не страдает от холода. Иглистый покров сохраняет ровно столько тепла, сколько нужно теплокровному животному такого размера.
Полипропилен
Пока является лучшей основой для материалов (волокон, нитей, пряжи, полотен, тканей), используемых в производстве нательной спортивной одежды, термобелья и термоносков. Среди всех синтетических материалов, применяемых в этой области, он обладает самой низкой теплопроводностью. Поэтому одежда из полипропилена позволяет наилучшим образом сохранить тепло зимой и прохладу летом.
Какой материал имеет самую высокую теплопроводность?
Материалом с наивысшей теплопроводностью является вовсе не какой-нибудь металл (серебро или медь), как думают многие. Самую высокую теплопроводность имеет материал, который похож на стекло – алмаз. Его теплопроводность почти в 6 раз больше, чем у серебра или меди. Если изготовить чайную ложечку из алмаза, то воспользоваться ею не удастся, так как она будет обжигать пальцы в ту же секунду.
Из чего изготавливают сваи при строительстве зданий в регионах с вечной мерзлотой?
Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними. Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту. Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала, внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
«Огнеупорный шарик»
Обычный воздушный шарик, надутый воздухом, легко воспламеняется в пламени свечи. Он тут же лопается. Если же к пламени свечи поднести такой же шарик, заполненный водой, он становится «огнеупорным». Теплопроводность воды в 24 раза больше, чем у воздуха. Значит, вода проводит тепло в 24 раза быстрее, чем воздух. Пока вода не испарится внутри шарика – он не лопнет.
Примеры теплопередачи в природе и технике
Особенности различных способов теплопередачи. Примеры теплопередачи в природе и технике
Тепловые явления
С помощью данного урока вы познакомитесь с темой «Особенности различных способов теплопередачи. Примеры теплопередачи в природе и технике». Здесь мы обобщим наши знания о теплопередаче и существующих её видах и рассмотрим примеры протекания различных тепловых процессов в физических опытах и в природе.
Сегодняшнее занятие является завершающим в теме «Различные способы теплопередачи», поэтому сделаем его обобщающим и обсудим различные способы теплопередачи в природе и технике и их особенности на конкретных примерах.
Важно понимать, что процессы теплопередачи в природе происходят непрерывно, и мы можем их наблюдать повсеместно в окружающем нас мире, о чем мы сегодня и поговорим. Вспомним способы теплопередачи:
Пример 1.
Получение пара изо льда при нагревании
. Поместим в кастрюлю лед при температуре ниже 0°С и начнем ее нагревать, запишем происходящие при этом процессы и укажем наиболее активно проявляющие себя способы теплопередачи на каждом из этапов нагрева. Мы, конечно, понимаем, что последовательность переходов агрегатных состояний вещества при этом будет выглядеть, как на рисунке 1, но распишем их поподробнее.
Рис. 1
1. Нагревание льда до температуры плавления 0°С. Основную роль играет явление теплопроводности, т. к. лед — твердое тело.
2. Плавление льда при температуре 0°С, температура не меняется до того момента времени, пока весь лед не растает. Основную роль играет, по-прежнему, явление теплопроводности.
3. Нагревание воды, образованной изо льда, от температуры 0°С до . В этом процессе и во всех последующих основную роль играет уже конвекция, как более эффективный способ теплопередачи в жидкостях и газах.
4. Кипение воды и образование пара при . Температура на протяжении этого процесса также не меняется. В процессе кипения явление конвекции, пожалуй, проявляет себя самым ярким образом, т. к. даже невооруженным глазом можно наблюдать процессы постоянного естественного перемешивания кипящей воды.
5. Нагревание пара от температуры и выше.
Пример 2.
Образование зернистых пятен на поверхности Солнца.
Если посмотреть на фотографии поверхности Солнца, то можно заметить, что вся его поверхность зернистая, а не однородная (см. Рис. 2). С чем же это связано?
Рис. 2. Зернистая поверхность Солнца
Структуру Солнца можно разделить на несколько так называемых слоев, один из которых находится вблизи поверхности и называется конвективной зоной (см. Рис. 3).
