Инфракрасные волны: Инфракрасные волны

Содержание

Инфракрасные волны

Физика > Инфракрасные волны

 

Что такое инфракрасные волны: длина волны инфракрасного излучения, диапазон инфракрасных волн и частота. Изучите схемы инфракрасного спектра и источники.

Инфракрасный свет (ИК) – электромагнитные лучи, которые по показателю длин волн превышает видимый (0.74-1 мм).

Задача обучения

  • Разобраться в трех диапазонах ИК-спектра и описать процессы поглощения и излучения молекулами.

Основные моменты

  • ИК-свет вмещает большую часть теплового излучения, создаваемого телами примерно комнатной температуры. Излучается и поглощается, если во вращении и колебании молекул происходят изменения.
  • ИК часть спектра можно разбить на три области по длине волн: дальний инфракрасный (300-30 ТГц), средний (30-120 ТГц) и ближний (120-400 ТГц).
  • ИК также именуют тепловым излучением.
  • Важно разобраться в концепции излучательной способности, чтобы понять ИК.
  • ИК-лучи можно применить для дистанционного определения температуры объектов (термография).

Термины

  • Термография – дистанционное вычисление перемен температуры тела.
  • Тепловая радиация – электромагнитное излучение, создаваемое телом из-за температуры.
  • Излучательная способность – умение поверхности излучать.

Инфракрасные волны

Инфракрасный (ИК) свет – электромагнитные лучи, которые по показателю длин волн превосходят видимый свет (0.74-1 мм). Диапазон инфракрасных волн сходится с диапазоном частот 300-400 ТГц и вмещает огромное количество теплового излучения. ИК-свет поглощается и излучается молекулами при изменении во вращении и колебаниях.

Перед вами главные категории электромагнитных волн. Разделительные линии в некоторых местах отличаются, а другие категории могут перекрываться. Микроволны занимают высокочастотный участок радиосекции электромагнитного спектра

Подкатегории ИК-волн

ИК-часть электромагнитного спектра занимает диапазон от 300 ГГц (1 мм) до 400 ТГц (750 нм). Можно выделить три вида инфракрасных волн:

  • Дальний ИК-диапазон: 300 ГГц (1 мм) до 30 ТГц (10 мкм). Нижнюю часть можно именовать микроволнами. Эти лучи поглощаются из-за вращения в газофазных молекулах, молекулярных движениях в жидкостях и фотонов в твердых телах. Вода в земной атмосфере так сильно поглощается, что делает ее непрозрачной. Но есть определенные длины волн (окна), используемые для пропускания.
  • Средний ИК-диапазон: 30 до 120 ТГц (от 10 до 2.5 мкм). Источниками выступают горячие объекты. Поглощается колебаниями молекул (разнообразные атомы вибрируют в позициях равновесия). Иногда этот диапазон именуют отпечатком пальца, потому что это специфическое явление.
  • Ближайший ИК-диапазон: 120 до 400 TГц (2500-750 нм). Эти физические процессы напоминают те, что происходят в видимом свете. Наиболее высокие частоты можно найти определенной разновидностью фотографической пленки и датчиками для инфракрасной, фото- и видеосъемки.

Тепло и тепловое излучение

Инфракрасное излучение именуют также тепловым. ИК-свет от Солнца охватывает всего 49% земного нагрева, а все остальное – видимый свет (поглощается и повторно отбивается на более длинных волнах).

Тепло – энергия в переходной форме, которая течет из-за разницы в температурных показателях. Если тепло передается теплопроводностью или конвекцией, то излучение способно распространяться в вакууме.

Чтобы разобраться в ИК-лучах, следует внимательно рассмотреть концепцию излучательной способности.

Источники ИК-волн

Люди и большая часть планетарного окружения создают тепловые лучи на 10 мкм. Это граница, отделяющая среднюю и дальнюю ИК-области. Многие астрономические тела испускают улавливаемое количество ИК-лучей на нетепловых длинах волн.

ИК-лучи можно использовать, чтобы вычислять температурные показатели объектов на расстоянии. Этот процесс именуют термографией и активнее всего используют в военном и промышленном употреблении.

 

Термографическое изображение собаки и кошки

ИК-волны также используют в отоплении, связи, метеорологии, спектроскопии, астрономии, биологии и медицине, а также анализе произведений искусства.


ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ • Большая российская энциклопедия

ИНФРАКРА́СНОЕ ИЗЛУЧЕ́НИЕ (ИК-из­лу­че­ние, ИК-лу­чи), элек­тро­маг­нит­ное из­лу­че­ние с дли­на­ми волн $λ$ от ок. 0,74 мкм до ок. 1–2 мм, т. е. из­лу­че­ние, за­ни­маю­щее спек­траль­ную об­ласть ме­ж­ду крас­ным кон­цом ви­ди­мо­го из­лу­че­ния и ко­рот­ко­вол­но­вым (суб­мил­ли­мет­ро­вым) ра­дио­из­лу­че­ни­ем. И. и. от­но­сит­ся к оп­тич. из­лу­че­нию, од­на­ко в от­ли­чие от ви­ди­мо­го из­лу­че­ния оно не вос­при­ни­ма­ется че­ло­ве­че­ским гла­зом. Взаи­мо­дей­ствуя с по­верх­но­стью тел, оно на­гре­ва­ет их, по­это­му час­то его на­зы­ва­ют те­п­ло­вым из­лу­че­ни­ем. Ус­лов­но об­ласть И. и. раз­де­ля­ют на ближ­нюю ($λ$=0,74–2,5 мкм), сред­нюю (2,5–50 мкм) и да­лё­кую (50–2000 мкм). И. и. от­кры­то У. Гер­ше­лем (1800) и не­за­ви­си­мо У. Вол­ла­сто­ном (1802).

Спек­тры И. и. мо­гут быть ли­ней­ча­ты­ми (атом­ные спек­тры), не­пре­рыв­ны­ми (спек­тры кон­ден­си­ро­ван­ных сред) или по­ло­са­ты­ми (мо­ле­ку­ляр­ные спек­тры). Оп­тич. свой­ст­ва (ко­эф­фи­ци­ен­ты про­пус­ка­ния, от­ра­же­ния, пре­лом­ле­ния и т. п.) ве­ществ в И. и., как пра­ви­ло, зна­чи­тель­но от­ли­ча­ют­ся от со­от­вет­ст­вую­щих свойств в ви­ди­мом или ульт­ра­фио­ле­то­вом из­лу­че­нии. Мн. ве­ще­ст­ва, про­зрач­ные для ви­ди­мо­го све­та, не­про­зрач­ны для И. и. оп­ре­де­лён­ных длин волн, и на­обо­рот. Так, слой во­ды тол­щи­ной в неск. сан­ти­мет­ров не­про­зра­чен для И. и. с $λ>$ 1 мкм, по­это­му во­да час­то ис­поль­зу­ет­ся в ка­че­ст­ве те­п­ло­за­щит­но­го фильт­ра. Пла­стин­ки из $\ce{Ge}$ и $\ce{Si}$, не­про­зрач­ные для ви­ди­мо­го из­лу­че­ния, про­зрач­ны для И. и. оп­ре­де­лён­ных длин волн, чёр­ная бу­ма­га про­зрач­на в да­лё­кой ИК-об­лас­ти (та­кие ве­ще­ст­ва ис­поль­зу­ют в ка­че­ст­ве све­то­фильт­ров при вы­де­ле­нии И. и.).

От­ра­жа­тель­ная спо­соб­ность боль­шин­ст­ва ме­тал­лов в И. и. зна­чи­тель­но вы­ше, чем в ви­ди­мом из­лу­че­нии, и воз­рас­та­ет с уве­ли­че­ни­ем дли­ны вол­ны (см. Ме­тал­ло­оп­ти­ка). Так, от­ра­же­ние по­верх­но­стей $\ce{Al,\, Au,\, Ag,\, Cu}$ И. и. с $λ$=10 мкм дос­ти­га­ет 98%. Жид­кие и твёр­дые не­метал­лич. ве­ще­ст­ва об­ла­да­ют се­лек­тив­ным (за­ви­ся­щим от дли­ны вол­ны) от­ра­же­ни­ем И. и., по­ло­же­ние мак­си­му­мов ко­то­ро­го за­ви­сит от их хи­мич. со­ста­ва.

Про­хо­дя че­рез зем­ную ат­мо­сфе­ру, И. и. ос­лаб­ля­ет­ся вслед­ст­вие рас­сея­ния и по­гло­ще­ния ато­ма­ми и мо­ле­ку­ла­ми воз­ду­ха. Азот и ки­сло­род не по­гло­ща­ют И. и. и ос­лаб­ля­ют его лишь в ре­зуль­та­те рас­сея­ния, ко­то­рое для И. и. зна­чи­тель­но мень­ше, чем для ви­ди­мо­го све­та. Мо­ле­ку­лы $\ce{H_2O,\, CO_2,\, O_3}$ и др., при­сут­ст­вую­щие в ат­мо­сфе­ре, се­лек­тив­но (из­би­ра­тель­но) по­гло­ща­ют И. и., при­чём осо­бен­но силь­но по­гло­ща­ют И. и. па­ры́ во­ды. По­ло­сы по­гло­ще­ния $\ce{H_2O}$ на­блю­да­ют­ся во всей ИК-об­лас­ти спек­тра, а по­ло­сы $\ce{CO_2}$ – в её сред­ней ча­сти. В при­зем­ных сло­ях ат­мо­сфе­ры име­ет­ся лишь не­боль­шое чис­ло «окон про­зрач­но­сти» для И. и. На­ли­чие в ат­мо­сфе­ре час­тиц ды­ма, пы­ли, мел­ких ка­пель во­ды при­во­дит к до­пол­ни­тель­но­му ос­лаб­ле­нию И. и. в ре­зуль­та­те его рас­сея­ния на этих час­ти­цах. При ма­лых раз­ме­рах час­тиц И. и. рас­сеи­ва­ет­ся мень­ше, чем ви­ди­мое из­лу­че­ние, что ис­поль­зу­ют в ИК-фо­то­гра­фии.

Источники инфракрасного излучения

Мощ­ный ес­те­ст­вен­ный ис­точ­ник И. и. – Солн­це, ок. 50% его из­лу­че­ния ле­жит в ИК-об­лас­ти. На И. и. при­хо­дит­ся от 70 до 80% энер­гии из­лу­че­ния ламп на­ка­лива­ния; его ис­пус­ка­ют элек­трич. ду­га и разл. га­зо­раз­ряд­ные лам­пы, все ти­пы элек­трич. обог­ре­ва­те­лей по­ме­ще­ний. В на­уч. ис­сле­до­ва­ни­ях ис­точ­ни­ка­ми И. и. слу­жат лен­точ­ные вольф­ра­мо­вые лам­пы, штифт Нерн­ста, гло­бар, ртут­ные лам­пы вы­со­ко­го дав­ле­ния и др. Из­лу­че­ние не­ко­то­рых ти­пов ла­зе­ров так­же ле­жит в ИК-об­лас­ти спек­тра (напр., дли­на вол­ны из­лу­че­ния ла­зе­ров на не­оди­мо­вом стек­ле со­став­ля­ет 1,06 мкм, ге­лий-не­оно­вых ла­зе­ров – 1,15 и 3,39 мкм, $\ce{CO_2}$-ла­зе­ров – 10,6 мкм).

