Как работает солнечный коллектор: Принцип работы солнечного коллектора, как выбрать гелиосистему для дома

Содержание

Солнечный коллектор зимой. Эффективность использования плоского и вакуумного коллектора зимой.

В этой статье: Работает ли зимой солнечный коллектор? Сравнение эффективности работы зимой вакуумного и плоского солнечного коллектора. Плюсы и минусы гелиосистемы. Отзыв владельца. Видео по теме.

Солнечный коллектор зимой.

Эффективность использования плоского и вакуумного коллектора зимой.

В последнее время альтернативные источники энергии вызывают все более живой интерес со стороны наших соотечественников. Наиболее простыми из них в устройстве являются солнечные коллекторы, благодаря чему их доля в нетрадиционной энергетике, особенно бытовой, чрезвычайно велика. Данная статья поможет найти ответ на вопрос: насколько эффективным является солнечный коллектор зимой?

Работает ли зимой солнечный коллектор?

Как свидетельствует статистика (данные приведены в Википедии), на 1 тыс. россиян приходится примерно 0,2 кв. м применяемых у нас солнечных коллекторов, тогда как в Германии этот показатель составляет 140 кв. м, а в Австрии – целых 450 кв. м. на 1 тыс. жителей.

Столь значительную разницу нельзя объяснить одними только климатическими условиями. Ведь на большей части России за день поверхности земли достигает такое же количество солнечной энергии, как и на юге Германии – в теплое время эта величина составляет от 4 до 5 кВт*ч/кв. м.

Чем же вызвано наше отставание? Отчасти оно обусловлено сравнительно низкими доходами россиян (гелиоустановки являются пока довольно дорогим удовольствием), отчасти – наличием собственных крупных газовых месторождений и, как следствие, доступностью голубого топлива.

Но немалую роль сыграло и предвзятое отношение со стороны многих потенциальных пользователей, считающих установку солнечного коллектора нецелесообразной. Дескать, летом и так тепло, а зимой от подобной системы мало проку.

Вот какие аргументы выдвигают скептики касательно эксплуатации гелиоустановок зимой:

  1. Установку постоянно засыпает снегом, так что солнечное излучение достигает её не так уж часто. Если, конечно, владелец не дежурит постоянно на крыше с веником или щеткой.

  2. Холодный морозный воздух отбирает почти все тепло, накапливаемое коллектором.

  3. Часто упоминают и всесезонный поражающий фактор – град, который может разнести гелиоустановку вдребезги.

Чтобы понять, насколько справедливы эти доводы, рассмотрим устройство различных видов солнечных коллекторов.

Устройство и область применения в быту.

На сегодняшний день наибольшее распространение нашли плоские и вакуумные солнечные коллекторы.

Плоские солнечные коллекторы

Плоский коллектор состоит из элемента, поглощающего солнечное излучение (абсорбер), прозрачного покрытия и термоизолирующего слоя.

Абсорбер связан с теплопроводящей системой. Он покрывается чёрной краской либо специальным селективным покрытием (обычно чёрный никель или напыление оксида титана) для повышения эффективности. Прозрачный элемент обычно выполняется из закалённого стекла с пониженным содержанием металлов, либо особого рифлёного поликарбоната. Задняя часть панели покрыта теплоизоляционным материалом (например, полиизоцианурат). Трубки, по которым распространяется теплоноситель, изготавливаются из сшитого полиэтилена либо меди. Сама панель является воздухонепроницаемой, для чего отверстия в ней заделываются силиконовым герметикой.

При отсутствии забора тепла (застое) плоские коллекторы способны нагреть теплоноситель до 190—210°C. Чем больше падающей энергии передаётся теплоносителю, протекающему в коллекторе, тем выше его эффективность. Повысить её можно, применяя специальные оптические покрытия, не излучающие тепло в инфракрасном спектре, эффективность которого может составлять около 95%. Стандартным решением повышения эффективности коллектора стало применение абсорбера из листовой меди из-за её высокой теплопроводности, поскольку применение меди против алюминия даёт выигрыш 4 % (хотя теплопроводность алюминия вдвое меньше, что означает значительное превышение «запаса мощности» по теплопередаче), что незначительно в сравнении с ценой). Также высокая эффективность достигается увеличением площади контакта трубки и медного листа: у формованного листа и паянного соединение она максимальна, у соединения ультразвуковой сваркой — меньше. Используется также алюминиевый экран.

Вакуумные солнечные коллекторы.

Возможно повышение температур теплоносителя вплоть до 250—300 °C в режиме ограничения отбора тепла. Добиться этого можно за счёт уменьшения тепловых потерь в результате использования многослойного стеклянного покрытия, герметизации или создания в коллекторах вакуума.

Фактически солнечная вакуумная труба имеет устройство, схожее с бытовыми термосами. Только внешняя часть трубы прозрачна, а на внутренней трубке нанесено высокоселективное покрытие, улавливающее солнечную энергию. Между внешней и внутренней стеклянной трубкой находится вакуум. Именно вакуумная прослойка даёт возможность сохранить около 95 % улавливаемой тепловой энергии.

Кроме того, в вакуумных солнечных коллекторах нашли применение медные тепловые трубки, выполняющие роль проводника тепла. При воздействии на коллектор солнечным светом жидкость, находящаяся в нижней части трубки, нагреваясь, превращается в пар. Пары поднимаются в верхнюю часть трубки (конденсатор), где конденсируясь передают тепло коллектору.

Использование данной схемы позволяет достичь большего КПД (по сравнению с плоскими коллекторами) при работе в условиях низких температур и слабой освещенности.

Современные бытовые солнечные коллекторы способны нагревать воду вплоть до температуры кипения даже при отрицательной окружающей температуре.

Видео сравнение работы плоского и вакуумного коллектора зимой

В быту гелиоустановки применяются для приготовления горячей воды, в том числе для бань, подогрева бассейна либо в качестве дополнительного источника тепла для системы отопления.

В промышленности сфера применения таких систем является более широкой: на их основе сооружают опреснители воды, парогенераторы (пар приводит в движение различные машины) и даже электростанции.

Эффективность зимой

Эффективно ли отопление дома солнечными коллекторами зимой? Ну что же, теперь посмотрим, как различные виды солнечных коллекторов работают в условиях зимы. Напомним, что противники внедрения таких установок выдвигают следующие аргументы:

Засыпание панели снегом: данная проблема актуальна только для плоско-пластинчатых коллекторов. На трубках вакуумных установок, как показала практика, снег задерживается только в тех редких случаях, когда в силу особых погодных условий на их поверхности образуется изморозь. Если же во время снегопада дует хотя бы слабый ветер (от 3 м/с), панель точно останется чистой.

Из-за того, что коллектор окружен холодным воздухом, все тепло с коллектора улетучивается: этот аргумент опять же справедлив только в отношении плоско-пластинчатых коллекторов. Действительно, зимой производительность такой установки в сравнении с летней уменьшается пятикратно. В более совершенных вакуумных моделях прослойка вакуума позволяет сберечь до 95% усвоенного тепла. Самые современные модели даже в сильный мороз способны довести воду до кипения.

Коллектор легко может быть поврежден градом: в заводских условиях коллекторы изготавливаются из высокопрочных материалов. Посмотрите видеоролик, снятый во время испытаний вакуумной трубки на ударную прочность.

Видео. Испытание солнечного коллектора на прочность.

Трубка выполнена из чрезвычайно крепкого боросиликатного стекла которое выдерживает удары града который падает со скоростью 18 м/с и имеет 35 мм диаметре.

  Как видно, солнечные коллекторы зимой вполне работоспособны. Хотя, конечно, производительность их в сравнении с летним периодом ощутимо снижается.  

Плюсы и минусы гелиосистемы

 Им присущ более высокий КПД по сравнению с фотоэлектрическими элементами и ветрогенераторами.

 Усваиваемая с их помощью энергия является абсолютно бесплатной.

 Работа солнечного коллектора полностью безвредна для экологии: используемый ресурс – солнечное тепло — является неисчерпаемым и усваивается напрямую, без сжигания чего-либо и загрязнения окружающей среды.

 Теперь укажем слабые места гелиоустановок:

  • Коллекторы стоят пока сравнительно дорого

  • Из-за переменчивости погодных условий производительность коллектора не стабильна.

  • Систему приходится оснащать довольно вместительным баком-накопителем с хорошей теплоизоляцией.

Отзыв владельца о работе солнечного коллектора зимой.

Видео о работе солнечной сплит-системы SH-200-24 торговой марки «АНДИ Групп»

Предлагаем Вашему вниманию всесезонные солнечные коллекторы торговой марки АНДИ Групп

Солнечная сплит-система ЭЛИТ

Система на основе вакумного солнечного коллектора: (объём бака от 200 до 1000л)

 

Солнечная сплит-система СТАНДАРТ

Система на основе вакумного солнечного коллектора: (объём бака от 100 до 500л)

 

Солнечный вакуумный коллектор ПАНЕЛЬ

Количество трубок в коллекторе: 12,15,18,20,24,30 (в зависимости о модели)

 

Солнечный коллектор УНИВЕРСАЛ

Количество трубок в коллекторе: 15,20,24,30 (в зависимости о модели)

   Остались вопросы? Напишите нам!