Рис. 3. Строение Солнца
По названию этого слоя уже можно догадаться, что в нем происходит процесс конвекции: с одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны, с другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх. Вершинами же конвективных потоков являются неровности на поверхности Солнца, которые мы можем видеть на фотографиях в виде зернистости.
Таким образом, можно провести некоторую аналогию между процессами космического масштаба и обыкновенным кипением воды в кастрюле.
Пример 3.
Процесс образования ветра.
Схематически процесс образования ветра, т. е. движения воздушных масс, можно изобразить на рисунке 4.
Рис. 4. Процесс образования ветра.
Зарождаются потоки ветра, как правило, вблизи водоемов, и, прежде всего, это явление связано с различной теплопроводностью воды и земли (суши). Образование ветра являет собой цикл из двух частей:
1. Днем вода нагревается медленно, а суша получает тепло быстрее, т.е. воздух над водой более холодный, его плотность и давление выше, чем над сушей, и ветер начинает дуть в сторону суши из-за образовавшейся разности давлений.
2. Ночью же, когда суша все из-за той же разности в свойствах теплопроводности остывает быстрее, чем вода, ветер начинает дуть в обратную сторону — с суши на водоем.
Пример 4.
Явление возникновения тяги в печной трубе.
Определение.
Тяга —
это естественный приток воздуха.
С понятием тяги встречаются, главным образом, при рассмотрении конструкции и принципа работы печной трубы (см. Рис. 5).
Рис. 5. Конструкция печной трубы. Схема возникновения тяги
Важнейшим элементом печи является дымовая труба (3), именно она обеспечивает движения конвективных потоков, которые и создают тягу. В области топки (2) горит пламя и разогревает воздух, у которого уменьшается плотность, и он по закону Архимеда начинает устремляться вверх по трубе. Та область, из которой разогретый воздух начал движение вверх, должна наполниться холодным воздухом, который поступает извне печи через топочную дверцу (1). Таким образом, процесс конвективной циркуляции воздуха — отток теплого из трубы и приток холодного из комнаты — и образует тягу.
Интересно заметить, что сила тяги зависит от многих параметров конструкции печи, но наиболее сильным образом — от длины и материала трубы. Например, если используется железная труба, как на рисунке 6, то тяга будет не такой сильной, т. к. воздух успеет отдать свое тепло трубе в процессе подъема, остынет, и конвективный поток замедлится. В кирпичной же трубе (см. Рис. 7), теплопроводность которой значительно меньше железной, воздух практически не будет успевать остывать, и скорость конвективного потока падать не будет, т. е. тяга будет сильнее.
Как видно из указанного замечания относительно материала трубы, для процесса образования тяги важно не только явление конвекции, а и теплопроводности.
Пример 5.
Особенности конструкции термоса.
Как многие знают, термос — это сосуд, который не дает остывать или нагреваться содержимому. Видов термосов целое множество: одни предназначены для содержания жидкостей (горячего чая или кофе), другие для переноса горячей пищи, третьи, так называемые термосумки, зачастую используются для транспортировки охлажденных напитков (см. Рис. 8), и т. д.
Рис. 8. Различные виды термосов
Возникает вопрос, как же устроен термос, что он обеспечивает термоизоляцию от окружающей среды тех продуктов, которые в нем находятся. Интересно, что конструкция термоса предполагает ограничение активности всех процессов теплопередачи, которые могут происходить между его содержимым и окружающей средой. Для удобства изобразим примерную схему конструкции термоса на рисунке 9.
Одной из основных частей термоса является стеклянная колба (иногда железная), которая имеет двойную структуру (колба в колбе), и между ее стенок откачивается воздух до создания достаточно сильного вакуума. Такая конструкция колбы позволяет практически полностью оградить ее содержимое от теплообмена с окружающей средой посредством теплопроводности, т. к. в вакууме практически полностью отсутствует вещество, что не дает возможности эффективно происходить этим теплообменным процессам.
Для еще большего эффекта теплоизоляции конструкция колбы в термосе предусматривает ограничение процесса потери тепла путем излучения. Для этого внутренняя поверхность колбы покрывается тонким слоем олова (реже серебра), что делает ее зеркальной и не дает излучению покинуть внутреннее прост
Примеры и приложения теплопроводности
«Скорость потока тепла через противоположные грани метрового куба вещества, поддерживаемого при разнице температур в один кельвин, называется теплопроводностью этого вещества».