Приёмники инфракрасного излучения

ос­но­ва­ны на пре­об­ра­зо­ва­нии энер­гии из­лу­че­ния в др. ви­ды энер­гии, до­ступ­ные для из­ме­ре­ния. В те­п­ло­вых при­ём­ни­ках по­гло­щён­ное И. и. вы­зы­ва­ет по­вы­ше­ние темп-ры тер­мо­чув­ст­ви­тель­но­го эле­мен­та, ко­то­рое и ре­ги­ст­ри­ру­ет­ся. В фо­то­элек­трич. при­ём­ни­ках по­гло­ще­ние И. и. при­во­дит к по­яв­ле­нию или из­ме­не­нию си­лы элек­трич. то­ка или на­пря­же­ния. Фо­то­элек­трич. при­ём­ни­ки (в от­ли­чие от те­п­ло­вых) се­лек­тив­ны, т. е. чув­ст­ви­тель­ны лишь к из­лу­че­нию оп­ре­де­лён­ной об­лас­ти спек­тра. Фо­то­ре­ги­ст­ра­ция И. и. осу­ще­ст­в­ля­ет­ся с по­мо­щью спец. фо­то­эмуль­сий, од­на­ко они чув­ст­ви­тель­ны к не­му толь­ко для длин волн до 1,2 мкм.

Применение инфракрасного излучения

ИК-из­лу­че­ние ши­ро­ко при­ме­ня­ют в на­уч. ис­сле­до­ва­ни­ях и для ре­ше­ния разл. прак­тич. за­дач. Спек­тры ис­пус­ка­ния и по­гло­ще­ния мо­ле­кул и твёр­дых тел ле­жат в ИК-об­лас­ти, их изу­ча­ют в ин­фра­крас­ной спек­тро­ско­пии, в струк­тур­ных за­да­чах, а так­же ис­поль­зу­ют в ка­че­ст­вен­ном и ко­ли­че­ст­вен­ном спек­траль­ном ана­ли­зе. Вда­лё­кой ИК-об­лас­ти ле­жит из­лу­че­ние, воз­ни­каю­щее при пе­ре­хо­дах ме­ж­ду зее­ма­нов­ски­ми под­уров­ня­ми ато­мов, ИК-спек­тры ато­мов по­зво­ля­ют изу­чать струк­ту­ру их элек­трон­ных обо­ло­чек. Фо­то­гра­фии од­но­го и то­го же объ­ек­та, по­лу­чен­ные в ви­ди­мом и ин­фра­крас­ном диа­па­зо­нах, вслед­ст­вие раз­ли­чия ко­эф­фи­ци­ен­тов от­ра­же­ния, про­пус­ка­ния и рас­сея­ния мо­гут зна­чи­тель­но раз­ли­чать­ся; на ИК-фо­то­гра­фии мож­но уви­деть де­та­ли, не­ви­ди­мые на обыч­ной фо­то­гра­фии.

В про­мыш­лен­но­сти И. и. ис­поль­зу­ют для суш­ки и на­гре­ва ма­те­риа­лов и из­де­лий, в бы­ту – для обог­ре­ва по­ме­ще­ний. На ос­но­ве фо­то­ка­то­дов, чув­ст­ви­тель­ных к И. и., соз­да­ны элек­трон­но-оп­тич. пре­об­ра­зо­ва­те­ли, в ко­то­рых не ви­ди­мое гла­зом ИК-изо­бра­же­ние объ­ек­та пре­об­ра­зу­ет­ся в ви­ди­мое. На ос­но­ве та­ких пре­об­ра­зо­ва­те­лей по­строе­ны разл. ноч­но­го ви­де­ния при­бо­ры (би­нок­ли, при­це­лы и т. п.), по­зво­ляю­щие в пол­ной тем­но­те об­на­ру­жи­вать объ­ек­ты, вес­ти на­блю­де­ние и при­це­ли­ва­ние, об­лу­чая их И. и. от спец. ис­точ­ни­ков. При по­мо­щи вы­со­ко­чув­ст­ви­тель­ных при­ём­ни­ков И. и. осу­ще­ст­в­ля­ют те­п­ло­пе­лен­га­цию объ­ек­тов по их соб­ст­вен­но­му И. и. и соз­да­ют сис­те­мы са­мо­на­ве­де­ния на цель сна­ря­дов и ра­кет. ИК-ло­ка­то­ры и ИК-даль­но­ме­ры по­зво­ля­ют об­на­ру­жи­вать в тем­но­те пред­ме­ты, темп-ра ко­то­рых вы­ше темп-ры ок­ру­жаю­щей сре­ды, и из­ме­рять рас­стоя­ния до них. Мощ­ное из­лу­че­ние ИК-ла­зе­ров ис­поль­зу­ют в на­уч. ис­сле­до­ва­ни­ях, а так­же для осу­ще­ст­в­ле­ния на­зем­ной и кос­мич. свя­зи, для ла­зер­но­го зон­ди­ро­ва­ния ат­мо­сфе­ры и т. д. И. и. ис­поль­зу­ет­ся для вос­про­из­ве­де­ния эта­ло­на мет­ра.

Инфракрасное излучение — Википедия

Изображение собаки, полученное в инфракрасном излучении

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами[2].

Весь диапазон инфракрасного излучения условно делят на три области:

  • ближняя: λ = 0,74—2,5 мкм;
  • средняя: λ = 2,5—50 мкм;
  • дальняя: λ = 50—2000 мкм[3].

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением», так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Эксперимент Гершеля

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением[4].

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте[4].

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[4].

Диапазоны инфракрасного излучения

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления

Чаще всего разделение на более мелкие диапазоны производится следующим образом:[5]

АббревиатураДлина волныЭнергия фотоновХарактеристика
Near-infrared, NIR0,75—1,4 мкм0,9—1,7 эВБлижний ИК, ограниченный с одной стороны видимым светом, с другой — прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR1,4—3 мкм0,4—0,9 эВПоглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530—1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR3—8 мкм150—400 мэВВ этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры.
Long-wavelength infrared, LWIR8—15 мкм80—150 мэВВ этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR15— 1000 мкм1,2—80 мэВ

CIE схема

Международная комиссия по освещённости (англ. International Commission on Illumination) рекомендует разделение инфракрасного излучения на следующие три группы[6]:

  • IR-A: 700 нм — 1400 нм (0,7 мкм — 1,4 мкм)
  • IR-B: 1400 нм — 3000 нм (1,4 мкм — 3 мкм)
  • IR-C: 3000 нм — 1 мм (3 мкм — 1000 мкм)

ISO 20473 схема

Международная организация по стандартизации предлагает следующую схему:

ОбозначениеАббревиатураДлина волны
Ближний инфракрасный диапазонNIR0,78—3 мкм
Средний инфракрасный диапазонMIR3—50 мкм
Дальний инфракрасный диапазонFIR50—1000 мкм

Астрономическая схема

Астрономы обычно делят инфракрасный спектр следующим образом[7]:

ОбозначениеАббревиатураДлина волны
Ближний инфракрасный диапазонNIR(0.7…1) — 5 мкм
Средний инфракрасный диапазонMIR5 — (25…40) мкм
Дальний инфракрасный диапазонFIR(25…40) — (200…350) мкм

Тепловое излучение

Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн, излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме. Примером теплового излучения является свет от лампы накаливания. Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана. Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа. Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Инфракрасное зрение

Органы восприятия человека и других высших приматов не приспособлены под инфракрасное излучение (проще говоря, человеческий глаз его не видит), однако, некоторые биологические виды способны воспринимать органами зрения инфракрасное излучение. Так, например, зрение некоторых змей позволяет им видеть в инфракрасном диапазоне и охотиться на теплокровную добычу ночью (когда её силуэт обладает наиболее выраженным контрастом на фоне остывшей местности). Более того, у обыкновенных удавов эта способность имеется одновременно с нормальным зрением, в результате чего они способны видеть окружающее одновременно в двух диапазонах: нормальном видимом (как и большинство животных) и инфракрасном. Среди рыб способностью видеть под водой в инфракрасном диапазоне отличаются такие рыбы как пиранья, охотящаяся на зашедших в воду теплокровных животных, и золотая рыбка. Среди насекомых инфракрасным зрением обладают комары, что позволяет им с большой точностью ориентироваться на наиболее насыщенные кровеносными сосудами участки тела добычи[8].

Применение

Прибор ночного видения

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь — вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр — тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3—14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография

Изображение девушки, полученное в инфракрасном диапазоне

Инфракрасная термография, тепловое изображение или тепловое видео — это научный способ получения термограммы — изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900—14000 нанометров) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение

Инфракрасная головка самонаведения — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель

Инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасный обогреватель — отопительный прибор, отдающий тепло преимущественно излучением, а не конвекцией — используется для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды)[9].

Инфракрасный обогреватель в быту иногда неточно называется рефлектором. Лучистая энергия поглощается окружающими поверхностями, превращаясь в тепловую энергию, нагревает их, которые в свою очередь отдают тепло воздуху. Это дает существенный экономический эффект по сравнению с конвекционным обогревом, где тепло существенно расходуется на обогрев неиспользуемого подпотолочного пространства. Кроме того, при помощи ИК обогревателей появляется возможность местного обогрева только тех площадей в помещении, в которых это необходимо без обогрева всего объёма помещения; тепловой эффект от инфракрасных обогревателей ощущается сразу после включения, что позволяет избежать предварительного нагрева помещения. Эти факторы снижают затраты энергии.

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект: процесс идёт гораздо быстрее, а энергии, при этом, затрачивается гораздо меньше, чем при традиционных методах.

Инфракрасная астрономия

Раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением.

Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны, однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн. С тех пор была сформирована современная инфракрасная астрономия.

Инфракрасная спектроскопия

Инфракрасная спектроскопия — раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцевом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцевого диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрометры.

Передача данных

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам, и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств, низкие скорости передачи (обычно не превышает 5—10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается скрытность передачи информации[источник не указан 84 дня]. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь — «шина» (то есть переданный сигнал одновременно получают все абоненты). Инфракрасный канал не смог получить широкого распространения, его вытеснил радиоканал.

Тепловое излучение применяется также для приема сигналов оповещения[10].

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата.

Медицина

Наиболее широко инфракрасное излучение в медицине находит в различных датчиках потока крови (PPG).

Широко распространенные измерители частоты пульса (ЧСС, HR — Heart Rate) и насыщения крови кислородом (SpO2) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии.

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения. При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции[источник не указан 84 дня].

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа и мука, на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность[источник не указан 2754 дня]. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно[источник не указан 84 дня]. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок[источник не указан 84 дня].

Опасность для здоровья

Очень сильное инфракрасное излучение в местах высокого нагрева может высушивать слизистую оболочку глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких ситуациях необходимо надевать специальные защитные очки для глаз[11].

Инфракрасное излучение с длиной волны 1.35 мкм, 2.2 мкм при достаточной пиковой мощности в лазерном импульсе может вызывать эффективное разрушение молекул ДНК, более сильное, чем излучение в ближнем ИК-диапазоне[12].

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от Солнца и переизлучают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом капли воды и водяной пар, а также диоксид углерода, метан, азот, гексафторид серы и хлорфторуглерод поглощают это инфракрасное излучение и вновь излучают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект удерживает атмосферу и поверхность в более нагретом состоянии, чем если бы инфракрасные поглотители отсутствовали в атмосфере[13][14].

См. также

Примечания

Ссылки

Инфракрасное излучение — это… Что такое Инфракрасное излучение?