Принцип работы воздушного солнечного коллектора

Воздушный солнечный коллектор – оборудование для вентиляции и отопления строений различного назначения, работающее исключительно на солнечной энергии. Воздушные солнечные коллекторы Solar Fox делятся на два типа по своему назначению: для отопления и вентиляции (комплектующие для обоих типов входят в набор каждого коллектора). Но при этом устройства солнечной вентиляции и солнечного отопления незначительно отличаются принципом работы и спецификой монтажа.

Оглавление

  1. Как работают приборы Solar Fox для отопления
  2. Как работают солнечные устройства для вентиляции
  3. Задачи, которые решают воздушные солнечные коллекторы

Как работает солнечный коллектор Solar Fox при отоплении

как работает воздушный солнечный коллектор

Как работают приборы солнечного отопления?

  1. При попадании солнечных лучей на лицевую сторону коллектора, гелиоколлектор нагревается.
  2. Солнечная панель вырабатывает ток и запускает вентилятор.
  3. Через входные отверстия в коллектор из помещения втягивается воздух.
  4. Воздух прогревается в гелиоколлекторе, его температура при этом поднимается на 10-40ºС.
  5. Вентилятор нагнетает прогретый воздух в комнаты.
  6. Разогретые воздушные массы вытесняют холодный воздух, который отводится через естественные зазоры или вытяжное отверстие.

Механический выключатель дает возможность отключать устройство, если отопление помещений не требуется. Обратный клапан, входящий в комплектацию коллектора, не позволяет теплым воздушным массам покидать помещение.
Как работают приборы солнечного отопления, зависит от соблюдения рекомендаций по расположению устройств.
При выборе места расположения учитывается количество падающей тени. Оптимальное положение для крепления коллектора – южная стена. Допустим монтаж на юго-восточной или юго-западной стороне. Рекомендуется горизонтальное расположение коллектора, но возможно и вертикальное размещение устройства.

Как работает вентиляция солнечными коллекторами Solar Fox

принцип действия солнечного коллетора

Как работают устройства солнечной вентиляции?

  1. Солнечные лучи попадают на лицевую сторону коллектора, гелиоприемник нагревается.
  2. Солнечная панель вырабатывает ток, включается вентилятор, который забирает воздух с улицы, через специальное отверстие. Внутри коллектора установлен фильтр, который дополнительно очищает воздух.
  3. Воздух прогревается в гелиоприемнике и нагнетается внутрь помещения.
  4. Возникает принудительная циркуляция воздушных масс в комнатах, за счет чего углекислый газ удаляется через естественные щели или специально предусмотренное выходное отверстие.

Существует несколько схем крепления воздушных солнечных коллекторов. Устройство можно разместить на стене или крыше. Схема крепления выбирается, исходя из характеристик объекта и пожеланий клиента. В любом случае обеспечивается качественное вентилирование и дополнительный прогрев помещений.

Задачи, которые решает солнечный коллектор

Воздушный солнечный коллектор подбирается исходя из целей клиента и площади дома. Многообразие отопительных и вентиляционных моделей позволяет найти эффективное решение для:

  1. Жилых построек: домов, дач, загородных коттеджей сезонного или постоянного проживания, времянок.
  2. Хозяйственных помещений: гаражей, бань, подвалов, чердаков, погребов, складов, ангаров, овощехранилищ.
  3. Объектов специального назначения: оранжерей, питомников, теплиц.

Принцип действия воздушных солнечных коллекторов прост и понятен, при этом устройства способны заменить традиционное электрическое оборудование: кондиционеры, конвекторы, осушители воздуха (зависит от типа помещения). С помощью коллекторов с успехом решаются следующие задачи:

Установление в помещении здорового микроклимата: поддержание оптимального температурно-влажностного режима, комфортного для человека, животных, растений.
Создание дополнительного отопления, в том числе в домах временного проживания, на сезонных объектах, не электрифицированных зданиях.
Полноценный воздухообмен и вентилирование: постоянный приток свежего, чистого и теплого воздуха и удаление углекислого газа, неприятных запахов, застоявшихся воздушных масс.

Полезная информация о вентиляции и отоплении

Варианты применения солнечных устройств обогрева и вентиляции

Дилеры компании Solar Fox

Если вы хотите сотрудничать с производителем

Солнечные коллекторы для отопления дома, принцип работы гелиосистемы, особенности подключения коллекторов

Солнечный коллектор

Солнечный коллекторЛюбой солнечный коллектор — это особый вид климатической техники. Она используется для производства горячей воды, чтобы в дальнейшем использовать её для различных нужд. Возможность внедрения возобновляемых бесплатных источников энергии в производственный цикл становится главным отличием коллекторов от другой подобной техники. Принцип изменения плотности воды во время её нагрева — вот на чём основана работа таких устройств. Это означает, что осуществляется движение воды наверх, для дальнейшего подогрева выталкиваются более холодные участки воды. Так что нет необходимости использовать какое-либо дополнительное насосное оборудование.

Как работает коллектор в системе отопления

Гелиосистема

ГелиосистемаЧаще всего гелиосистемы используют для своей работы обычную воду, а так же антифриз. Если по сравнению с коллектором температура воды в нижней части ниже, включается обогрев. Вода перемещается по системе благодаря встроенному насосу. Нагрев воды в накопителе происходит через теплообменник, обычно коллекторы нагреваются только до определённой температуры.

При необходимости направление воды в системе меняется благодаря смесителю. Таким образом, остывающая и тёплая вода время от времени сменяют друг друга. За счёт расширения тёплой воды происходит замена жидкости в системах с естественной циркуляцией. При нагреве тёплая вода поднимается вверх, холодная выталкивается в нагревательный бак.

Обязательно наличие теплоизоляционного слоя толщиной как минимум 25−30 сантиметров, иначе система не сможет работать стабильно. Что касается резервуара, то лучше всего использовать прямоугольную форму. При соблюдении этого условия вода будет равномерно распределяться по всем имеющимся участкам. Так что работа системы в целом станет более полноценной.

Отопление домов солнечными коллекторами

Затраты на обогрев частного дома могут снизиться до 50−90 процентов, если правильно смонтировать солнечные коллекторы. Весна-осень — период, когда обогрев происходит особенно активно, хотя в принципе система работает в любое время года.

Главные параметры, которые нужно рассчитывать при выборе коллектора:

  • площадь гелиосистемы
  • количество тепловой энергии

Если система будет использоваться в зимний период, то и расчёты проводятся соответственно. Ведь в зимние морозы требуется гораздо больше энергии и затрат для того, чтобы помещение было комфортным для проживания.

Коллекторы

КоллекторыДостаточно часто солнечные коллекторы выступают лишь дополнительными источниками тепла. Автономное использование гелиосистемами тоже возможно, если теплоизоляция дома выполнена правильно.

Естественная циркуляция воды за счёт конвекционных потоков — лишь один из принципов, по которому может быть организована гелиосистема. Из-за пассивной циркуляции воды этот вариант менее эффективен, чем все остальные. Бак обязательно примыкает к коллектору, но в то же время находится выше него.

Дополнительные электрические циркуляционные насосы используются в системах с принудительной циркуляцией. В данном случае сами коллекторы становятся более эффективными, поскольку более эффективно используется вода. Но к обслуживанию такие устройства более требовательны, всё зависит от электрической энергии, за счёт которой всё работает.

Подключение коллекторов к системе отопления

От того, какой тип циркуляции используется в той или иной системе, зависит то, как будет производиться подключение к отопительной системе. Подключение к системе с естественной циркуляцией — один из самых простых способов. Здесь главным принципом становится только нагрев воды в системе отопления.

Гелиосистема

ГелиосистемаВыше уровня коллектора подключается накопительный бак. Верхний вывод, таким образом, должен подключаться ко входу горячей воды в систему отопления, а нижний к обратке. На входе в солнечный коллектор для отопления в таком случае могут возникнуть воздушные пробки. Потому такие системы стоят дешевле, чем вариант с использованием насосов.

С использованием автоматики можно подключить солнечный коллектор к системе с принудительной циркуляцией. Эти системы обладают своими особенностями:

  1. Контроллер управляет насосом на основе показаний специальных датчиков.
  2. Когда по этим датчикам температура достигает заданного значения, обогрев прекращается
  3. Бак-накопитель, обратка и выход коллектора — места, где обязательно устанавливаются такие датчики
  4. Вместе с такой системой лучше использовать дополнительные источники тепла. Например, твердотопливные или газовые котлы.

На степень нагрева воды в системе в таких случаях влияет местоположение коллектора по отношению к солнцу, а так же уровень его наклона. Лучше с самого начала устанавливать коллекторы так, чтобы под прямыми солнечными лучами они находились большую часть дня. Объём бака в морозный период лучше выбирать около 40 см³, если не планируется подключать дополнительные источники тепла. Иначе в пасмурные дни система будет работать не совсем эффективно.

Довольно сложно рассчитать количество квадратных метров, которые необходимы для той или иной системы коллекторов. Здесь важны не только наклон крыши и сторона, значение приобретают уровень солнечной радиации в данном регионе, объём накопителя. Потому все расчёты лучше доверить квалифицированным специалистам.

Сейчас производством солнечных коллекторов занимаются разные производители. Выбирая ту или иную марку, надо обязательно обратить внимание на её производительность. В перерасчёте на м2 у каждой торговой марки она может быть своя. И в некоторых случаях разница становится действительно заметной.