Что такое формула теплопроводности?
Теплопроводность в разных материалах происходит с разной скоростью. В металлах тепло течет быстрее, чем в изоляторах, таких как дерево или резина.Рассмотрим сплошной блок:
Одна из двух противоположных сторон, каждая из которых имеет площадь поперечного сечения A, нагревается до температуры T1. Тепло Q течет по длине L к противоположной грани при температуре T2 за t секунд.
«Количество тепла, которое течет в единицу времени, называется скоростью потока тепла».
Таким образом, Скорость потока тепла = Q / t ………. (1)
Замечено, что скорость, с которой тепло проходит через твердый объект, зависит от различных факторов.
Площадь поперечного сечения твердого тела:
Большая площадь поперечного сечения A твердого тела содержит большее количество молекул и свободных электронов на каждом слое, параллельном его площади поперечного сечения, и, следовательно, больше будет скорость потока тепла через твердые тела.Таким образом:
Скорость потока тепла Q / t ∝ A… .. (2)
Чем больше расстояние между горячим и холодным концом твердых тел, тем больше времени потребуется для отвода тепла к более холодному концу. и меньше будет скорость потока тепла. Таким образом:
Скорость потока тепла Q / t ∝ 1 / л…. (3)
Разница температур между концами
Больше температура разница (T1 — T2) между горячей и холодной сторонами твердых тел, тем больше будет скорость потока тепла.Таким образом:
Скорость потока тепла составляет Q / t (T1 — T2)…. (4)
Комбинируя вышеуказанные факторы, получаем:
Q / t ∝ A (T1 -T2) / L
Скорость потока тепла Q / t = KA (T1 — T2) / L… .. (5)
Здесь K — коэффициент пропорциональности, называемый теплопроводностью твердых тел. Его значение зависит от природы вещества и отличается для разных материалов. Из приведенного выше уравнения (5) мы находим K как:
K = Q / t × L / A (T1 — T2)….. (6)
Примеры теплопроводности
Примеры теплопроводности некоторых веществ приведены в таблице:
Следите за обновлениями на сайте Physicsabout.com по связанным темам, которые приведены ниже.
Проводимость тепла
Конвенция тепла
Излучение тепла
.Команда
fix для измерения температуры / проводимости — документация LAMMPS
Описание
Используйте алгоритм Мюллера-Плате, описанный в этой статье, для обмена кинетической энергией между двумя частицами.
в разных областях окна моделирования каждые N шагов. это
вызывает температурный градиент в системе. Как описано ниже, это
позволяет рассчитать теплопроводность материала. это
алгоритм иногда называют обратным неравновесным МД (обратным
NEMD) подход к вычислению теплопроводности.Это потому, что
обычный подход NEMD заключается в наложении температурного градиента на систему
и измерить отклик как результирующий тепловой поток. в
Метод Мюллера-Плате, тепловой поток накладывается, а температура
градиент — это реакция системы.
Подробнее см. Команду compute heat / flux
о том, как вычислить теплопроводность другим способом, с помощью
Формализм Грина-Кубо.
Блок моделирования разделен на слоев Nbin в edim
направление, где слой 1 находится в нижней части этого измерения и
уровень Nbin находится на верхнем уровне.Каждые N шагов выполняется Nswap пар
атомы выбираются следующим образом. Только атомы в фиксированной группе
которые считаются. Выбираются самые горячие атомы Nswap в слое 1.
Точно так же самые холодные атомы Nswap в «среднем» слое (см. Ниже)
выбраны. Два набора атомов Nswap объединены в пары, и их
скорости обмениваются. Это эффективно меняет их кинетические
энергии, если их массы одинаковы. Если массы
разные, обмен скоростями относительно движения центра масс
2 атомов выполняется, чтобы сохранить кинетическую энергию.Со временем,
это вызывает температурный градиент в системе, который может быть
измеряется с помощью таких команд, как следующая, которая записывает
температурный профиль (при z = edim) в файл tmp.profile:
вычислить ке все ке / атом переменная температура атома c_ke / 1.5 вычислить слои все фрагменты / элемент ячейки / 1d z ниже 0,05 единиц уменьшено исправить 3 все ave / chunk 10 100 1000 слоев v_temp файл tmp.profile
Обратите внимание, что по умолчанию Nswap = 1, хотя это может быть изменено
необязательно swap ключевое слово.Устанавливая этот параметр соответствующим образом, в
в сочетании со скоростью обмена N позволяет регулировать тепловой поток
в широком диапазоне значений, а кинетическая энергия для обмена
крупными кусками или более плавно.