Собака

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами[2].

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

  • коротковолновая область: λ = 0,74—2,5 мкм;
  • средневолновая область: λ = 2,5—50 мкм;
  • длинноволновая область: λ = 50—2000 мкм;

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн — терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением[3].

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте[3].

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[3].

Применение

Девушка

Медицина

Инфракрасные лучи применяются в физиотерапии.

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата.

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Антикоррозийное средство

Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесенные на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность[источник не указан 624 дня]. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надежной защитой от подделок.

Опасность для здоровья

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз. [4]

См. также

Другие способы теплопередачи

Способы регистрации (записи) ИК-спектров.

Примечания

  1. Длина электромагнитной волны в вакууме.
  2. Инфракрасное излучение // Большая энциклопедия Кирилла и Мефодия
  3. 1 2 3 Спектр // Энциклопедия Кольера
  4. Monona Rossol The artist’s complete health and safety guide. — 2001. — С. 33. — 405 с. — ISBN 978-1-58115-204-3

Ссылки

польза и вред для организма человека, свойства, область применения

Инфракрасные лучи используются во многих сферах жизни человека. Такой вид излучения применяется в обогревателях, пультах дистанционного управления, системах отопления, медицинском оборудовании. Эти лучи человеческий глаз не воспринимает, но почувствовать их силу действия можно. В зависимости от длины волны они способны оказывать различное воздействие на всё живое. Поэтому польза и вред инфракрасного излучения напрямую зависят от этого показателя.

инфракрасное излучениеИнфракрасные лучи используются для лечения

Источники инфракрасного излучения

Инфракрасные лучи относятся к электромагнитному излучению. Они располагаются в спектре рядом с микроволновым радиоизлучением. Солнце — это естественный и самый большой источник такого излучения. Эти волны имеют обширный диапазон от 7 до 14 мкм.

Источником теплового излучения являются также любые тела, температура которых выше нуля. Длина таких волн напрямую зависит от температуры нагревания. Различают следующие виды волн:

  • короткие — выше +800°C;
  • средние — до +600°C;
  • длинные — до +300°C.

Таким образом, короткие волны имеют самую высокую температуру и большую интенсивность излучения. Тепловые лучи образуются благодаря ионам вещества, а также атомам с избыточной энергией. Каждый из диапазонов ИК волн имеет свою интенсивность, проникающую способность и оказывает различное воздействие на организм человека.

В этом видео вы узнаете о влиянии различных излучений на организм:

В наше время инфракрасные лучи активно применяются во многих сферах. Например, на их основе работают современные видеокамеры, которые используются для охранных целей, болометры и многие другие приборы. С помощью таких лучей осуществляется беспроводная связь между компьютерами и другими стационарными устройствами.

В продаже можно найти большое разнообразие отопительных приборов, работающих за счёт инфракрасных лучей. Такие приборы позволяют значительно экономить электроэнергию. В промышленных целях их используют для сушки поверхностей, покрытых краской или лаком.

Польза и вред

Инфракрасные лучи по-разному воздействуют на живые организмы. Например, длинные волны оказывают оздоровительное действие на состояние здоровья человека, поэтому их часто используют в лечебных целях. Именно на таком принципе основана работа оборудования для проведения физиотерапевтических процедур.

лечение инфракрасными лучамиИнфракрасные приборы могут принести как пользу, так и вред

Длинноволновые ИК лучи оказывают следующее положительное воздействие на человека:

  • улучшают мозговое кровообращение и память;
  • укрепляют иммунную систему;
  • нормализуют водно-солевой баланс;
  • улучшают гормональный фон;
  • нормализуют артериальное давление;
  • очищают организм от токсинов исолей тяжёлых металлов;
  • препятствуют размножению бактерий, грибков и болезнетворных микробов.

Также лучи помогают при воспалительных процессах в организме, повышают содержание инсулина у больных сахарных диабетом и даже снижают уровень радиоактивного излучения.

Таким образом, длинноволновое ИК излучение не только полезно для человека, но и необходимо ему. При недостатке таких лучей страдает иммунитет и запускается процесс ускоренного старения.

В этом видео вы узнаете, что такое инфракрасное тепло:

Обогреватели на основе инфракрасных лучей устраняют различные вредные и опасные бактерии, а специальные ИК лампы помогают при:

  • радикулите;
  • нарушении работы яичников;
  • бронхиальной астме;
  • остеохондрозе;
  • нарушении слизистой оболочки.

Также с помощью такого облучателя можно вылечить пневмонию, простатит в стадии обострения, ринит, тонзиллит и отит без гнойных образований.

Несмотря на большое количество полезных и лечебных свойств, у этого прибора имеются противопоказания. Вредно инфракрасное излучения для человека, если у него наблюдаются острые воспалительные заболевания.

Нельзя использовать такие лучи и при злокачественных образованиях, острых гнойных заболеваниях и кровотечении.

побочные действияИнфракрасные лучи могут вызвать побочные действия

Большой вред инфракрасного излучения на организм человека оказывают также короткие волны. Под их воздействием могут появиться следующие симптомы:

  • тошнота;
  • сильное головокружение;
  • потемнение в глазах;
  • обморок;
  • нарушение координации движений;
  • учащённое сердцебиение.

Обычно под воздействием таких лучей начинает краснеть кожа, могут появиться ожоги, судороги. Длительное пребывание рядом с короткими волнами приводит к нарушению водно-солевого баланса или тепловому удару. Такое излучение представляет большую опасность и для слизистой оболочки глаз, так как оно может привести к развитию светобоязни, катаракте и другим проблемам со зрением.

Подробнее об инфракрасном обогревателе:

Первая помощь при тепловом ударе

При интенсивном или длительном воздействии на человека коротких волн может произойти тепловой удар. Обычно это случается, если температура головного мозга резко повышается хотя бы на 1 градус. В таком случае пострадавшему сразу же следует оказать первую помощью. Для этого его нужно аккуратно переложить или перевезти в прохладное место и постараться снять с него тесную одежду. К сердцу, голове, подмышечным впадинам и паховой области следует приложить что-нибудь холодное.

После этого пострадавшего нужно обернуть мокрой простынёй и направить на него воздух от вентилятора.

Такие действия помогут снизить температуру тела. В тяжёлых случаях следует сделать искусственное дыхание и обязательно вызвать скорую помощь. На протяжении этого времени пострадавшему нужно давать прохладное и обильное питьё.

Обогревательные приборы

За последние несколько лет очень популярными стали инфракрасные обогреватели. И многие люди, приобретая их, даже не знают о том, что они могут оказывать негативное влияние на человека.

инфракрасные обогревателиПлюсом инфракрасных обогревателей является мгновенное нагревание помещения

Инфракрасное излучение способно нанести вред при постоянном и длительном воздействии. Поэтому при покупке обогревательного прибора нужно обращать внимание на характер его излучения. Такие данные обычно указываются в техническом паспорте. Отдавать предпочтение следует таким обогревателям, у которых нагревательный элемент имеет теплоизолирующую защиту. В этом случае прибор будет выделять длинные волны, которые, наоборот, полезны для здоровья.

Если же спираль, которая выделяет тепло, не изолирована, то такое устройство распространяет короткие волны и может навредить человеку. Находиться долгое время рядом с такими приборами нежелательно. Не следует их монтировать в спальнях и детских комнатах. Если это всё-таки необходимо сделать, то отдавать предпочтение следует маломощным моделям.

Подробнее об инфракрасном обогревателе:

Когда следует установить обогревательную систему на потолке, делать это нужно на максимально возможном расстоянии. При этом направлять её лучше в такую сторону, чтобы постоянно не находиться под инфракрасными лучами. Покупать ИК обогреватели нужно только у проверенных производителей. Выполненные из материалов низкого качества, они могут нанести непоправимый вред здоровью.

Инфракрасное излучение может принести как пользу, так и вред для здоровья человека. Относиться к нему нужно крайне осторожно, а использовать приборы на его основе следует в соответствии со всеми правилами безопасности.

Инфракрасное излучение, спектр излучения, лучи: теория, свойства, применение.

Об инфракрасном излучении

Наша компания Является дилером по  Калининградской области компании ЭКОЛАЙН, основного дистребьютора производителя длинноволновых инфракрасных обогревателей ИкоЋайн

Из истории изучения инфракрасного излучения

Инфракрасное излучение или тепловое излучение не является открытием 20 или 21 века. Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Он обнаружил, что «максимум тепла» лежит за пределами красного цвета видимого излучения. Это исследование положило начало изучению инфракрасного излучения. Очень многие известные ученые приложили свои головы к изучению данного направления. Это такие имена как: немецкий физик Вильгельм Вин (закон Вина), немецкий физик Макс Планк (формула и постоянная Планка), шотландский ученый Джон Лесли (устройство измерения теплового излучения – куб Лесли), немецкий физик Густав Кирхгоф (закон излучения Кирхгофа), австрийский физик и математик Йозеф Стефан и австрийский физик Стефан Людвиг Больцман (закон Стефана-Больцмана).

Использование и применение знаний по тепловому излучению в современных отопительных устройствах вышло на передний план лишь в 1950-х годах. В СССР теория лучистого отопления разработана в трудах Г. Л. Поляка, С. Н. Шорина, М. И. Киссина, А. А. Сандера. С 1956 года в СССР было написано или переведено на русский язык множество технических книг по данной. В связи с изменением стоимости энергоресурсов и в борьбе за энергоэффективность и энергосбережение, современные инфракрасные обогреватели получили широкое применение в отоплении бытовых и промышленных зданий.

Солнечное излучение — природное инфракрасное излучение

Наиболее известным и значительным природным инфракрасным обогревателем является Солнце. По сути, это природный и самый совершенный метод обогрева, известный человечеству. В пределах Солнечной системы Солнце — это самый мощный источник теплового излучения, обусловливающий жизнь на Земле. При температуре поверхности Солнца порядка 6000К максимум излучения приходится на 0,47 мкм (соответствует желтовато-белому). Солнце находится на расстоянии многих миллионов километров от нас, однако, это не мешает ему передавать энергию через все это громадное пространство, практически не расходуя ее (энергию), не нагревая его (пространство). Причина в том, что солнечные инфракрасные лучи, проходят долгий путь в космосе, практически не имеют потерь энергии. Когда же на пути лучей встречается, какая-либо поверхность, их энергия, поглощаясь, превратится в тепло. Нагревается непосредственно Земля, на которую попадают солнечные лучи, и другие предметы, на которые так же попадают солнечные лучи. И уже земля и другие, нагретые Солнцем предметы, в свою очередь, отдают тепло окружающему нас воздуху, тем самым нагревая его.

От высоты Солнца над горизонтом самым существенным образом зависит как мощность солнечного излучения у земной поверхности, так и его спектральный состав. Различные составляющие солнечного спектра по-разному проходят через земную атмосферу. Солнечное излучение У поверхности Земли спектр солнечного излучения имеет более сложную форму, что связано с поглощением в атмосфере. В частности, в нем отсутствует высокочастотная часть ультрафиолетового излучения, губительная для живых организмов. На внешней границе земной атмосферы, поток лучистой энергии Солнца составляет 1370 Вт/м² (солнечная постоянная), а максимум излучения приходится на λ=470 нм (синий цвет). Поток, достигающий земной поверхности, значительно меньше вследствие поглощения в атмосфере. При самых благоприятных условиях (солнце в зените) он не превышает 1120 Вт/м² (в Москве, в момент летнего солнцестояния — 930 Вт/м²), а максимум излучения приходится на λ=555 нм (зелено-желтый), что соответствует наилучшей чувствительности глаз и только четверть от этого излучения приходится на длинноволновую область излучения, включая вторичные излучения.