Коллекторы из поликарбоната

Листы ячеистого поликарбоната или полипропилена — главные элементы, из которых состоят такие коллекторы. К торцам листов крепится непосредственно сам коллектор. Только в специальном жестяном крытом коробе необходимо осуществлять монтаж подобной системы. В качестве крышки следует использовать дополнительный лист из поликарбоната. Можно сделать и стеклянную крышку, но, если светопроницаемость будет излишний, поликарбонат создаст парниковый эффект, так что всё будет похоже на двойное остекление. Так что лучше всё делать полностью из поликарбоната, так система будет работать стабильнее.

Дополнительная информация о структуре

Сам солнечный коллектор становится главным элементом в системе нагрева воды. Эта конструкция может быть отнесена к одной из трёх групп:

  • плоские коллекторы
  • вакуумные коллекторы
  • водяные коллекторы

Коллектор

КоллекторАлюминиевая рама становится основой для плоских коллекторов. Внутри неё располагаются медные трубки, сверху их покрывает специальный поглощающий материал. Снизу находится теплоизоляция. Закалённое стекло практически полностью закрывает эту конструкцию, само стекло всегда отличается большой пропускной способностью относительно света. Такие системы можно включать только в определённое время года, а можно пользоваться ими круглый год.

Рама с вакуумными трубками из боросиликатного стекла — вот что используется для изготовления вакуумных коллекторов. Ещё одна колба со специальным поглощающим покрытием имеется при этом внутри каждой отдельной трубки. Медная трубка с теплоносителем под низким давлением располагается в самих колбах. В теплообменник с жидкостью помещается конец медной трубки, именно туда выделяется тепловая энергия, которая аккумулируется в системе.

Конструкция типа «морская трубка» тоже является отдельной разновидностью вакуумных коллекторов. Бак для воды и трубки в этом случае находятся на раме. Внутри каждой трубки находится ещё одна трубка, между ними обязательно устраивается специальное вакуумное пространство. Слоем абсорбента покрыты вакуумные трубки, более того, они заполнены водой. Когда происходит нагрев, вода поднимается в бак. Холодная опускается к трубкам для нагрева. Такие системы ещё называются водяными солнечными коллекторами.

Бак-аккумулятор выступает вторым элементом, который обязательно присутствует в любой системе. Именно он используется для хранения воды, в дальнейшем потребляющейся для различных нужд. Наружную часть бака лучше утеплить отдельным слоем толщиной минимум в 3 сантиметра, иначе в холодное время года он не сможет сохранить тепло. Бойлер для солнечного коллектора тоже подождёт.

На что следует обратить внимание

Любые гелиоустановки характеризуются номинальной мощностью, которая обозначается в киловаттах. Это количество энергии, которое вырабатывается при ярком солнце в зените. Это означает, что эффективность системы будет снижаться утром и вечером. Ночью, скорее всего, можно будет использовать горячую воду только из бойлера, где вода копилась на протяжении целого дня.

Выбирая модель коллектора, обратите внимание на то, можно ли его использовать в зимний период. И на то, какая мощность должна быть у системы, к которой коллектор подключается. Установка коллекторов обычно осуществляется на крышу или на каркас, который монтируется отдельно.

Гелиосистема для загородного дома (видео)

Оцените статью: Поделитесь с друзьями!

принцип работы и типы гелиосистем

Содержание статьи:

Каждый хоть раз в жизни пользовался летним душем. В жаркие солнечные дни вода в чёрной ёмкости наверху может оказаться очень горячей. Энергия впечатляющая, причём достаётся по нулевым тарифам. Смекалистые домовладельцы всерьёз задумываются о том, как более продуктивно использовать этот мощный источник тепла. Некоторым удаётся создать вполне рабочие самодельные гелиосистемы, однако сейчас не проблема приобрести фабричный солнечный коллектор для отопления дома и других целей. О том, насколько эффективны такие решения, и как они реализуются, поговорим далее.

Принцип работы солнечных коллекторов

Немного физики

Солнце – источник тепла. Лучи небесного светила (видимые и невидимые) переносят большое количество энергии, поэтому ультрафиолетовое и инфракрасное излучение ещё называют радиацией. Свет, попадающий на предметы, «впитывается» материалами, молекулы в них начинают двигаться быстрее, поверхности нагреваются. Это явление и применяют в системах отопления солнечными коллекторами.

Перспективы отопления гелиосистемами в течение года

Объекты по-разному воспринимают солнечное облучение. Они могут быть прозрачными для одного вида радиации, собирающими для другого, и наоборот. Некоторые материалы одновременно впитывают и отражают солнечные лучи. Негладкие матовые поверхности чёрного цвета улавливают энергию интенсивнее, чем светлые, блестящие и гладкие. Больше лучей – больше потенциального тепла.

Как гелиосистема «снимает» и использует солнечную энергию

В отличие от фотоэлектрических панелей (солнечных батарей), гелиосистема не вырабатывает электроэнергию. Солнечные коллекторы для отопления дома сами греют теплоноситель, без вспомогательных электрических приборов. Горячий теплоноситель попадает в специальную ёмкость, где через теплообменник передаёт тепло воде из системы отопления (получается своеобразный первичный замкнутый контур с независимой циркуляцией носителя). Накопительный бак, в свою очередь, интегрируют в отопительную систему с твердотопливным, дизельным или электрическим котлом в качестве основного теплогенератора.

Принципиальное устройство воздушного солнечного коллектора

Есть модели, в которых теплоносителем выступает воздух, прокачиваемый вентиляторами по системе каналов в заданные зоны. Они не так продуктивны, как водяные, но пригодятся для отопления технических помещений, теплиц, подготовки воздуха системы вентиляции или сушки сельхозпродукции. Главное достоинство – всесезонность (нет жидкостей – нет проблем с их замерзанием).

Важно! Отопление от солнечных коллекторов – не единственный вариант применения солнечной энергии в быту. Тепло, «произведённое» гелиосистемой, используют для запитки контура ГВС, подготовки воды в бассейнах и других нужд.

Виды солнечных коллекторов

По используемому теплоносителю:

  • Водяные (в основном применяют антифриз).
  • Воздушные.

Водяные системы в зависимости от способа использования теплоносителя разделяют на:

  • Пассивные. По сути, это просто водонагревателями с баком, установленным на крыше или фасаде дома. Пассивные устройства в основном предназначены для получения горячей воды.
  • Активные («сплит»). Посредством трубопроводов соединены с отдельно стоящим аккумулирующим баком, расположенным внутри здания, поэтому теряют меньше тепла и не боятся морозов. Для обеспечения циркуляции в систему устанавливают насосы. Чтобы активное отопление на солнечных коллекторах работало круглый год, накопитель доукомплектовывают ТЭНами для догрева.

Пассивный вакуумный моноблок для сезонного использования

Виды водяных коллекторов по принципу передачи тепла:

  • Косвенного действия. Используют аккумулирующий бак, подключенный к контуру отопления или ГВС.
  • Прямоточные («под давлением»). Посредством кранов и клапанов модуль подключают к водопроводу, то есть холодная вода выталкивает горячую, как в бытовом электрическом бойлере.

По типу конструкции водяные коллекторы бывают:

  • Плоские – представляют собой коробчатую панель, дно покрыто теплоизоляционным материалом, чтобы не терять энергию через тыльную сторону. На этом слое по всей площади располагается пластина, которая поглощает солнечный свет и нагревается. В штампованных углублениях адсорбирующей пластины (под ней) проходят трубки с теплоносителем. Сверху панель покрыта защитным стеклом.
  • Вакуумные – батареи из параллельных стеклянных труб, в которых циркулирует теплоноситель.

Начинка плоского солнечного коллектора

Устройство вакуумного солнечного коллектора для отопления

Рассмотрим функциональную нагрузку основных комплектующих вакуумного солнечного коллектора для отопления.

  1. Вакуумная трубка – первичный теплообменник. Наружный слой выполнен из прочного прозрачного боросиликатного стекла. Внутри каждой колбы – адсорбер с многослойным покрытием, усиливающим поглощение солнечной энергии. Между стеклом и адсорбером воздух выкачан, вакуумная прослойка сохраняет тепло, создавая эффект термоса. В колбе установлены U-образные или Н-образные трубки с рабочей жидкостью.
  1. Бак-аккумулятор выступает вторичным теплообменником. Через змеевик тепло передаётся теплоносителю из основного контура водяного отопления. В пасмурные дни данный элемент позволяет пользоваться накопленным теплом. У бака двойной корпус (внутренний кожух из нержавейки), пространство между стенками заполнено полиуретаном. Часто бак комплектуют нагревательными элементами для искусственного подогрева теплоносителя.
  1. Контроллер предназначен для автоматизации работы коллектора. Он принимает показания датчиков и отдаёт команды: на подпитку системы, на включение ТЭНа или циркуляционного насоса.
  1. Циркуляционный насос обеспечивает транспортировку теплоносителя между тепловой трубкой коллектора и выносным накопительным баком, благодаря чему на 20-25% повышается эффективность установки. Иногда для достижения автономности насосы снабжаются фотоэлектрической панелью, небольшое гидравлическое сопротивление позволяет использовать маломощные напорные устройства. Встречаются также конструкции с естественной циркуляцией.

Схема подключения гелиосистемы в частном доме

Элементы вакуумной трубки солнечного коллектора

  1. Трубопроводы с запорно-регулирующей арматурой (подающий и обратный) соединяют аккумулирующую ёмкость с коллектором.

Важно! Чтобы сократить теплопотери, трубы контура гелиосистемы обязательно утепляют рукавами из вспененного каучука с толщиной стенок от 20 мм.