«Средний» уровень для смены скорости определяется как Nbin /2 +
1 слой. Таким образом, если Nbin = 20, двумя уровнями обмена будут 1 и 11.
Это должно привести к симметричному профилю температуры, поскольку два
слои разделены одинаковым расстоянием в обоих направлениях в
периодический смысл.Вот почему Nbin ограничивается четным
число.
Как описано ниже, полная кинетическая энергия, передаваемая этими
свопы вычисляются исправлением и могут быть выведены. Разделив это
количество по времени и площадь поперечного сечения симулятора
дает тепловой поток. Отношение теплового потока к наклону
профиль температуры пропорционален теплопроводности
жидкость в соответствующих единицах. См. Подробности в статье Muller-Plathe.
Примечание
Если ваша система периодическая в направлении теплового потока,
тогда поток идет в 2 направлениях.Это означает эффективное тепло
поток в одном направлении уменьшается в 2 раза. Вы увидите это
в уравнениях теплопроводности (каппа) в системе Muller-Plathe
бумага. LAMMPS просто подсчитывает кинетическую энергию, которая не
учитывать, является ли ваша система периодической; вы должны использовать
подходящее значение, чтобы получить каппу для вашей системы.
Примечание
Если после уравновешивания наблюдаемый градиент температуры
не линейно, то вы, вероятно, слишком часто меняете энергию и
не в режиме линейного отклика.В этом случае вы не можете
точно определить теплопроводность и попытаться увеличить
Любой параметр.
Перезапуск, fix_modify, вывод, запуск / остановка, минимизация информации:
Информация об этом исправлении не записывается в двоичные файлы перезапуска. Ни один из параметров fix_modify
относятся к этому исправлению.
Это исправление вычисляет глобальный скаляр, к которому могут обращаться различные
команды вывода. Скаляр — это кумулятивный
кинетическая энергия, передаваемая между дном и серединой
окно моделирования (в направлении edim ) сохраняется как скаляр
количество этим исправлением.Это количество обнуляется при определении исправления.
и затем накапливается каждые N шагов. Единицы
количество — энергия; подробности см. в команде units.
Скалярное значение, вычисленное этим исправлением, является «интенсивным».
Ни один параметр этого исправления не может использоваться с ключевыми словами start / stop of
команда запуска. Это исправление не запускается во время минимизации энергии.
Ограничения
Это исправление является частью пакета MISC. Он доступен, только если LAMMPS
был построен с этим пакетом.См. Страницу документации пакета сборки для получения дополнительной информации.
Свопы сохраняют как импульс, так и кинетическую энергию, даже если массы
переставленные атомы не равны. Таким образом, вам не нужно
термостатировать систему. Если вы все же используете термостат, вы можете
примените его только к размерам без замены (кроме vdim ).
LAMMPS не проверяет, но вы не должны использовать это исправление для замены
кинетическая энергия атомов, которые находятся в связанных молекулах, например через
исправить встряхнуть или зафиксировать жестко.Это
потому что применение ограничений изменит количество
переданный импульс. Однако у вас должна быть возможность использовать гибкий
молекулы. См. Статью Чжана для обсуждения и результатов.
этой идеи.
При моделировании с большими и массивными частицами или молекулами.
в фоновом растворителе вы можете захотеть обмениваться только кинетической энергией
между частицами растворителя.
По умолчанию
По умолчанию опция swap = 1.
(Muller-Plathe) Muller-Plathe, J Chem Phys, 106, 6082 (1997).
(Zhang) Zhang, Lussetti, de Souza, Muller-Plathe, J Phys Chem B,
109, 15060-15067 (2005).
,