Однако, природа солнечной лучистой энергии весьма отлична от лучистой энергии, отдаваемой инфракрасными обогревателя, используемыми для обогрева помещений. Энергия солнечного излучения состоит из электромагнитных волн, физические и биологические свойства которых существенно отличаются от свойств электромагнитных волн, исходящих от обычных инфракрасных обогревателей, в частности, бактерицидные и лечебные (гелиотерапия) свойства солнечного излучения полностью отсутствуют у источников излучения с низкой температурой. И все же инфракрасные обогреватели дают тот же тепловой эффект, что и Солнце, являясь наиболее комфортными и экономичными из всех возможных источников тепла.

Природа возникновения инфракрасных лучей

Выдающийся немецкий физик Макс Планк , изучая тепловое излучение (инфракрасное излучение), открыл его атомный характер. Тепловое излучение — это электромагнитное излучение, испускаемое телами или веществами и возникающее за счет его внутренней энергии, обусловленное тем, что атомы тела или вещества под действием теплоты движутся быстрее, а в случае твердого материала быстрее колеблются по сравнению с состоянием равновесия. При этом движении атомы сталкиваются, а при их столкновении происходит их ударное возбуждение с последующим излучением электромагнитных волн. Спектр теплового излученияВсе предметы непрерывно излучают и поглощают электромагнитную энергию. Это излучение является следствием непрерывного движения элементарных заряженных частиц внутри вещества. Один из основных законов классической электромагнитной теории гласит, что движущаяся с ускорением заряженная частица излучает энергию. Электромагнитное излучение (электромагнитные волны) это распространяющееся в пространстве возмущение электромагнитного поля, то есть изменяющийся во времени периодический электромагнитный сигнал в пространстве, состоящем из электрических и магнитных полей. Это и есть тепловое излучение. Тепловое излучение содержит электромагнитные поля различных длин волн. Поскольку атомы движутся при любой температуре, все тела при любой температуре, больше чем температура абсолютного нуля (—273°С), излучают тепло. Энергия электромагнитных волн теплового излучения, то есть сила излучения, зависит от температуры тела, его атомной и молекулярной структуры, а также от состояния поверхности тела. Тепловое излучение происходит по всем длинам волн — от самых коротких до предельно длинных, однако принимают во внимание лишь то тепловое излучение, имеющее практическое значение, которое приходится в диапазоне длин волн: λ = 0,38 – 1000 мкм (в видимой и инфракрасной части электромагнитного спектра). Однако не всякий свет имеет особенности теплового излучения (на пример люминесценция), поэтому в качестве основного диапазона теплового излучения можно принять только диапазон инфракрасного спектра (λ = 0,78 – 1000 мкм). Еще можно сделать дополнение: участок с длиной волны λ = 100 – 1000 мкм, с точки зрения отопления — не интересен.

Таким образом, тепловое излучение, представляет собой одну из форм электромагнитного излучения, возникающее за счёт внутренней энергии тела и имеющего сплошной спектр, то есть это часть электромагнитного излучения, энергия которого при поглощении вызывает тепловой эффект. Тепловое излучение присуще всем телам.

Все тела, имеющие температуру больше чем температура абсолютного нуля (—273°С), даже если они не светятся видимым светом, являются источником инфракрасных лучей и испускают непрерывный инфракрасный спектр. Это означает, что в излучении присутствуют волны со всеми без исключения частотами, и говорить об излучении на какой-либо определенной волне, совершенно бессмысленно.

Основные условные области инфракрасного излучения

На сегодня не существует единой классификации в разделении инфракрасного излучения на составляющие участки (области). В целевой технической литературе встречается более десятка схем деления области инфракрасного излучения на составляющие участки, и все они различаются между собой. Так как все виды теплового электромагнитного излучения имеют одинаковую природу, поэтому классификация излучения по длинам волн в зависимости от производимого ими эффекта носит лишь условный характер и определяются главным образом различиями в технике обнаружения (тип источника излучения, тип прибора учета, его чувствительность и т.п.) и в методике измерения излучения. Математически, с использованием формул (Планка, Вина, Ламберта и т.п.), так же нельзя определить точные границы областей. Области инфракрасного излучения Для определения длины волны (максимума излучения) существуют две разные формулы (по температуре и по частоте), дающие различные результаты, с разницей примерно в 1,8 раз (это так называемый закон смещения Вина) и плюс к этому все расчеты делаются для АБСОЛЮТНО ЧЕРНОГО ТЕЛА (идеализированного объекта), которых в реальности не существует. Реальные тела, встречающиеся в природе, не подчиняются этим законам и в той или иной степени от них отклоняются. Излучение реальных тел зависит от ряда конкретных характеристик тела (состояния поверхности, микроструктуры, толщины слоя и т. д.). Это так же является причиной указания в разных источниках совершенно разных величин границ областей излучения. Всё это говорит о том, что использовать температуру для описания электромагнитного излучения надо с большой осторожностью и с точностью до порядка. Еще раз подчеркиваю, деление весьма условное!!!

Приведем примеры условного деления инфракрасной области (λ = 0,78 – 1000 мкм) на отдельные участки (информация взята только из технической литературы российских и зарубежных ученых). На приведенном рисунке видно насколько разнообразно это деление, поэтому не стоит привязываться ни к одной из них. Просто нужно знать, что спектр инфракрасного излучения можно условно разбить на несколько участков, от 2-х до 5-и. Область, которая находится ближе в видимому спектру обычно называют: ближняя, близкая, коротковолновая и т.п.. Область, которая находится ближе к микроволновым излучениям — дальняя, далекая, длинноволновая и т.п. Если верить Википедии, то обычная схема деления выглядит так: Ближняя область (Near-infrared, NIR), Коротковолновая область (Short-wavelength infrared, SWIR), Средневолновая область (Mid-wavelength infrared, MWIR), Длинноволновая область (Long-wavelength infrared, LWIR), Дальняя область (Far-infrared, FIR).

Свойства инфракрасных лучей

Инфракрасные лучи — это электромагнитное излучение, имеющее ту же природу, что и видимый свет, поэтому оно так де подчиняется законам оптики. Поэтому, чтобы лучше себе представить процесс теплового излучения, следует проводить аналогию со световым излучением, которое нам всем известно и доступно наблюдению. Однако не надо забывать, что оптические свойства веществ (поглощение, отражение, прозрачность, преломление и т.п.) в инфракрасной области спектра, значительно отличаются от оптических свойств в видимой части спектра. Характерной особенностью инфракрасного излучения является то, что в отличие от других основных видов передачи теплоты здесь нет необходимости в передающем промежуточном веществе. Воздух и тем более вакуум считается прозрачным для инфракрасного излучения, хотя с воздухом это не совсем так. При прохождении инфракрасного излучения через атмосферу (воздух), наблюдается некоторое ослабление теплового излучения. Это обусловлено тем, что сухой и чистый воздух практически прозрачен для тепловых лучей, однако при наличии в нем влаги в виде пара, молекул воды 2 О), углекислого газа (СО2), озона 3) и других твердых или жидких взвешенных частиц, которые отражают и поглощают инфракрасные лучи, он становится не совсем прозрачной средой и в результате этого поток инфракрасного излучения рассеивается по разным направлениям и ослабевает. Обычно рассеяние в инфракрасной области спектра меньше, чем в видимой. Однако, когда потери, вызванные рассеянием в видимой области спектра, велики, и в инфракрасной области они также значительны. Интенсивность рассеянного излучения изменяется обратно пропорционально четвертой степени длины волны. Оно существенно только в коротковолновой инфракрасной области и быстро уменьшается в более длинноволновой части спектра.

Молекулы азота и кислорода в воздухе не поглощают инфракрасное излучение, а ослабляют его лишь в результате рассеяния. Взвешенные частицы пыли так же приводят к рассеиванию инфракрасного излучения, причём величина рассеяния зависит от соотношения размеров частиц и длины волны инфракрасного излучения, чем больше частицы, тем больше рассеивание.

Пары воды, углекислый газ, озон и другие примеси, имеющиеся в атмосфере, селективно поглощают инфракрасное излучение. Например, пары воды, очень сильно поглощают инфракрасное излучение во всей инфракрасной области спектра, а углекислый газ поглощает инфракрасное излучение в средней инфракрасной области.

Что касается жидкостей, то они могут быть как прозрачными, так и не прозрачными для инфракрасного излучения. Например, слой воды толщиной в несколько сантиметров прозрачен для видимого излучения и непрозрачен для инфракрасного излучения с длиной волны более 1 мкм.

Твердые вещества (тела), в свою очередь, в большинстве случаев не прозрачны для теплового излучения, но бывают и исключения. Например, пластины кремния, непрозрачные в видимой области, прозрачны в инфракрасной области, а кварц, наоборот, прозрачен для светового излучения, но непрозрачен для тепловых лучей с длиной волны более 4 мкм. Именно по этой причине кварцевые стекла не применяются в инфракрасных обогревателях. Обычное стекло, в отличие от кварцевого, частично прозрачно для инфракрасных лучей, оно так же может поглощать значительную часть инфракрасного излучения в определенных интервалах спектра, но за то не пропускает ультрафиолетовое излучение. Каменная соль, так же, прозрачна для теплового излучения. Металлы, в своем большинстве, имеют отражательную способность для инфракрасного излучения значительно больше, чем для видимого света, которая возрастает с увеличением длины волны инфракрасного излучения. Например, коэффициент отражения алюминия, золота, серебра и меди при длине волны около 10 мкм достигает 98%, что значительно выше, чем для видимого спектра, это свойство широко используется в конструкции инфракрасных обогревателей.

Достаточно привести здесь в качестве примера остекленные рамы парников: стекло практически пропускает большую часть солнечного излучения, а с другой стороны, разогретая земля излучает волны большой длины (порядка 10 мкм), в отношении которых стекло ведет себя как непрозрачное тело. Благодаря этому внутри парников длительное время поддерживается температура, значительно более высокая, чем температура наружного воздуха, даже после того, как солнечное излучение прекращается.

Инфракрасное излучение в жизни человека

влияние инфракрасного излучения на человека Важную роль в жизни человека играет лучистый теплообмен. Человек отдает окружающей среде теплоту, вырабатываемую в ходе физиологического процесса, главным образом путем лучистого теплообмена и конвекции. При лучистом (инфракрасном) отоплении лучистая составляющая теплообмена тела человека сокращается из-за более высокой температуры, возникающей как на поверхности отопительного прибора, так и на поверхности некоторых внутренних ограждающих конструкций, поэтому при обеспечении одного и того же тепло ощущения конвективные теплопотери могут быть больше, т.е. температура воздуха в помещении может быть меньше. Таким образом, лучистый теплообмен играет решающую роль в формировании ощущения теплового комфорта у человека.

При нахождении человека в зоне действия инфракрасного обогревателя, ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи.

При инфракрасном длинноволновом излучении проникновение лучей значительно меньше по сравнению с коротковолновым излучением. Поглощающая способность влаги, содержащейся в тканях кожи, очень велика, и кожа поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты.