  1. Расширительный бак должен компенсировать расширение нагретого теплоносителя, поскольку контур солнечного коллектора замкнут. Обычно используют модели, рассчитанные на 6-10 атмосфер.
  1. Опорные металлоконструкции позволяют выставить коллектор под необходимым углом к солнцу. Раму изготавливают из стали или алюминия, она должна выдерживать порывы ветра до 30 м/с.

Производительность отопления солнечными коллекторами

Ключевую роль играет характер инсоляции в конкретной местности, например, важным показателем может оказаться высота над уровнем моря. Пользователи из южных регионов, где более трёхсот солнечных дней в году, по достоинству оценят работу гелиосистемы. Больше всего тепла можно получить в ясную погоду, когда солнце в зените. Вечером и утром, а также в пасмурные дни производительность системы неизбежно падает. Чтобы «поймать» максимум лучей, нужно правильно установить коллектор: выдержать угол наклона, ориентировать модули на юг, устранить возможность затенения (высокие соседние здания, деревья).

Выбор оптимального угла установки коллектора в зависимости от времени года и направления

Важно! Для отопления при помощи гелиосистемы лучше отказаться от радиаторной разводки и отдать предпочтение системе тёплых полов, так как для их работы нужен теплоноситель с гораздо меньшей температурой.

Расчет солнечного коллектора для отопления основывается на киловаттах, которые нужно компенсировать, и реальных технических условиях. Пользователь может собрать систему из нескольких модулей, таким образом увеличив ее производительность. Для заводских изделий всегда указывается удельная полезная мощность (кВт/м2), но фактически она зависит от способа соединения коллекторов, от расхода теплоносителя и других нюансов. Чтобы капиталовложения не пропали даром, для расчётов и монтажа обратитесь к специалистам.

Видео: как работает солнечный коллектор

Понравилась статья? Поделитесь с друзьями:

Солнечный коллектор своими руками для отопления дома

Различные солнечные коллекторы появились на рынке достаточно давно. Это устройства, использующие энергию солнца для нагрева воды на домашние нужды. Но приобрести популярность среди пользователей им мешает высокая стоимость, это беда всех альтернативных источников энергии. Например, общие затраты на приобретение и монтаж установки, что обеспечит нужды средней семьи, составят 5000$. Но выход есть: можно сделать солнечный коллектор своими руками из доступных по цене материалов. Какими способами это реализовать, будет рассказано в данном материале.

Как работает солнечный коллектор?

Принцип действия коллектора основан на поглощении (абсорбции) тепловой энергии солнца специальным приемным устройством и передачей его с минимальными потерями теплоносителю. В качестве приемника используются медные или стеклянные трубки, окрашенные в черный цвет.

Ведь известно, что лучше всего абсорбируют тепло предметы, имеющие темную или черную окраску. Теплоносителем чаще всего выступает вода, иногда – воздух. По конструкции солнечные коллекторы для отопления дома и горячего водоснабжения бывают таких видов:

  • воздушные;
  • водяные плоские;
  • водяные вакуумные.

Среди прочих воздушный солнечный коллектор отличается простотой конструкции и, соответственно, самой низкой ценой. Он представляет собой панель – приемник солнечной радиации из металла, заключенный в герметичный корпус. Стальной лист для лучшей теплоотдачи снабжен с задней стороны ребрами и уложен на дно с тепловой изоляцией. Спереди установлено прозрачное стекло, а по бокам корпуса имеются проемы с фланцами для подключения воздуховодов или других панелей, как показано на схеме:

Воздух, поступающий через проем с одной стороны, проходит между стальными ребрами и, получив от них тепло, выходит с другой.

Надо сказать, что установка солнечных коллекторов с нагревом воздуха имеет свои особенности. Из-за их невысокой эффективности для обогрева помещений нужно применять несколько подобных панелей, объединенных в батарею. Кроме того, обязательно понадобится вентилятор, поскольку нагретый воздух из коллекторов, находящихся на кровле, самостоятельно вниз не пойдет. Принципиальная схема воздушной системы показана ниже на рисунке:

Простое устройство и принцип работы позволяют выполнять изготовление коллекторов воздушного типа своими руками. Но потребуется много материала для нескольких коллекторов, а подогреть воду с их помощью все равно не получится. По этим причинам домашние умельцы предпочитают заниматься водяными нагревателями.

Конструкция плоского коллектора

Для самостоятельного изготовления наибольший интерес представляют плоские солнечные коллекторы, предназначенные для нагрева воды. В корпусе из металла или алюминиевого сплава прямоугольной формы размещен тепловой приемник — пластина с запрессованным в ней змеевиком из медной трубки. Приемник выполняется из алюминия или меди, покрытой абсорбционным слоем черного цвета. Как и в предыдущем варианте, снизу пластина отделена от дна слоем теплоизоляционного материала, а роль крышки играет прочное стекло или поликарбонат. Ниже на рисунке изображено устройство солнечного коллектора:

Пластина черного цвета поглощает тепло и передает его теплоносителю, движущемуся по трубкам (вода или антифриз). Стекло выполняет 2 функции: пропускает к теплообменнику солнечную радиацию и служит защитой от осадков и ветра, снижающих производительность нагревателя. Все соединения выполнены герметично, чтобы внутрь не попадала пыль и стекло не теряло прозрачности. Опять же, тепло солнечных лучей не должно выветриваться наружным воздухом через щели, от этого зависит эффективная работа солнечного коллектора.

Данный вид – самый популярный среди покупателей из-за оптимального соотношения цена — качество, а среди домашних мастеров — по причине относительно несложной конструкции. Но применять такой коллектор для отопления можно лишь в южных регионах, с понижением температуры наружного воздуха его производительность значительно падает из-за высоких тепловых потерь через корпус.

Устройство вакуумного коллектора

Еще один вид водяных солнечных нагревателей изготавливается с применением современных технологий и передовых технических решений, а потому относится к высокой ценовой категории. Таких решений в коллекторе реализовано два:

  • тепловая изоляция с помощью вакуума;
  • использование энергии парообразования и конденсации вещества, кипящего при низкой температуре.

Идеальный вариант защитить абсорбер для коллектора от тепловых потерь – это заключить его в вакуум. Медная трубка, наполненная хладагентом и покрытая абсорбирующим слоем, помещена внутрь колбы из прочного стекла, воздух из пространства между ними откачан. Концы медной трубки входят в трубу, через которую протекает теплоноситель. Что происходит: хладагент под воздействием солнечных лучей закипает и обращается в пар, он поднимается по трубке вверх и от соприкосновения с теплоносителем сквозь тонкую стенку снова переходит в жидкость. Ниже показана рабочая схема коллектора:

Фокус в том, что в процессе превращения в пар вещество поглощает гораздо больше тепловой энергии, чем при обычном нагреве. Удельная теплота парообразования любой жидкости выше, нежели ее удельная теплоемкость, а потому вакуумные солнечные коллекторы весьма эффективны. Конденсируясь в трубе с проточным теплоносителем, хладагент передает ему всю теплоту, а сам стекает вниз за новой порцией энергии солнца.

Благодаря своему устройству вакуумные нагреватели не боятся низких температур и сохраняют свою работоспособность даже на морозе, а потому могут применяться в северных регионах. Интенсивность нагрева воды в этом случае ниже, чем летом, так как зимой на землю поступает меньше тепла от солнца, часто мешает облачность. Понятно, что изготовить стеклянную колбу с откачанным воздухом в домашних условиях просто нереально.

Примечание. Существуют вакуумные трубки для коллектора, заполняемые напрямую теплоносителем. Их недостаток – последовательное подключение, при выходе из строя одной колбы придется менять весь водонагреватель.

Как изготовить солнечный коллектор?

Прежде чем приступить к работе, следует определиться с габаритами будущего водогрейного аппарата. Произвести точный расчет площади теплообмена непросто, многое зависит от интенсивности солнечного излучения в данном регионе, расположения дома, материала нагревательного контура и так далее. Правильным будет сказать, что чем больше тепловой коллектор, тем лучше. Однако, его размеры наверняка ограничиваются местом, где планируется его устанавливать. Значит, надо исходить из площади этого места.

Корпус проще всего изготовить из древесины, проложив на дно слой пенопласта или минеральной ваты. Также для этой цели удобно использовать створки старых деревянных окон, где сохранилось хотя бы одно стекло. Выбор материала для приемника тепла неожиданно широк, чего только не используют мастера-умельцы, чтобы собрать коллектор. Вот перечень популярных вариантов:

  • тонкостенные  медные трубки;
  • различные полимерные трубы с тонкими стенками, желательно черного цвета. Хорошо подойдет полиэтиленовая РЕХ труба для водопровода;
  • наружный теплообменник старого холодильника;
  • трубки из алюминия. Правда, соединять их сложнее, чем медные;
  • стальные панельные радиаторы;
  • черный садовый шланг.

Примечание. Кроме перечисленных, существует масса экзотических версий. Например,воздушный солнечный коллектор из пивных банок или пластиковых бутылок. Подобные прототипы отличаются оригинальностью, но требуют значительного вложения труда при сомнительной отдаче.

В собранный деревянный корпус или старую оконную створку с приделанным дном и уложенным утеплителем надо поместить металлический лист, накрывающий всю площадь будущего нагревателя. Хорошо, если найдется лист алюминия, но подойдет и тонкая сталь. Ее необходимо окрасить в черный цвет, а затем уложить трубы в виде змеевика.