Инфракрасное излучение в жизни человека Инфракрасные лучи оказывают как местное, так и общее воздействие. Коротковолновое инфракрасное излучение, в отличии от длинноволнового инфракрасного излучения, может вызвать покраснение кожи в месте облучения, которое рефлекторно распространяется на 2-3 см. вокруг облучаемой области. Причина этого в том, что капиллярные сосуды расширяются, кровообращение усиливается. Вскоре на месте облучения может появиться волдырь, который позднее превращается в струп. Так же при попадании коротковолновых инфракрасных лучей на органы зрения может возникнуть катаракта.

Перечисленные выше, возможные последствия от воздействия коротковолнового ИК обогревателя, не следует путать с воздействием длинноволнового ИК обогревателя. Как уже было сказано, длинноволновые инфракрасные лучи поглощаются в самой верхней части слоя кожи и вызывает только простое тепловое воздействие.

Использование лучистого отопления не должно подвергать человека опасности и создавать дискомфортный микроклимат в помещении.

При лучистом отоплении можно обеспечить комфортные условия при более низкой температуре. При применении лучистого отопления воздух в помещении чище, поскольку меньше скорость воздушных потоков, благодаря чему уменьшается загрязнение пылью. Так же при данном отоплении не происходит разложение пыли, так как температура излучающей пластины длинноволнового обогревателя никогда не достигает температуры, необходимой для разложения пыли.

Чем холоднее излучатель тепла, тем он безвреднее для организма человека, тем дольше может находиться человек в зоне действия обогревателя.

Согласно СниП 2.04.05-91 (далее цитируем)
«температуру поверхности высокотемпературных приборов лучистого обогрева
не следует принимать выше 250°С»
.

Длительное нахождение человека вблизи ВЫСОКОТЕМПЕРАТУРНОГО источника тепла (более 300°С) вредно для здоровья человека.

Влияние на здоровье человека инфракрасного излучения.

Организм человека, как излучает инфракрасные лучи, так и поглощает их. ИК лучи проникают в организм человека через кожу, при этом разные слои кожи по-разному отражают и поглощают данные лучи. Длинноволновое излучение проникает в организм человека значительно меньше по сравнению с коротковолновым излучением. Влага, находящаяся в тканях кожи, поглощает более 90% попадающего на поверхность тела излучения. Нервные рецепторы, ощущающие теплоту, расположены в самом наружном слое кожи. Поглощаемые инфракрасные лучи возбуждают эти рецепторы, что и вызывает у человека ощущение теплоты. Коротковолновое ИК излучение наиболее глубоко проникает в организм, вызывая его максимальный прогрев. В результате этого воздействия повышается потенциальная энергия клеток организма, и из них будет уходить несвязанная вода, повышается деятельность специфических клеточных структур, растет уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходят и другие биохимические реакции. Это касается всех типов клеток организма и крови. Однако длительное воздействие коротковолнового инфракрасного излучения на организм человека — нежелательно. Именно на этом свойстве основан эффект теплового лечения, широко используемого в физиотерапевтических кабинетах наших и зарубежных клиник и замете, длительность процедур — ограничена. Однако данные ограничения не распространяются на длинноволновые инфракрасные обогреватели. Важная характеристика инфракрасного излучения – длина волны (частота) излучения. Современные исследования в области биотехнологий показали, что именно длинноволновое инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами или лучами жизни. Наше тело само излучает длинные инфракрасные волны, но оно само нуждается также и в постоянной подпитке длинноволновым теплом. Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Дальнее инфракрасное излучение нормализует процесс обмена и устраняет причину болезни, а не только её симптомы.

С таким отоплением не будет болеть голова от духоты, вызываемой перегретым воздухом под потолком, как при работе конвективного отопления, — когда постоянно хочется открыть форточку и впустить свежий воздух (при этом выпуская нагретый).

При воздействии ИК-излучения интенсивностью 70-100 Вт/м2 в организме повышается активность биохимических процессов, что ведет к улучшению общего состояния человека. Однако существуют нормативы и их стоит придерживаться. Есть нормативы по безопасному отоплению бытовых и промышленных помещений, по длительности лечебных и косметологических процедур, по работе в ГОРЯЧИХ цехах и т.п. Не стоит об этом забывать. При правильном использовании инфракрасных обогревателей — отрицательного воздействия на организм ПОЛНОСТЬЮ ОТСУТСТВУЕТ.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, ИНФРАКРАСНЫЕ ЛУЧИ, СВОЙСТВА ИНФРАКРАСНЫХ ЛУЧЕЙ, СПЕКТР ИЗЛУЧЕНИЯ ИНФРАКРАСНЫХ ОБОГРЕВАТЕЛЕЙ Калининград

ОБОГРЕВАТЕЛИ СВОЙСТВА ИЗЛУЧЕНИЕ СПЕКТР ОБОГРЕВАТЕЛЕЙ ДЛИНА ВОЛНЫ ДЛИННОВОЛНОВЫЕ СРЕДНЕВОЛНОВЫЕ КОРОТКОВОЛНОВЫЕ СВЕТЛЫЕ ТЕМНЫЕ СЕРЫЕ ВРЕД ЗДОРОВЬЕ ВЛИЯНИЕ НА ЧЕЛОВЕКА Калининград

Инфракрасное излучение спктр лучи свойства обогреватели волна длина виды здоровье человек вред польза влияние применение длинноволновые средневолновые коротковолновые светлые темные серые

Инфракрасное излучение — Википедия

Изображение собаки, полученное в инфракрасном излучении

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц).

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами[2].

Весь диапазон инфракрасного излучения условно делят на три области:

  • ближняя: λ = 0,74—2,5 мкм;
  • средняя: λ = 2,5—50 мкм;
  • дальняя: λ = 50—2000 мкм[3].

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым излучением», так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

История открытия и общая характеристика

Эксперимент Гершеля

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением[4].

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте[4].

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[4].

Диапазоны инфракрасного излучения

Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

Обычная схема деления

Чаще всего разделение на более мелкие диапазоны производится следующим образом:[5]

АббревиатураДлина волныЭнергия фотоновХарактеристика
Near-infrared, NIR0,75—1,4 мкм0,9—1,7 эВБлижний ИК, ограниченный с одной стороны видимым светом, с другой — прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
Short-wavelength infrared, SWIR1,4—3 мкм0,4—0,9 эВПоглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530—1560 нм преобладает в области дальней связи.
Mid-wavelength infrared, MWIR3—8 мкм150—400 мэВВ этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры.
Long-wavelength infrared, LWIR8—15 мкм80—150 мэВВ этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
Far-infrared, FIR15— 1000 мкм1,2—80 мэВ

CIE схема

Международная комиссия по освещённости (англ. International Commission on Illumination) рекомендует разделение инфракрасного излучения на следующие три группы[6]:

  • IR-A: 700 нм — 1400 нм (0,7 мкм — 1,4 мкм)
  • IR-B: 1400 нм — 3000 нм (1,4 мкм — 3 мкм)
  • IR-C: 3000 нм — 1 мм (3 мкм — 1000 мкм)

ISO 20473 схема

Международная организация по стандартизации предлагает следующую схему:

ОбозначениеАббревиатураДлина волны
Ближний инфракрасный диапазонNIR0,78—3 мкм
Средний инфракрасный диапазонMIR3—50 мкм
Дальний инфракрасный диапазонFIR50—1000 мкм

Астрономическая схема

Астрономы обычно делят инфракрасный спектр следующим образом[7]:

ОбозначениеАббревиатураДлина волны
Ближний инфракрасный диапазонNIR(0.7…1) — 5 мкм
Средний инфракрасный диапазонMIR5 — (25…40) мкм
Дальний инфракрасный диапазонFIR(25…40) — (200…350) мкм

Тепловое излучение

Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн, излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме. Примером теплового излучения является свет от лампы накаливания. Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана. Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа. Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.

Инфракрасное зрение

Органы восприятия человека и других высших приматов не приспособлены под инфракрасное излучение (проще говоря, человеческий глаз его не видит), однако, некоторые биологические виды способны воспринимать органами зрения инфракрасное излучение. Так, например, зрение некоторых змей позволяет им видеть в инфракрасном диапазоне и охотиться на теплокровную добычу ночью (когда её силуэт обладает наиболее выраженным контрастом на фоне остывшей местности). Более того, у обыкновенных удавов эта способность имеется одновременно с нормальным зрением, в результате чего они способны видеть окружающее одновременно в двух диапазонах: нормальном видимом (как и большинство животных) и инфракрасном. Среди рыб способностью видеть под водой в инфракрасном диапазоне отличаются такие рыбы как пиранья, охотящаяся на зашедших в воду теплокровных животных, и золотая рыбка. Среди насекомых инфракрасным зрением обладают комары, что позволяет им с большой точностью ориентироваться на наиболее насыщенные кровеносными сосудами участки тела добычи[8].

Применение

Прибор ночного видения

Существует несколько способов визуализировать невидимое инфракрасное изображение:

  • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
  • Электронно-оптический преобразователь — вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
  • Болометр — тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3—14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

Термография

Изображение девушки, полученное в инфракрасном диапазоне

Инфракрасная термография, тепловое изображение или тепловое видео — это научный способ получения термограммы — изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900—14000 нанометров) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение

Инфракрасная головка самонаведения — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель

Инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасный обогреватель — отопительный прибор, отдающий тепло преимущественно излучением, а не конвекцией — используется для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды)[9].

Инфракрасный обогреватель в быту иногда неточно называется рефлектором. Лучистая энергия поглощается окружающими поверхностями, превращаясь в тепловую энергию, нагревает их, которые в свою очередь отдают тепло воздуху. Это дает существенный экономический эффект по сравнению с конвекционным обогревом, где тепло существенно расходуется на обогрев неиспользуемого подпотолочного пространства. Кроме того, при помощи ИК обогревателей появляется возможность местного обогрева только тех площадей в помещении, в которых это необходимо без обогрева всего объёма помещения; тепловой эффект от инфракрасных обогревателей ощущается сразу после включения, что позволяет избежать предварительного нагрева помещения. Эти факторы снижают затраты энергии.

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект: процесс идёт гораздо быстрее, а энергии, при этом, затрачивается гораздо меньше, чем при традиционных методах.

Инфракрасная астрономия

Раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением.

Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны, однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн. С тех пор была сформирована современная инфракрасная астрономия.

Инфракрасная спектроскопия

Инфракрасная спектроскопия — раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцевом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцевого диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрометры.

Передача данных

Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам, и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств, низкие скорости передачи (обычно не превышает 5—10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается скрытность передачи информации[источник не указан 84 дня]. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь — «шина» (то есть переданный сигнал одновременно получают все абоненты). Инфракрасный канал не смог получить широкого распространения, его вытеснил радиоканал.

Тепловое излучение применяется также для приема сигналов оповещения[10].

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата.

Медицина

Наиболее широко инфракрасное излучение в медицине находит в различных датчиках потока крови (PPG).

Широко распространенные измерители частоты пульса (ЧСС, HR — Heart Rate) и насыщения крови кислородом (SpO2) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

Инфракрасные лучи применяются в физиотерапии.

Влияние длинноволнового инфракрасного излучения:

  • Стимуляция и улучшение кровообращения. При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
  • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции[источник не указан 84 дня].

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа и мука, на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность[источник не указан 2754 дня]. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно[источник не указан 84 дня]. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок[источник не указан 84 дня].

Опасность для здоровья

Очень сильное инфракрасное излучение в местах высокого нагрева может высушивать слизистую оболочку глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких ситуациях необходимо надевать специальные защитные очки для глаз[11].

Инфракрасное излучение с длиной волны 1.35 мкм, 2.2 мкм при достаточной пиковой мощности в лазерном импульсе может вызывать эффективное разрушение молекул ДНК, более сильное, чем излучение в ближнем ИК-диапазоне[12].

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от Солнца и переизлучают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом капли воды и водяной пар, а также диоксид углерода, метан, азот, гексафторид серы и хлорфторуглерод поглощают это инфракрасное излучение и вновь излучают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект удерживает атмосферу и поверхность в более нагретом состоянии, чем если бы инфракрасные поглотители отсутствовали в атмосфере[13][14].

См. также

Примечания

Ссылки

инфракрасных волн | Управление научной миссии

Что такое инфракрасные волны?

Инфракрасные волны или инфракрасный свет являются частью электромагнитного спектра. Люди сталкиваются с инфракрасными волнами каждый день; человеческий глаз не видит его, но люди могут определять его как тепло.

Пульт дистанционного управления использует световые волны, выходящие за пределы видимого спектра света — инфракрасные световые волны — для переключения каналов на вашем телевизоре. Эта область спектра делится на ближнюю, среднюю и дальнюю инфракрасную.Область от 8 до 15 микрон (мкм) называется земными учеными тепловым инфракрасным, поскольку эти длины волн лучше всего подходят для изучения длинноволновой тепловой энергии, излучаемой нашей планетой.

СЛЕВА: Типичный пульт дистанционного управления телевизором использует энергию инфракрасного излучения с длиной волны около 940 нм. Хотя вы не можете «видеть» свет, излучаемый пультом дистанционного управления, некоторые цифровые камеры и камеры сотовых телефонов чувствительны к этой длине волны излучения. Попробуйте! СПРАВА: Инфракрасные лампы Нагревательные лампы часто излучают энергию как в видимом, так и в инфракрасном диапазоне на длине волны от 500 до 3000 нм.Их можно использовать для обогрева ванных комнат или для сохранения тепла. Тепловые лампы также могут согреть маленьких животных и рептилий или даже согреть яйца, чтобы они могли вылупиться.

Кредит: Трой Бенеш

ОТКРЫТИЕ ИНФРАКРАСНОЙ ИНФРАКРАСКИ

В 1800 году Уильям Гершель провел эксперимент по измерению разницы температур между цветами в видимом спектре. Он поместил термометры в каждый цвет видимого спектра. Результаты показали повышение температуры от синего до красного.Когда он заметил еще более высокую температуру, измеренную за пределами красного конца видимого спектра, Гершель открыл инфракрасный свет!

ТЕПЛОВОЕ ИЗОБРАЖЕНИЕ

Мы можем воспринимать инфракрасную энергию как тепло. Некоторые предметы настолько горячие, что излучают видимый свет — например, огонь. Другие объекты, например люди, не такие горячие и излучают только инфракрасные волны. Наши глаза не могут видеть эти инфракрасные волны, но инструменты, которые могут воспринимать инфракрасную энергию, такие как очки ночного видения или инфракрасные камеры, позволяют нам «видеть» инфракрасные волны, исходящие от теплых объектов, таких как люди и животные.Температуры для изображений ниже указаны в градусах Фаренгейта.

Предоставлено: НАСА / Лаборатория реактивного движения — Калтех

.

ХОЛОДНАЯ АСТРОНОМИЯ

Многие объекты во Вселенной слишком холодные и тусклые, чтобы их можно было обнаружить в видимом свете, но их можно обнаружить в инфракрасном диапазоне. Ученые начинают открывать тайны более холодных объектов во Вселенной, таких как планеты, холодные звезды, туманности и многие другие, изучая инфракрасные волны, которые они излучают.

Космический аппарат «Кассини» сделал это изображение полярного сияния Сатурна с помощью инфракрасных волн.Полярное сияние показано синим цветом, а нижележащие облака — красным. Эти полярные сияния уникальны, потому что они могут охватывать весь полюс, тогда как полярные сияния вокруг Земли и Юпитера обычно ограничиваются магнитными полями на кольцах, окружающих магнитные полюса. Большой и изменчивый характер этих полярных сияний указывает на то, что заряженные частицы, втекающие от Солнца, испытывают над Сатурном некоторый тип магнетизма, который ранее был неожиданным.

ПРОСМОТРЕТЬ ПЫЛЬ

Инфракрасные волны имеют более длинные волны, чем видимый свет, и могут проходить через плотные области газа и пыли в космосе с меньшим рассеянием и поглощением.Таким образом, инфракрасная энергия может также обнаруживать объекты во Вселенной, которые нельзя увидеть в видимом свете с помощью оптических телескопов. Космический телескоп Джеймса Уэбба (JWST) оснащен тремя инфракрасными приборами, которые помогают изучать происхождение Вселенной и формирование галактик, звезд и планет.

Когда мы смотрим на созвездие Ориона, мы видим только видимый свет. Но космический телескоп НАСА Спитцер смог обнаружить почти 2300 планетообразующих дисков в туманности Ориона, почувствовав инфракрасное свечение их теплой пыли.Каждый диск может формировать планеты и свою собственную солнечную систему. Фото: Томас Мегит (Университет Толедо) и др., Лаборатория реактивного движения, Калифорнийский технологический институт, НАСА

Столб, состоящий из газа и пыли в туманности Киля, освещается свечением близлежащих массивных звезд, показанных ниже на изображении в видимом свете, полученном космическим телескопом Хаббла. Интенсивное излучение и быстрые потоки заряженных частиц от этих звезд вызывают образование новых звезд внутри столба. Большинство новых звезд невозможно увидеть на изображении в видимом свете (слева), потому что плотные газовые облака блокируют их свет.Однако, когда столб рассматривается в инфракрасной части спектра (справа), он практически исчезает, открывая молодые звезды за столбом газа и пыли.

Предоставлено: НАСА, Европейское космическое агентство и команда телескопа Hubble SM4 ERO

.

МОНИТОРИНГ ЗЕМЛИ

Для астрофизиков, изучающих Вселенную, источники инфракрасного излучения, такие как планеты, относительно холодны по сравнению с энергией, излучаемой горячими звездами и другими небесными объектами. Земляне изучают инфракрасное излучение как тепловое излучение (или тепло) нашей планеты.Когда падающая солнечная радиация попадает на Землю, часть этой энергии поглощается атмосферой и поверхностью, тем самым нагревая планету. Это тепло излучается с Земли в виде инфракрасного излучения. Инструменты на борту спутников наблюдения Земли могут определять это излучаемое инфракрасное излучение и использовать полученные результаты для изучения изменений температуры поверхности земли и моря.

Есть и другие источники тепла на поверхности Земли, такие как потоки лавы и лесные пожары. Спектрорадиометр среднего разрешения (MODIS) на борту спутников Aqua и Terra использует инфракрасные данные для отслеживания дыма и определения источников лесных пожаров.Эта информация может иметь важное значение для тушения пожара, когда самолеты-разведчики не могут пролететь сквозь густой дым. Инфракрасные данные также могут помочь ученым отличить пылающий огонь от все еще тлеющих ожогов.

Кредит: Джефф Шмальц, группа быстрого реагирования MODIS

Глобальное изображение справа — это инфракрасное изображение Земли, полученное спутником GOES 6 в 1986 году. Ученый использовал температуру, чтобы определить, какие части изображения были получены от облаков, а какие — от суши и моря.Основываясь на этой разнице температур, он раскрасил каждую отдельно 256 цветами, придав изображению реалистичный вид.

Кредит: Центр космической науки и техники, Университет Висконсин-Мэдисон, Ричард Корс, дизайнер

Зачем использовать инфракрасное излучение для изображения Земли? Хотя в видимом диапазоне легче отличить облака от земли, в инфракрасном диапазоне облака более детализированы. Это отлично подходит для изучения структуры облаков. Например, обратите внимание, что темные облака теплее, а светлые — холоднее.К юго-востоку от Галапагосских островов, к западу от побережья Южной Америки, есть место, где вы можете отчетливо увидеть несколько слоев облаков, с более теплыми облаками на более низких высотах, ближе к океану, который их согревает.

Мы знаем, глядя на инфракрасное изображение кошки, что многие вещи излучают инфракрасный свет. Но многие вещи также отражают инфракрасный свет, особенно ближний инфракрасный свет. Узнайте больше об ОТРАЖЕННОМ ближнем инфракрасном излучении.

Начало страницы | Далее: Отраженные волны в ближнем инфракрасном диапазоне


Цитата
APA

Национальное управление по аэронавтике и исследованию космического пространства, Управление научных миссий.(2010). Инфракрасные волны. Получено [укажите дату — например, 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/07_infraredwaves

MLA

Управление научной миссии. «Инфракрасные волны» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [укажите дату — например, 10 августа 2016 г.] http://science.nasa.gov / ems / 07_infraredwaves

,

Инфракрасные волны

РАДИО ВОЛНЫ
| МИКРОВОЛНЫ | Инфракрасная
| ВИДИМЫЙ СВЕТ | Ультрафиолетовое
| РЕНТГЕНОВСКИЕ ИЗЛУЧЕНИЯ | ГАММА ЛУЧИ

Инфракрасный свет находится между видимым светом и микроволновым излучением.
части электромагнитного спектра. Инфракрасный свет имеет диапазон
длины волн, точно так же, как видимый свет имеет длины волн в диапазоне от красного
от светлого до фиолетового. «Ближний инфракрасный» свет ближе всего по длине волны к
видимый свет и «дальний инфракрасный свет» ближе к микроволновому диапазону
электромагнитный спектр.Более длинный, дальний инфракрасный
длины волн размером с булавочную головку
а более короткие, близкие к инфракрасному, имеют размер клетки или
микроскопический.

Волны в дальнем инфракрасном диапазоне являются тепловыми. Другими словами, мы испытываем такой тип
инфракрасное излучение каждый день в виде тепла! Тепло, которое мы
ощущение от солнечного света, огня, радиатора или теплого тротуара — инфракрасное.
Чувствительные к температуре нервные окончания в нашей коже могут обнаруживать
разница между внутренней температурой тела и внешней температурой кожи
температура.

Инфракрасный свет иногда используется даже для нагрева пищи — специальные лампы, излучающие
тепловые инфракрасные волны часто используются в ресторанах быстрого питания!

Более короткие, ближние инфракрасные волны не горячие
вообще — на самом деле вы их даже не чувствуете. Эти более короткие длины волн являются единственными
используется пультом дистанционного управления вашего телевизора.


Как мы можем «видеть», используя инфракрасный порт?

Поскольку первичный источник инфракрасного
излучение — это тепло или тепловое излучение, любой объект, имеющий температуру
излучает в инфракрасном диапазоне.Четный
объекты, которые мы считаем очень холодными, например кубик льда, излучают
ИК-порт. Когда объект недостаточно горячий, чтобы излучать видимый свет,
он будет излучать большую часть своей энергии в инфракрасном диапазоне. Например, горячий уголь
может не испускать свет, но излучает инфракрасное излучение, которое мы чувствуем как
высокая температура. Чем теплее объект, тем больше инфракрасного излучения он излучает.

Люди при нормальной температуре тела сильнее всего излучают в инфракрасном диапазоне.
на длине волны около 10 мкм.(Микрон — термин, обычно используемый в
астрономии для микрометра или одной миллионной метра.) Это изображение (
что любезно
Центр обработки и анализа инфракрасного излучения в CalTech), показывает
мужчина держит зажженную спичку! Какие части этого изображения
как вы думаете, у вас самая теплая температура? Как меняется температура
очки этого человека сравнить с температурой его руки?