Без сомнения, коллектор для нагрева воды лучше всего получится из медных труб, они отлично передают тепло и прослужат долгие годы.Змеевик плотно прикрепляется к металлическому экрану скобами или любым другим доступным способом, наружу выводятся 2 штуцера для подачи воды.

Поскольку это плоский, а не вакуумный коллектор, то поглотитель тепла нужно закрыть сверху светопрозрачной конструкцией – стеклом или поликарбонатом. Последний легче обрабатывается и надежнее в эксплуатации, не разобьется от ударов града.

 

После сборки солнечный коллектор надо установить на место и подключить к накопительному баку для воды. Когда позволяют условия монтажа, то можно организовать естественную циркуляцию воды между баком и нагревателем, в противном случае в систему включается циркуляционный насос.

Заключение

Осуществлять отопление дома солнечными коллекторами, сделанными своими руками, – привлекательная перспектива для многих домовладельцев. Жителям южных районов этот вариант более доступен, только придется заполнить систему антифризом и как следует утеплить корпус. На севере самодельный коллектор поможет нагреть воду на хозяйственные нужды, но для обогрева дома его не хватит. Сказывается холод и короткий световой день.

Солнечный коллектор зимой — Есть ли толк? (Оценка эффективности)

18.10.2019

Содержание:

  1. Как обеспечить нагрев воды от солнца в зимний период
    1. Стоит ли использовать солнечное отопление зимой
    2. Снег и солнечные коллекторы: отзывы, воздействие
    3. Может ли град повредить солнечные коллекторы зимой
    4. Как работает солнечный коллектор в мороз
    5. Нужен ли водонагреватель от солнца зимой?
    6. Отопление солнечными коллекторами: зарубежный опыт
  2. Как работает отопление дома солнцем в зимний период
    1. Насколько эффективен подогрев воды солнечной энергией зимой
  3. Так есть ли смысл покупать солнечный коллектор на зиму?

 

Постоянно растущая стоимость отопления в зимний период заставляет многих домовладельцев искать альтернативный источники энергии для горячего водоснабжения и отопительных систем. Для этой цели подходят твердотопливные котлы и тепловые насосы, но первым требуется топливо, а вторым электроэнергия, что не позволяет создать полностью автономную сеть обогрева воды. Есть ли третий вариант? 

солнечный коллекторКак обеспечить нагрев воды от солнца в зимний период

Наиболее экологически чистую и полностью бесплатную тепловую энергию обеспечивают солнечные коллекторы. Но у многих возникает вопрос, насколько эффективно отопление от солнца зимой и не возникнет ли с гелиоколлектором дополнительных проблем в наших климатических условиях? Разберем этот вопрос подробнее. 

Стоит ли использовать солнечное отопление зимой

Гелиосистемы, как и солнечные батареи работают за счет энергии солнечного света, поэтому монтируются на улице, в местах прямого (или почти прямого) падения лучей. Однако если на фотоэлектрическую трансформацию температура и окружающая среда практически не оказывают воздействия, то с солнечными коллекторами возможен ряд проблем. Больше всего покупателей беспокоят вопросы:

  • Снега;
  • Града;
  • Мороза. 

Развеем несколько мифов, касающихся влияния этих факторов на эффективность гелиоколлектора. 

Снег и солнечные коллекторы: отзывы, воздействие

Снег является основным врагом гелиосистем, поскольку преграждает доступ солнечных лучей к поверхности коллектора, из-за чего эффективность последнего значительно снижается. Как у вакуумных, так и у плоских моделей наблюдается падение производимой мощности от 3 до 5 раз, в зависимости от толщины снежного покрытия. 

Однако тут нужно добавить, что трубчатые коллекторы при небольших снегопадах и в условиях отсутствия мороза быстро самоочищаются за счет своей формы. Но наиболее эффективно противостоят снегу плоские модели, поскольку: 

  • Основная теплопотеря системы происходит через верхнюю панель и во время работы коллектор как-бы непроизвольно подогревает снежный пласт над собой;
  • В некоторых плоских моделях есть функция оттаивания, которая переводит часть аккумулированного тепла на повышение температуры верхней панели, что приводит к тому же результату, только быстрее. 

Да, снег сильно снижает КПД гелиосистем, но инженеры вводят всё новые способы решения этой проблемы. 

солнечные коллекторы зимойМожет ли град повредить солнечные коллекторы зимой

Опасения по-поводу града напрасны для владельцев качественных трубчатых и плоских коллекторов, так как:

  • Качественные трубки производятся из закаленного стекла (в некоторых случаях — с дополнительным усилением), прочность которого на порядок выше, чем обычного;
  • Прозрачные панели плоских моделей делаются из армированного стекла или композитных материалов — пластика, стеклопластика (конкретные параметры защиты зависят от производителя).

Такие системы могут легко выдержать град различной интенсивности и величины, вплоть до среднего диаметра осадков 3-5 см. Многие производители демонстрируют видео обстрела своих коллекторов металлическими или каменными шариками, имитирующими град в качестве доказательства прочности. 

Как работает солнечный коллектор в мороз

Вторым серьезным фактором, влияющим на КПД гелиосистем является температура окружающей среды, но снижение эффективности в мороз характерно только для плоских коллекторов. Это вызвано тем, что сеть трубок с теплоагентом контактирует с внешней панелью, через которую уходит тепло. Чтобы снизить этот эффект, многие производители начали устанавливать изоляционный слой между прозрачной панелью и трубками. 

В трубчатых, между трубкой с теплоагентом и внешним прозрачным кожухом образовывается вакуум, который является плохим проводником тепла. Поэтому трубчатые модели демонстрируют минимум теплопотерь даже в мороз

Тут стоит отметить, что мороз может сыграть злую шутку с трубчатыми коллекторами при повышенной влажности и затянуть внешний стеклянный кожух изморозью, а это снизит число проникающих солнечных лучей. Но опасаться подобных ситуаций не стоит, поскольку: 

  1. Прозрачность изморози на несколько порядков выше, чем снега и она очень несущественно влияет на производительность.
  2. Изморозь уходит за несколько часов солнечной погоды, поэтому если на небосводе появится яркое солнце — оно быстро ее растопит, а если солнца нет, то КПД коллектора снизится вне зависимости от намерзшего слоя. 

 

 

 

В нашем каталоге более 50 моделей солнечных водонагревателей

 

 

 

Нужен ли водонагреватель от солнца зимой?

гелиоколлекторЕсли резюмировать влияние погодных факторов в условиях нашего климатического пояса: 

  • Количество солнечных дней зимой резко снижается;
  • Поверхность коллектора может покрываться снегом или изморозью; 
  • Плоские модели будут отдавать существенную часть тепла через внешние панели, особенно при сильных морозах.

Однако в холодное время года, можем отметить, что:

  • Коллекторы легко переносят перепады температур и осадки;
  • Их сложно повредить градом или льдом;
  • За полученное тепло не нужно платить;
  • При достаточном количестве солнца, КПД системы падает незначительно.

Если учесть, что у плоских коллекторов есть механизм для самоочищения от снега, то на их КПД влияет только количество солнечных дней и температура окружающей среды. В целом такая система будет выполнять нагрев воды солнцем, но ее эффективность в зимнее время падает в 3-4 раза.

Если для горячего водоснабжения можно рассчитать необходимый запас мощности и установить дополнительные модели, то применение солнечных нагревателей в отопительных системах возможно только в качестве дополнительного источника подогрева воды. 

Отопление солнечными коллекторами: зарубежный опыт

В странах Западной Европы, в частности Швейцарии и Германии (в регионах, расположенных примерно в той же широте, что и Украина) научились минимизировать падение КПД на отопительную систему дома за счет предварительного накапливания энергии. 

Эта технология используется в хорошо утепленных домах с предварительным инженерным планированием и предусматривает:

  • Монтаж в стенах и под полом системы отопительных труб;
  • Установку сети солнечных коллекторов и солнечных батарей;
  • Установку резервуара с большим водоизмещением (42 тонны или больше) на чердаке.

Дальше в межсезонный период, когда температура только начинает падать, а отопление еще не работает (август-сентябрь) система направляет всю энергию на подогрев воды в резервуаре до максимально возможной температуры. В дальнейшем эта вода будет использоваться для поддержания стабильной работы отопительной сети в пасмурные и холодные дни, когда эффективность коллекторов падает. 

Такая технология не является панацеей от падения КПД, но существенно продлевает срок автономной работы отопления и снижает расходы владельца. Правда, обходится такое оборудование недешево и в Украине подобные проекты пока не реализовывались. 

Как работает отопление дома солнцем в зимний период 

солнечные коллекторы на крыше домаСолнечный водонагреватель зимой тоже используется для отопления дома (для этого даже разработаны специальные модели с незамерзающим теплоагентом). Это обусловлено процессом преобразования солнечной энергии в тепловую, включающим несколько этапов:

  1. Солнечные лучи проходят через внешнюю прозрачную панель/трубку и попадают на покрытие-абсорбатор;
  2. Абсорбатор активно вбирает прямые и рассеянные солнечные лучи даже в облачную погоду и передает преобразованное тепло на трубку с теплоагентом;
  3. Теплоагент (во всесезонных моделях — незамерзающий) закипает и проходит по змеевику в расширительный бак системы;
  4. В баке он передает полученное от абсорбера тепло воде и конденсируется, возвращаясь по змеевику в трубку под абсорбером.
  5. Цикл повторяется. 

Как можно видеть, этот механизм не зависит от температуры окружающей среды, поэтому может использоваться даже в холодное время года. На эффективность системы влияет количество и продолжительность солнечных дней, а в нашем климатическом поясе эти показатели хоть и сокращаются, но не падают до нуля, поэтому даже самой холодной зимой коллекторы будут работать (пусть и с пониженным КПД).

Насколько эффективен подогрев воды солнечной энергией зимой

Мощность работы солнечного коллектора рассчитывается в Вт на м² и напрямую зависит от солнечной активности в регионе и КПД самого устройства. Соответственно мощность вычисляется по формуле: м = а*к/100.

Где:

  • м — мощность;
  • а — солнечная активность;
  • к — коэффициент полезного действия. 

Количество солнечной энергии в широтах Украины составляет 1000-1200 Вт на м². Узнать КПД коллектора можно из его технического паспорта (хотя нужно учитывать, что фактический может отличаться от номинального). 

Если у нас есть плоский коллектор с КПД в 80%, то его мощность = 1200*80/100, то есть 960 Вт на м² площади. 

Так вот в зимний период (в зависимости от региона и погодных условий) из-за облачности и осадков солнечная активность над территорией Украины падает от 3 до 5 раз, то есть до 400-250 Вт. При таких условиях мощность того же коллектора будет составлять 360-200 Вт на м². И это при отсутствии длительного снежного покрова на поверхности коллектора. 

Фактически для бесперебойной работы системы зимой владельцу нужно обеспечить пятикратный запас мощности, что затруднительно, учитывая общую площадь и стоимость такого гелиоколлектора. 

Так есть ли смысл покупать солнечный коллектор на зиму?

солнечный коллектор на крышеУчитывая вышеизложенное, можем сделать вывод, что гелиоколлекторы хоть технически и способны работать в условиях зимы в нашем регионе, без существенных проблем для владельца, но не выдают достаточный КПД для полноценного отопления или обеспечения дома горячей водой. 

Это не значит, что солнечный водонагреватель бесполезен — летом такая установка может полностью нагреть воду солнцем, покрыть теплопотребности дома, а в зимнее время стать дополнительным источником энергии, снижая общую нагрузку на основную теплосеть. Эффективно обеспечить домохозяйство горячей водой для потребления и отопления в зимний период могут другие источники альтернативной энергии:

  • Тепловой насос;
  • Твердотопливный котел.

Подключение любого из них к сети, совместно с солнечным коллектором позволит существенно сэкономить на твердом топливе или электричестве, а в летний период установки можно полностью отключить, перейдя на полностью бесплатную энергию солнца.

 

 

 

Хотите узнать все тонкости выбора твердотопливного котла?

 

 

 

виды, устройство, принцип работы, расчет солнечных батарей, панелей.

Отопление солнечным коллектором

Солнечное излучение это один из самых доступных и распространенных альтернативных источников тепла. А солнечные коллектора в свою очередь — самый простой способ эту энергию преобразовать. С каждым годом все больше людей рассматривают коллектора в качестве дополнительного источника энергии для дома.

Но что же представляют собой коллектора, чем отличаются между собой и действительно ли они так эффективны? Читайте далее в статье.

Что такое солнечный коллектор и зачем он нужен

Ежедневно на землю падает огромное количество солнечного излучения большая часть которого не используется. Задача коллектора — «впитать» в себя определенную долю этого излучения и преобразовать его в пригодную для человеческих потребностей энергию.

При этом важно отличать:  солнечное излучение может быть преобразовано в 2 вида энергии – тепловую и электрическую.

  1. Солнечные коллекторы применяются для получения тепла и нагрева воды. Они нагревают воду которая используется для ГВС и отопления здания.
  2. Солнечные батареи (они же фотоэлектрические модули) применяются для выработки электроэнергии. Они имеют совершенно другой принцип действия.Виды солнечных коллекторов

Существует также комбинированная технология. Панели, которые одновременно вырабатывают электрическую и тепловую энергию.

Преимущества солнечных коллекторов для отопления дома

Экономия газа

Летом солнечные коллектора способны полностью закрыть потребность здания в горячей воде. В межсезонье – весной и осенью, коллектора снижают нагрузку на газовый котел, что в конечном итоге сокращает потребление газа. В зимнее время коллектора работают с очень низкой эффективностью.

Энергонезависимость

Используя солнечный коллектор для отопления вы снижаете собственную зависимость от газа. Коллектор является дополнительным источником тепла. Как минимум в летнее время вы сможете бесплатно получать горячую воду не используя для этого газ. Аналогичный результат вы можете получить при отоплении тепловым насосом.

Доступность

Для установки солнечного коллектора не требуется разрешение. Все что нужно – сантехник с прямыми руками и компетентный продавец, знающий все особенности и тонкости монтажа.

Долгий срок службы

Срок службы коллектора – более 15 лет. А значит, вы очень долго сможете пользоваться бесплатным солнечным теплом. 

Их недостатки

Стоимость

Цены на солнечные коллекторы для нагрева воды плавают от 500$ до 1000€ за штуку. А целая система «под ключ» состоящая из двух коллекторов будет стоить от 2500$. Немалые начальные вложения, со сроком окупаемости 7-10 лет.

Непостоянство

Солнце нельзя включать и выключать по собственному желанию. Поэтому коллектора нельзя рассматривать как единственный источник тепла.

Нужен бак-накопитель

Для работы солнечных коллекторов требуется бак-накопитель. Если в вашей отопительной системе он не предусмотрен, то это повлечет дополнительные затраты на покупку коллекторов.

Эффективность солнечных коллекторов для нагрева воды

Эффективность коллектора зависит от региона. Чем южнее регион, тем активнее солнце и выше эффективность работы коллектора.

На территории Украины солнечные коллектора имеют большой потенциал использования. В среднем на 1м2 земли за год падает от 1000 до 1350кВт-ч солнечной энергии. Это эквивалентно 120-140м3 газа.

Карта солнечной активности на Украине

Произведем простой расчет. Возьмем обычный коллектор, рабочая площадь которого – 2,3м2. За год его выработка тепловой энергии в газовом эквиваленте составит 276-322м3. При тарифе на газ 1,8грн/м3 получаем: за год один коллектор экономит 496-579грн.

Не очень много, учитывая начальную стоимость коллектора. При таких цифрах его окупаемость будет очень большой. Конечно цифры очень усредненные и для каждого региона нужно делать свой расчет.

Виды солнечных коллекторов для нагрева воды

Существует множество видов солнечных коллекторов, которые отличаются назначением, внешним видом, принципом работы и так далее.  Основные отличия можно классифицировать следующим образом:

Конструкция и внешний вид:

  • Плоские.
  • Трубчатые вакуумные.

Назначение:

  • Для поддержки системы отопления и ГВС (солнечными коллекторами в принципе сложно обеспечить полноценное отопление дома, они работают только в поддержку системе отопления).
  • Для нагрева воды в бассейне (отдельный вид панелей, изготавливают из пластика).

Принцип работы

  • Самотечные — идеальный вариант для дачи или сезонного использования. Это автономная система, которая не требует подключения к электросети.
  • С принудительной циркуляцией. Этот вид солнечных коллекторов подключается к общей системе отопления и работает под давлением насоса.

Сезонность

  • Круглогодичные (летом — полноценное обеспечение горячей водой, зимой — поддержка отопления).
  • Сезонные – используются только летом и в межсезонье. Обычно внутри таких коллекторов течет вода, которая на холоде замерзает. Поэтому на зиму такие системы консервируются.

Заключение

  1. Солнечный коллектор для отопления это один из самых распространенных и доступных альтернативных источников энергии для частного дома.
  2. Коллектора в первую очередь следует рассматривать как инвестицию в энергонезависимость. Их срок окупаемости очень велик – 7-10 и более лет. Поэтому ставить коллектора только ради экономии газа нецелесообразно. Возможно, что с этой задачей лучше справятся и другие альтернативные газу источники тепла — камин с водяным контуром или тепловой насос. Все зависит от ситуации.
  3. Но для каждого правила есть исключения. Коллектор тоже может быстро окупиться и приносить ощутимую экономию газа. Об этом мы подробно расскажем в одной из будущих статей.
  4. Наиболее оправдано использовать коллектора в южных регионах, где высокая солнечная активность. Самую высокую эффективность коллектора показывают летом и в межсезонье. Зимой их вклад в систему отопления хоть и есть, но невелик.
  5. Если вы рассматриваете коллектора ради экономии газа и денег, то вероятно это будет одно из самых дорогих и наименее эффективных решений. В первую очередь лучше всего обратить внимание на простые и недорогие мероприятия. К счастью, таких мероприятий множество.

Рекомендуемые статьи

  1. Скрытые утечки тепла в частном доме о которых вы не догадываетесь
  2. Зеленый тариф в Украине. Как зарабатывать на продаже электроэнергии государству? 
  3. Принцип действия теплового насоса

Как работает солнечная электростанция? | Глобальные идеи | DW

Есть два типа солнечных электростанций. Они различаются в зависимости от того, как энергия солнца преобразуется в электричество — через фотоэлектрические или «солнечные элементы» или через солнечные тепловые электростанции.

Фотоэлектрические установки

Фотоэлектрический элемент, обычно называемый солнечным элементом или фотоэлектрическим элементом, представляет собой технологию, используемую для преобразования солнечной энергии непосредственно в электричество. Фотоэлемент обычно изготавливается из кремниевых сплавов.

Частицы солнечной энергии, известные как фотоны, ударяются о поверхность фотоэлектрического элемента между двумя полупроводниками.

Эти полупроводники проявляют свойство, известное как фотоэлектрический эффект, которое заставляет их поглощать фотоны и высвобождать электроны. Электроны захватываются в виде электрического тока, другими словами, электричества.

Солнечные тепловые электростанции

Солнечные тепловые электростанции вырабатывают тепло и электричество путем концентрации солнечной энергии.Это, в свою очередь, создает пар, который помогает питать турбину и генератор для производства электроэнергии.

Есть три типа солнечных тепловых электростанций:

1) Параболические желоба

Это наиболее распространенный тип солнечных тепловых станций. «Солнечное поле» обычно содержит множество параллельных рядов солнечных параболических желобов. Они используют отражатели в форме параболы, чтобы сфокусировать солнце в 30-100 раз больше нормальной.

Этот метод используется для нагрева особого типа жидкости, которая затем собирается в центральном месте для генерирования перегретого пара высокого давления.

2) Башня солнечной энергии

В этой системе используются от сотен до тысяч плоских зеркал, отслеживающих солнце, называемых гелиостатами, для отражения и концентрации солнечной энергии на центральной приемной башне. Энергия может быть сконцентрирована в 1500 раз больше, чем энергия, поступающая от солнца.

Испытательная солнечная энергетическая башня существует в Юлихе в западной немецкой земле Северный Рейн-Вестфалия. Он расположен на площади 18 000 квадратных метров (194 000 квадратных футов) и использует более 2000 зеркал, отслеживающих солнце, для отражения и концентрации солнечной энергии на центральной приемной башне высотой 60 метров (200 футов).

Концентрированная солнечная энергия используется для нагрева воздуха в башне до 700 градусов по Цельсию (1300 градусов по Фаренгейту). Тепло улавливается котлом и используется для производства электроэнергии с помощью паровой турбины.

Солнечные коллекторы тепловой энергии работают даже в неблагоприятных погодных условиях. Они используются в пустыне Мохаве в Калифорнии и выдерживают град и песчаные бури.

3) Солнечный пруд

Это бассейн с соленой водой, который собирает и накапливает солнечную тепловую энергию.Он использует так называемую технологию градиента солености.

В основном нижний слой пруда очень горячий — до 85 градусов по Цельсию — и действует как прозрачный изолятор, позволяя удерживать солнечный свет, из которого тепло может быть отведено или сохранено для дальнейшего использования.

Эта технология используется в Израиле с 1984 года для производства электроэнергии.

Автор: Мартин Шрейдер (sp)

Редактор: Дженнифер Абрамсон

,

Как точно работают солнечные фотоэлектрические панели?

Солнечные фотоэлектрические панели сегодня стали обычным явлением. Ими теперь покрыты многие крыши по всему миру.

Но как они на самом деле работают? Давайте разберемся.

СВЯЗАННЫЕ С: ЗА И ПРОТИВ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ

Как работают солнечные панели, шаг за шагом

В двух словах, солнечные фотоэлектрические панели преобразуют солнечный свет в электричество. Как вы понимаете, для этого требуется несколько шагов.

Первым этапом всего цикла является генерация света.Наше Солнце, звезда G2V (второй по величине желтый G-класс на главной последовательности) и звезда третьего поколения, является гигантским термоядерным реактором.

Поскольку он объединяет атомы вместе под огромным давлением и температурой в своем ядре, одним из побочных продуктов этого процесса, помимо огромного количества тепла (около 15 миллионов градусов Цельсия ), является обильное количество света.

Этот свет проходит от места ядерного синтеза до поверхности Солнца, иногда на это уходят сотни тысяч лет.

Достигнув поверхности Солнца, свет рассеивается в пространстве вокруг него. Свет, как все мы знаем, состоит из крошечных пакетов или квантов, называемых фотонами.

Эти фотоны путешествуют по пустоте космоса во всех направлениях, и очень небольшое их количество достигает Земли. Чтобы преодолеть 93 миллиона миль между нами и Солнцем, со скоростью света требуется около 8,5 минут .

Каждый час бесчисленное количество фотонов излучает нашу Землю, предлагая огромное количество энергии для жизни.Было подсчитано, что если человечество сможет использовать подавляющее большинство из них, этого должно быть достаточно для удовлетворения глобальных потребностей в энергии в течение целого года.

Но для этого нам нужна какая-то технология. Одним из наших основных решений была разработка фотоэлементов.

В этой технологии используются полупроводники, обычно кремний, для улавливания и преобразования этих фотонов в электрический ток. Полупроводники — это материалы, которые в данных условиях действуют как электрические проводники и изоляторы.

Когда фотоны Солнца, возраст которых несколько сотен тысяч лет, попадают в солнечный элемент, они выбивают электроны из атомов полупроводника.

Чтобы быть полезными для нас, эти электроны необходимо собирать или собирать где-нибудь для генерации электрического тока. Для этого необходим электрический дисбаланс в фотоэлементе.

Это можно сравнить с наклоном, по которому электроны могут течь в одном направлении.Фотоэлектрические панели обычно состоят из двух слоев полупроводников.

Для этого ПК-панели состоят из нескольких слоев полупроводников, соединенных между собой. Каждый полупроводниковый слой «легирован» каким-либо другим материалом, чтобы сделать их положительно или отрицательно заряженными.

how solar panels work diagram Источник: AGL Solar Energy / Wikimedia Commons

Фосфор обычно является предпочтительным «легирующим» агентом для верхнего слоя, чтобы придать ему отрицательный заряд, он же кремний n-типа . Бор обычно используется для нижней части положительно заряженного слоя, он же кремний p-типа .

Эта установка настраивает ячейку для создания электрической цепи после высвобождения электронов. Но для сбора и превращения этих электронов в полезную энергию необходимы некоторые другие компоненты.

«Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества». — livescience.com.

По мере того, как все больше и больше их проходит по цепи, вырабатывается электричество постоянного тока, которое можно использовать для полезной работы.Но сначала необходимо преобразовать постоянный ток в переменный (AC) для использования в большинстве электрических устройств в вашем доме.

how solar panels work 1 Источник: DmitriMaruta / iStock

Для этого постоянный ток пропускается в устройство, называемое солнечным инвертором. Они не только генерируют переменный ток, но также обеспечивают защиту от замыкания на землю для массива панелей.

Находясь в форме переменного тока, электрический ток может использоваться для питания множества электрических устройств в вашем доме. Или, в качестве альтернативы, его можно отправить в национальную сеть — обычно с привлечением некоторой формы вознаграждения.

Каждая солнечная панель состоит из нескольких таких фотоэлементов, и фотоэлектрические установки обычно состоят из нескольких панелей, образующих фотоэлектрическую батарею.

Чем больше фотоэлектрических панелей, тем больше массив и тем больше возможна генерация электроэнергии.

У солнечных панелей заканчиваются электроны?

Проще говоря, нет, это невозможно. Это связано с тем, что фотоэлектрические панели работают, высвобождая электроны из «легированных» полупроводниковых материалов внутри ячейки, которые образуют цепь, а затем возвращаются в полупроводники внутри панели.

То же верно и для любой электрической цепи. Здесь электроны текут в виде электрического тока по замкнутому контуру.

«Цепи не создают, не разрушают, не расходуют и не теряют электроны. Они просто переносят электроны по кругу». — wtamu.edu.

Все устройство при воздействии солнечного света генерирует электрическую цепь, которая течет в одном направлении через фотоэлектрическое устройство и его вспомогательные компоненты.

Источник: alexsi / iStock

«Электроны на передней части ячейки собираются сверхтонкими линиями сетки, которые наносятся на лицевую поверхность ячейки.Они перетекают в более толстые шины (металлические полосы или шины, используемые для распределения электроэнергии), как отдельные автомобили на жилых улицах, все въезжающие на шоссе, за исключением того, что все они движутся со скоростью, близкой к скорости света!

Электрический ток затем течет в цепь, где он передает свой потенциал напряжения в виде электрической энергии. Затем истощенные электроны продолжают течь в электрической цепи до тех пор, пока не вернутся обратно в заднюю часть солнечного элемента, где они рекомбинируют с дырками, которые они изначально оставили.»- interplaylearning.com.

По этой причине в ячейках никогда не» заканчиваются «электроны. Они всегда движутся вокруг созданного контура внутри фотоэлемента.

Потенциал напряжения создается фотонами солнца, которые отдают часть своей энергии в нагрузке цепи. Затем она снова течет обратно в солнечный элемент, и процесс повторяется снова и снова — — конечно, пока есть солнечный свет.

Как работают портативные солнечные панели ?

Портативные солнечные панели, как следует из названия, представляют собой фотоэлектрические панели, которые можно транспортировать и использовать в качестве мобильных.Они отличаются от более традиционных фотоэлектрических панелей, которые по сравнению с ними тяжелы и громоздки и, как правило, используются в статической или фиксированной установке.

Их основная функция в основном такая же, как у больших коммерческих и домашних массивов. Портативные фотоэлектрические массивы обычно более компактны и намного меньше по размеру.

Они также могут иметь дополнительные функции, такие как складная конструкция или подставка, и их общий эстетический вид будет сильно различаться.

Они, как правило, имеют меньшую мощность генерирования электроэнергии, чем большие фотоэлектрические массивы, и специально предназначены для использования в кемпингах или поездках на жилые дома. Типичные фотоэлектрические батареи в жилых домах могут вырабатывать около 30 кВт · ч электроэнергии в день.

Портативные, с другой стороны, обычно способны генерировать от 5 до 10% от этой суммы. Но поскольку у вас должно быть меньше электрических устройств, если вам не нравится таскать с собой 40-дюймовый телевизор и Playstation 4, этого должно быть более чем достаточно.

.

Как работают солнечные панели? | Фотоэлектрические элементы

Проще говоря, солнечная панель работает, позволяя фотонам или частицам света выбивать электроны из атомов, генерируя поток электричества. Солнечные панели на самом деле состоят из множества небольших блоков, называемых фотоэлектрическими элементами. (Фотоэлектрические элементы просто означают, что они преобразуют солнечный свет в электричество.) Многие элементы, соединенные вместе, составляют солнечную панель.

Каждый фотоэлектрический элемент представляет собой сэндвич, состоящий из двух пластин полупроводящего материала, обычно кремния — того же материала, что и в микроэлектронике.

Для работы фотоэлектрическим элементам необходимо создать электрическое поле. Подобно магнитному полю, которое возникает из-за противоположных полюсов, электрическое поле возникает, когда противоположные заряды разделены. Чтобы получить это поле, производители «смешивают» кремний с другими материалами, придавая каждому кусочку сэндвича положительный или отрицательный электрический заряд.

В частности, они вводят фосфор в верхний слой кремния, который добавляет к этому слою дополнительные электроны с отрицательным зарядом. Между тем нижний слой получает дозу бора, что приводит к уменьшению количества электронов или положительному заряду.Все это складывается в электрическое поле на стыке между слоями кремния. Затем, когда фотон солнечного света выбивает электрон, электрическое поле выталкивает этот электрон из кремниевого перехода.

Пара других компонентов ячейки превращает эти электроны в полезную энергию. Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества.

Недавно исследователи создали ультратонкие гибкие солнечные элементы, в которых всего один.Толщина 3 микрона — примерно 1/100 ширины человеческого волоса — и в 20 раз легче листа офисной бумаги. Фактически, элементы настолько легкие, что могут находиться на вершине мыльного пузыря, и при этом они производят энергию с такой же эффективностью, как и солнечные элементы на основе стекла, сообщили ученые в исследовании, опубликованном в 2016 году в журнале Organic Electronics. Такие более легкие и гибкие солнечные элементы могут быть интегрированы в архитектуру, аэрокосмические технологии или даже в носимую электронику.

Существуют и другие типы технологий солнечной энергии, в том числе солнечная тепловая энергия и концентрированная солнечная энергия (CSP), которые работают иначе, чем фотоэлектрические солнечные панели, но все они используют энергию солнечного света для производства электричества или нагрева воды или воздуха. ,

Примечание редактора : эта статья была первоначально опубликована 16 декабря 2013 г. и обновлена ​​6 декабря 2017 г., чтобы включить последние достижения в солнечной технологии.

Оригинальная статья о Live Science.

,

Как работают дороги для солнечных панелей

В наши дни мы можем найти солнечные батареи, также известные как фотоэлектрические элементы, практически повсюду. Они находятся на крышах наших домов, что снижает стоимость электроэнергии. Они даже на нескольких машинах. В 2019 году Toyota начала испытания оснащения Prius Prime солнечными батареями на крыше, капоте и задней дверце люка. В целом эти панели должны обеспечивать до 27,6 миль (44,4 км) электроэнергии ежедневно, сообщает Green Car Reports.Две другие европейские компании также планируют представить автомобили с солнечной батареей.

Некоторые эксперты предположили, что, если бы мы установили гигантское количество солнечных панелей на большой территории, мы могли бы поглощать достаточно солнечного света, чтобы обеспечивать энергией целые города, что эффективно положило бы конец нашему энергетическому кризису. Проблема в том, что их некуда поставить. Мы не можем точно наклеить панели на всю сельскую местность.

Или можем? В США, например, есть сеть дорог по всей стране.Почему бы не разместить панели вдоль проезжей части в качестве звукового барьера или еще более экстремальную идею — сделать сами дороги из солнечных панелей? У них есть.

Эти «солнечные дороги» или «солнечные дороги» состоят из отдельных солнечных панелей с тремя слоями: верхний слой из высокопрочного текстурированного стекла, обеспечивающий тягу для транспортных средств, ряд солнечных элементов под ним для сбора энергии и основание. пластина, которая распределяет собранную энергию, согласно Solar Roadways. Это больше, чем просто коллекторы солнечной энергии.Панели содержат светодиодные фонари, работающие от солнца, которые могут действовать как дорожные и предупреждающие знаки, встроенные в саму дорогу. Кроме того, они могут использовать накопленное тепло для таяния снега и льда на дорогах.

Насколько возможно использование солнечных дорог?

Хотя несколько разных компаний в нескольких странах пытались использовать солнечные дороги, многие из первоначальных опасений оказались обоснованными. Например, плоские панели менее эффективны для улавливания солнечного света, чем наклонные.Затенение даже небольшой части панели резко снижает эффективность. Пыль, мусор, отсутствие циркуляции воздуха на поверхности и толстое стеклянное покрытие, необходимое, чтобы помочь панели выдерживать движение, также могут снизить эффективность панели. Кроме того, эта стеклянная поверхность не обеспечивает того сцепления, к которому привыкли водители.

Вот что пошло не так в поисках прочных и эффективных солнечных дорог, о чем в основном свидетельствует солнечная дорога в Нормандии, Франция.О планах строительства солнечной дороги в Нормандии было объявлено в 2016 году, но после трех лет использования эксперимент был признан неудачным. Планы предусматривали строительство участка протяженностью около 620 миль (1000 километров) с целью выработки энергии, достаточной для 5 миллионов домов, пишет Big Think. Первый завершенный участок дороги был протяженностью чуть более полумили и должен был обеспечить электроэнергией до 5 000 домов, но довольно быстро стало ясно, что ожидания не оправдаются.

Солнечные панели на французской дороге были повреждены быстрее, чем ожидалось, из-за износа, вызванного дорожным движением и погодными условиями, и многие из них пришлось снять после того, как они были повреждены и не подлежали ремонту.Хуже того, даже при максимальной эффективности панели оказались менее эффективными для выработки энергии, чем обычные наклонные солнечные панели, подобные тем, которые обычно устанавливаются вдоль дороги, а не на ней, или в других местах, таких как крыши и парковочные конструкции.

Хотя Нормандия, вероятно, самый большой пример неудачного эксперимента с солнечной дорогой, есть и другие. Вдоль дороги в Китае была украдена солнечная панель, что привело к отмене проекта. В штате Миссури компании по производству солнечных панелей и правительству не удалось прийти к соглашению по запланированному проекту.

Хотя в целом ажиотаж, похоже, снизился, некоторые проекты все еще реализуются. Например, лаборатория в Атланте, штат Джорджия, утверждает, что солнечные дороги все еще заслуживают изучения и попытки улучшить их. По состоянию на февраль 2019 года 18-мильный участок вдоль межштатной автомагистрали 85 все еще используется. Эксперты из Фонда Рэя Андерсона надеются, что помимо питания близлежащих зданий, в будущих версиях солнечных дорог можно будет заряжать электромобили и фактически самосветиться, чтобы помочь водителям видеть.Кроме того, новые версии солнечных панелей более долговечны и обеспечивают лучшее сцепление с дорогой. Фонд заявляет, что у него больше финансовых возможностей для работы над непроверенными технологиями, поскольку государственным или федеральным департаментам технологий будет сложнее оправдать использование средств налогоплательщиков для продолжения инвестирования в проект, который уже не оправдал ожиданий.

Так что, будут ли солнечные дороги жизнеспособными, еще неизвестно, но не все готовы отказаться от этой идеи.

Подробнее

Статьи по теме

Еще отличные ссылки

Источники

  • Жако, Джереми Элтон. «Солнечные дороги: дороги, вырабатывающие энергию из стекла и солнечных батарей». 20 августа 2007 г. (16 сентября 2019 г.) http://www.treehugger.com/files/2007/08/solar_roadways.php
  • Neimark, Gillian. «Несмотря на критику, солнечные дороги остаются частью экологической лаборатории шоссе Джорджии.»The Energy News Network. 26 февраля 2019 г. (16 сентября 2019 г.)
  • Северо-Западный университет.» Насколько эффективны солнечные панели? «(16 сентября 2019 г.) http://www.qrg.northwestern.edu /projects/vss/docs/Power/2-how-efficient-are-solar-panels.html
  • Ривера, Дилан. «Орегон устанавливает первый проект солнечной энергии на шоссе». Орегон. 7 августа 2008 г. (16 сентября , 2019) http://www.oregonlive.com/environment/index.ssf/2008/08/oregon_installs_first_highway.html
  • Райан, Дилан. «Солнечные батареи заменили асфальт на дороге — вот результаты.»The Conversation. 21 сентября 2018 г. (16 сентября 2019 г.) https://theconversation.com/solar-panels-replaced-tarmac-on-a-road-here-are-the-results-103568
  • Томсон, Эндрю. «Чертовы солнечные дороги?» Почему будущее этой технологии может быть не таким ярким ». The Conversation. 17 декабря 2015 г. (16 сентября 2019 г.) https://theconversation.com/solar-freakin-roadways-why-the-future-of -эта-технология-может-не-быть-такой-яркой-51304

Последнее редакционное обновление 4 октября 2019 г., 09:28:57.

,

Добавить комментарий

Ваш адрес email не будет опубликован.