Чтобы сделать инфракрасные снимки, подобные приведенной выше, мы можем использовать специальные камеры и
пленка, которая обнаруживает разницу в температуре, а затем назначает разную яркость
или ложные цвета к ним.Это дает картину, которую могут интерпретировать наши глаза.

На изображении слева (любезно предоставлено SE-IR Corporation, Голета, Калифорния) показана кошка в
ИК-порт. Оранжевые области самые теплые, а бело-синие области — самые теплые.
самый холодный. Это изображение дает нам другой взгляд на знакомое животное как
а также информацию, которую мы не смогли получить из изображения в видимом свете.

Люди могут не видеть инфракрасный свет, но знаете ли вы, что
змеи из семейства ямовых гадюк, как и гремучие змеи, имеют сенсорные «ямки»,
которые используются для изображения инфракрасного света? Это позволяет змее обнаруживать
теплокровные животные даже в темных норах!
Считается, что у змей с двумя сенсорными ямками есть
восприятие глубины в инфракрасном диапазоне! (Благодаря
Центр обработки и анализа инфракрасного излучения НАСА за помощью с текстом на
эта секция.)

Инфракрасный свет излучают многие вещи, помимо людей и животных — Земля,
Солнце, а также такие далекие вещи, как звезды и галактики! Для просмотра
с орбиты Земли, смотрим ли мы в космос или на Землю,
мы можем использовать приборы на борту спутников.

Такие спутники, как GOES 6 и Landsat 7, смотрят на
Земной шар. Специальные датчики, такие как на спутнике Landsat 7,
записывать данные о количестве инфракрасного света, отраженного или испускаемого
поверхность Земли.

Ландсат 7

Другие спутники, такие как инфракрасная астрономия
Спутник (IRAS) смотрит в космос и измеряет приходящий инфракрасный свет
от таких вещей, как большие облака пыли и газа, звезды и галактики!


Что нам показывает инфракрасный порт?

Это инфракрасный снимок Земли, сделанный спутником GOES 6 в г.
1986. Ученый использовал температуру, чтобы определить, какие части изображения
были из облаков, и которые были сушей и морем.На основе этих температур
различий, он раскрасил каждый отдельно, используя 256 цветов, придавая изображению
реалистичный внешний вид.

Зачем использовать инфракрасное излучение для изображения Земли? Хотя проще
отличать облака от земли в видимом диапазоне, в облаках больше деталей
в инфракрасном диапазоне. Это отлично подходит для изучения структуры облаков. Для
Например, обратите внимание, что темные облака теплее, а светлые — холоднее.
К юго-востоку от Галапагосских островов, к западу от
побережье Южной Америки, есть место, где хорошо видно несколько
слои облаков, с более теплыми облаками на меньших высотах, ближе к
океан, который их согревает.

Центр космической науки и техники,
Университет
Висконсин-Мэдисон,
Ричард Корс, дизайнер

Мы знаем, глядя на инфракрасное изображение кошки, что многие вещи излучают
инфракрасное излучение. Но многие вещи также отражают инфракрасный свет, особенно
ближний инфракрасный свет. Ближнее инфракрасное излучение не связано с
температура фотографируемого объекта — если только объект не очень,
очень горячо.

Инфракрасная пленка «видит» объект, потому что Солнце (или другой источник света)
блестит
инфракрасный свет на нем, и он отражается или поглощается объектом.Вы
можно сказать, что это отражение или поглощение инфракрасного излучения помогает определить
«цвет» объекта — его цвет представляет собой комбинацию красного, зеленого, синего и
ИК-порт!

На этом изображении здания с деревом и травой показано, как
Хлорофилл в растениях отражает ближний инфракрасный свет
волны вместе с видимыми световыми волнами. Хотя мы
не видит инфракрасных волн, они всегда рядом. Видимый
световые волны, нарисованные на этой картинке, имеют зеленый цвет, а инфракрасные —
бледно-красный.

Этот снимок был сделан на специальную пленку, которая может обнаруживать невидимые объекты.
инфракрасные волны. Это ложный цвет
изображение, как и у кота. Ложные инфракрасные изображения
Земля часто использует цветовую схему, подобную показанной здесь, где инфракрасный
свет отображается в видимый красный цвет. Это означает, что все в
это изображение, которое кажется красным, испускает или отражает инфракрасный свет.
Из-за этого растительность, такая как трава, и деревья кажутся красными.Видимые световые волны, нарисованные на этом рисунке, зеленые, а
инфракрасные — более темно-красные.

Это изображение Феникса, Аризона, показывающее
данные в ближнем инфракрасном диапазоне, собранные спутником Landsat 5. Свет
Области — это области с высоким коэффициентом отражения волн ближнего инфракрасного диапазона.
темные области имеют низкую отражательную способность. Как ты думаешь черный
линии сетки в правом нижнем углу этого изображения представляют?
На этом изображении показаны инфракрасные данные (отображаются как
красный), составленные из данных видимого света на синей и зеленой длинах волн.Если ближний инфракрасный свет отражается от здоровой растительности, что делать?
вы думаете, что области в форме красного квадрата находятся в нижнем левом углу
образ?

Инструменты на борту спутников также могут делать снимки в космосе.
Изображение ниже центральной области нашей галактики было получено IRAS.
туманная горизонтальная S-образная деталь, пересекающая изображение, — слабое тепло
испускается пылью в плоскости Солнечной системы.

Инфракрасный центр обработки и анализа, Калтех / Лаборатория реактивного движения

[СЛЕДУЮЩАЯ ДЛИНА ВОЛНЫ]
[СЛЕДУЮЩАЯ УКРАШЕННАЯ ДЛИНА ВОЛНЫ]


ВОЗВРАЩЕНИЕ К ЭЛЕКТРОМАГНИТНОМУ СПЕКТРУ

.

отраженных волн ближнего инфракрасного диапазона | Управление научной миссии

ВБЛИЗИ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Часть излучения, выходящая за пределы видимого спектра, называется ближней инфракрасной. Вместо того, чтобы изучать излучение объекта в инфракрасном диапазоне, ученые могут изучить, как объекты отражают, пропускают и поглощают ближнее инфракрасное излучение Солнца, чтобы наблюдать за здоровьем растительности и составом почвы.

ЗДОРОВАЯ РАСТИТЕЛЬНОСТЬ

Наши глаза воспринимают лист как зеленый, потому что длины волн в зеленой области спектра отражаются пигментами листа, тогда как волны других видимых длин поглощаются.Кроме того, компоненты растений отражают, пропускают и поглощают различные части ближнего инфракрасного излучения, которые мы не видим.

Отраженное инфракрасное излучение может быть обнаружено спутниками, что позволяет ученым изучать растительность из космоса. Здоровая растительность поглощает энергию синего и красного света для поддержания фотосинтеза и образования хлорофилла. Растение с большим количеством хлорофилла будет отражать больше энергии в ближнем инфракрасном диапазоне, чем нездоровое растение. Таким образом, анализ спектра поглощения и отражения растений в видимой и инфракрасной области спектра может предоставить информацию о здоровье и продуктивности растений.

Кредит: Джефф Карнс

ИНФРАКРАСНАЯ ПЛЕНКА

Цветная инфракрасная пленка

может записывать энергию в ближнем инфракрасном диапазоне и может помочь ученым изучать болезни растений, при которых наблюдается изменение пигмента и структуры клеток. Эти два изображения показывают разницу между цветной инфракрасной фотографией и естественной цветной фотографией деревьев в парке.

Кредит: имбирный мясник

СПЕКТРАЛЬНЫЕ ПРИЗНАКИ РАСТИТЕЛЬНОСТИ

Данные научных инструментов могут обеспечить более точные измерения, чем аналоговая пленка.Ученые могут построить график измерений, изучить уникальные закономерности поглощения и отражения видимой и инфракрасной энергии и использовать эту информацию для определения типов растений. На приведенном ниже графике показаны различия между спектральными характеристиками кукурузы, сои и тюльпановых тополей.

Кредит: Эрик Браун де Колстоун

ОЦЕНКА РАСТИТЕЛЬНОСТИ ИЗ ПРОСТРАНСТВА

Данные и изображения с серии спутников Геологической службы США (USGS) и NASA Landsat используются U.S. Министерство сельского хозяйства для прогнозирования продуктивности сельского хозяйства на каждый вегетационный период. Спутниковые данные могут помочь фермерам определить, где посевы заражены, подвержены стрессу или здоровы.

Данные в ближнем инфракрасном диапазоне, собранные спутником Landsat 7, такие как это изображение Миннесоты, могут помочь фермерам оценить состояние их сельскохозяйственных культур. Оттенки красного на этом изображении указывают на хорошее состояние сельскохозяйственных культур, а желтые цвета показывают, где растения заражены. Фото: Джесси Аллен, с использованием данных Landsat, предоставленных Геологической службой США

СОСТАВ ПОЧВЫ

Данные в ближнем инфракрасном диапазоне также могут помочь определить типы горных пород и почвы.Это изображение района Соленой долины в Калифорнии было получено с помощью усовершенствованного космического радиометра теплового излучения и отражения (ASTER) на борту спутника НАСА Terra.

Данные из видимого и ближнего инфракрасного диапазонов ASTER на 0,81 мкм, 0,56 мкм и 0,66 мкм объединены в красный, зеленый и синий цвета, создавая изображение в ложных цветах ниже. Растительность кажется красной, снег и сухие соленые озера — белыми, а обнаженные скалы — коричневыми, серыми, желтыми и синими. Цвета горных пород в основном отражают присутствие минералов железа и вариации альбедо (солнечная энергия, отраженная от поверхности).

Авторы и права: НАСА, GSFC, MITI, ERSDAC, JAROS и научная группа ASTER

США / Японии.

ПЛАНЕТЫ В БЛИЖАЙШЕЙ ИНФОРМАЦИИ

Эта композиция Юпитера в искусственных цветах объединяет данные о солнечном свете, отраженном от облаков Юпитера, в ближнем инфракрасном и видимом свете. Поскольку метан в атмосфере Юпитера ограничивает проникновение солнечного света, количество отраженной энергии в ближнем инфракрасном диапазоне варьируется в зависимости от высоты облаков. Результирующее составное изображение показывает эту разницу высот разными цветами.Желтые цвета обозначают высокие облака; красные цвета — нижние облака; а синие цвета показывают еще более низкие облака в атмосфере Юпитера. Камера ближнего инфракрасного диапазона и многообъектный спектрометр (NICMOS) на борту космического телескопа Хаббла НАСА сделали это изображение во время редкого совпадения трех крупнейших спутников Юпитера — Ио, Ганимеда и Каллисто — на поверхности планеты.

Источник: НАСА и Э. Каркошка (Университет Аризоны)

Начало страницы | Далее: Видимый свет


Цитирование
APA

Национальное управление по аэронавтике и исследованию космического пространства, Управление научных миссий.(2010). Отраженные волны ближнего инфракрасного диапазона. Получено [укажите дату — например, 10 августа 2016 г.] , с веб-сайта NASA Science: http://science.nasa.gov/ems/08_nearinfraredwaves

MLA

Управление научной миссии. «Отраженные волны ближнего инфракрасного диапазона» NASA Science . 2010. Национальное управление по аэронавтике и исследованию космического пространства. [укажите дату — например, 10 августа 2016 г.] http://science.nasa.gov/ems/08_nearinfraredwaves

,

Инфракрасные лучи — свойства и применение

Инфракрасный (ИК) свет — это электромагнитное излучение с более длинными волнами, чем у видимого света, простирающееся от номинальной красной границы видимого спектра на 0,74 микрометра (мкм) до 300 мкм. Этот диапазон длин волн соответствует диапазону частот приблизительно от 1 до 400 ТГц и включает большую часть теплового излучения, испускаемого объектами с температурой около комнатной. Инфракрасный свет излучается или поглощается молекулами, когда они меняют свои вращательно-колебательные движения.

История

Наличие инфракрасного излучения было впервые обнаружено в 1800 году астрономом Уильямом Гершелем. Он создал инструмент, называемый спектрометром, для измерения силы излучения на разных длинах волн. Этот инструмент состоял из трех частей. Первая представляла собой призму для улавливания солнечного света, направления и рассеивания цветов на стол, вторая представляла собой небольшую картонную панель с прорезью, достаточно широкой, чтобы сквозь нее проходил только один цвет, и, наконец, три ртути в стеклянные термометры.В ходе своего эксперимента Гершель обнаружил, что красный свет имеет самую высокую степень изменения температуры в световом спектре, однако инфракрасный обогрев обычно не использовался до Второй мировой войны. Во время Второй мировой войны инфракрасное отопление стало более широко использоваться и признано. Основное применение было в области отделки металлов, особенно в отверждении и сушке красок и лаков на военной технике. Блоки лампочек использовались очень успешно, но по сегодняшним меркам их мощность была очень низкой.Эта технология обеспечивала гораздо более быстрое высыхание, чем печи с конвекцией топлива того времени. Были устранены узкие места в производстве, и были сохранены военные поставки для вооруженных сил. После Второй мировой войны внедрение методов инфракрасного обогрева продолжалось, но гораздо медленнее. В середине 1950-х годов автомобильная промышленность начала проявлять интерес к возможностям инфракрасного излучения для отверждения красок, и было введено несколько инфракрасных туннелей производственных линий.

Свойства инфракрасных лучей и инфракрасного света

Большая часть энергии Солнца поступает на Землю в виде инфракрасного излучения.Солнечный свет в зените обеспечивает освещенность чуть более 1 киловатт на квадратный метр на уровне моря. Из этой энергии 527 Вт составляет инфракрасное излучение, 445 Вт — видимый свет и 32 Вт — ультрафиолетовое излучение. Баланс между поглощенным и испускаемым инфракрасным излучением критически влияет на климат Земли. Инфракрасный свет используется в промышленных, научных и медицинских приложениях. Приборы ночного видения, использующие инфракрасное освещение, позволяют наблюдать за людьми или животными без обнаружения наблюдателя.В астрономии получение изображений в инфракрасном диапазоне длин волн позволяет наблюдать объекты, скрытые межзвездной пылью. Инфракрасные камеры используются для обнаружения потери тепла в изолированных системах, для наблюдения за изменением кровотока в коже и для обнаружения перегрева электрических устройств. Инфракрасное изображение широко используется в военных и гражданских целях.

Военные приложения включают обнаружение целей, наблюдение, ночное видение, самонаведение и сопровождение. Использование в невоенных целях включает анализ тепловой эффективности, мониторинг окружающей среды, инспекции промышленных объектов, дистанционное измерение температуры, беспроводную связь малого радиуса действия, спектроскопию и прогнозирование погоды.Инфракрасная астрономия использует телескопы, оборудованные датчиками, для проникновения в пыльные области космоса, такие как молекулярные облака; обнаруживать такие объекты, как планеты, и просматривать объекты с сильным красным смещением с первых дней существования Вселенной. Люди при нормальной температуре тела излучают в основном на длинах волн около 10 мкм (микрометров), как показывает закон смещения Вина. На атомном уровне энергия инфракрасного излучения вызывает колебательные моды в молекуле посредством изменения дипольного момента, что делает его полезным частотным диапазоном для изучения этих энергетических состояний для молекул надлежащей симметрии.Инфракрасная спектроскопия изучает поглощение и пропускание фотонов в инфракрасном диапазоне энергии в зависимости от их частоты и интенсивности.

Лечебное действие инфракрасных лучей

  • помогает нормализовать повышенное давление, улучшить и стабилизировать кровообращение; благотворно влияет на боли в области спины и мышц, шипы, бронхиты, астматические расстройства;
  • помогает при простуде, переутомлении и истощении человеческого организма;
  • полезен при воспалении ушей, носа и горла;
  • уменьшает боль при артритах и ​​ревматических заболеваниях, в том числе при грыже межпозвоночного диска;
  • облегчает функцию почек;
  • в стрессовых ситуациях;
  • в процедурах для уменьшения целлюлита и переваривания жиров;
    и др.,

Отопление

Инфракрасное излучение можно использовать в качестве источника тепла. В нескольких исследованиях изучались возможности использования инфракрасных саун для лечения хронических проблем со здоровьем, таких как высокое кровяное давление, застойная сердечная недостаточность и ревматоидный артрит, и были обнаружены некоторые доказательства их пользы. Например, он используется в инфракрасных саунах для обогрева находящихся в них людей, а также для удаления льда с крыльев самолетов (противообледенительная обработка). Дальнее инфракрасное излучение также набирает популярность как безопасный метод тепловой терапии естественного ухода за здоровьем и физиотерапии.Инфракрасное излучение можно использовать при приготовлении пищи и нагревании пищи, поскольку оно в основном нагревает непрозрачные абсорбирующие предметы, а не воздух вокруг них. Инфракрасное отопление также становится все более популярным в промышленных производственных процессах, например отверждение покрытий, формовка пластмасс, отжиг, сварка пластмасс, сушка печати. В этих приложениях инфракрасные обогреватели заменяют конвекционные печи и контактное отопление. Инфракрасные обогреватели производят тепло, которое является продуктом невидимого света, и состоят из трех частей: инфракрасных лампочек, теплообменника и вентилятора, который нагнетает воздух в теплообменник для рассеивания тепла.Эффективность достигается за счет согласования длины волны инфракрасного обогревателя с характеристиками поглощения материала. Инфракрасные обогреватели обычно используются в инфракрасных модулях (или банках излучателей), объединяющих несколько обогревателей для достижения большей обогреваемой площади. Инфракрасные обогреватели обычно классифицируются по длине волны, которую они излучают: ближние инфракрасные (NIR) или коротковолновые инфракрасные обогреватели работают при высоких температурах нити накала выше 1800 ° C и при установке в поле достигают высокой плотности мощности в несколько сотен кВт / м2.Их пиковая длина волны намного ниже спектра поглощения воды, что делает их непригодными для многих применений сушки. Они хорошо подходят для нагрева кремнезема там, где требуется глубокое проникновение. Средневолновые и углеродные (CIR) инфракрасные обогреватели работают при температуре нити накала около 1000 ° C. Они достигают максимальной плотности мощности до 60 кВт / м2 (средние волны) и 150 кВт / м2 (CIR). Излучатели дальнего инфракрасного диапазона (FIR) обычно используются в так называемых низкотемпературных саунах с дальним инфракрасным диапазоном. Они составляют только более высокую и дорогую категорию инфракрасных саун.Вместо использования углеродных, кварцевых или керамических излучателей высокой мощности, которые излучают ближнее и среднее инфракрасное излучение, тепло и свет, в излучателях дальнего инфракрасного диапазона используются керамические пластины низкой мощности, которые остаются холодными, но при этом излучают дальнее инфракрасное излучение.

Косметические аппликации

Инфракрасные лучи проникают в кожу на глубину до 3-4 мм, они нагревают человеческое тело и, в основном, кожу, стимулируя кровообращение, следовательно, снабжение клеток кожи питательными веществами и кислородом значительно улучшается, следовательно, общее состояние кожи.Глубоко согревая кожу, увеличивает секрецию пота. В результате этого процесса ускоряется высвобождение мертвых клеток, появившихся из организма вредных токсинов, помогает в похудании, облегчается переваривание жировой ткани, поры кожи открываются и очищаются намного легче и быстрее, и кожа приобретает повышенную эластичность и гладкость. , При постоянном воздействии инфракрасного излучения в значительной степени снижается вероятность возникновения различных кожных проблем, таких как перхоть, угри, угри и т. Д. Процедуры с использованием инфракрасных лучей применяются при лечении псориаза, экземы, разглаживания морщин, заболеваний суставов, кожных повреждений и т. Д.

Инфракрасные лучи и массаж

В массаже часто используется изначально согревание инфракрасным теплом. Инфракрасные лучи непосредственно нагревают кожу и расслабляют мышцы, что способствует качественному массажу. Разогретые мышцы и ткани расслабляют тело, и этот вид массажа имеет длительный и эффективный эффект. Благодаря массажу улучшается кровообращение, снижается стресс и усталость, повышается концентрация, ускоряются все процессы в организме = улучшается здоровье.

Инфракрасная связь

Инфракрасная передача данных

также используется для связи на короткие расстояния между компьютерными периферийными устройствами и персональными цифровыми помощниками.Эти устройства обычно соответствуют стандартам, опубликованным IrDA, Infrared Data Association. В пультах дистанционного управления и устройствах IrDA используются инфракрасные светодиоды (LED) для излучения инфракрасного излучения, которое фокусируется пластиковой линзой в узкий луч. Луч модулируется, то есть включается и выключается для кодирования данных. В приемнике используется кремниевый фотодиод для преобразования инфракрасного излучения в электрический ток. Он реагирует только на быстро пульсирующий сигнал, создаваемый передатчиком, и отфильтровывает медленно меняющееся инфракрасное излучение окружающего света.Инфракрасная связь полезна для использования внутри помещений в районах с высокой плотностью населения. ИК-излучение не проникает через стены и поэтому не мешает работе других устройств в соседних комнатах. Инфракрасный порт — это наиболее распространенный способ дистанционного управления устройствами. Протоколы инфракрасного дистанционного управления, такие как RC-5, SIRC, используются для связи с инфракрасным.

Инфракрасная фотография

В инфракрасной фотографии инфракрасные фильтры используются для захвата ближнего инфракрасного спектра. В цифровых камерах часто используются блокаторы инфракрасного излучения.Более дешевые цифровые фотоаппараты и телефоны с камерой имеют менее эффективные фильтры и могут «видеть» интенсивную ближнюю инфракрасную область, которая проявляется в ярком пурпурно-белом цвете. Это особенно заметно при съемке объектов вблизи областей с ИК-яркостью (например, возле лампы), где возникающие инфракрасные помехи могут размыть изображение. Существует также метод, называемый «Т-лучевая визуализация», который заключается в использовании дальнего инфракрасного или терагерцового излучения. Отсутствие ярких источников делает фотосъемку в терагерцовом диапазоне технически более сложной задачей, чем большинство других методов получения инфракрасных изображений.В последнее время визуализация в Т-лучах вызывает значительный интерес из-за ряда новых разработок, таких как терагерцовая спектроскопия во временной области.

Астрономия

Астрономы наблюдают за объектами в инфракрасной части электромагнитного спектра с помощью оптических компонентов, включая зеркала, линзы и твердотельные цифровые детекторы. По этой причине он классифицируется как часть оптической астрономии. Для формирования изображения компоненты инфракрасного телескопа должны быть тщательно защищены от источников тепла, а детекторы охлаждаются жидким гелием.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *