Калькулятор сопротивление воздуховодов: ON-LINE КАЛЬКУЛЯТОР СОПРОТИВЛЕНИЯ ВОЗДУХОВОДОВ

Содержание

Расчет потери давления в воздуховодах в системе вентиляции и кондиционирования

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

 

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

3

5

4

3

3

Гостиницы

5

7.5

6.5

6

5

Учреждения

6

8

6.5

6

5

Рестораны

7

9

7

7

6

Магазины

8

9

7

7

6

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Программы расчета потерь давления вентиляции. Расчет сопротивления воздуховода калькулятор. Расчет давления в воздуховодах. Определение потерь давления в обратном клапане

Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции — воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.

Аэродинамический расчет начинают после определения кратности воздухообмена помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.

По площади F
определяют диаметр D
(для круглой формы) или высоту A
и ширину B
(для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. D ст

, А ст

и В ст

(справочная величина).

Пересчитывают фактические площадь сечения F
факт и скорость v
факт

.

Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст
* B ст
) / (A
ст

+ B
ст

), м.

Определяют величину критерия подобия Рейнольдса Re = 64100* D
ст

* v
факт.

Для прямоугольной формы D L = D ст
.

Коэффициент трения λ тр
= 0,3164 ⁄ Re-0,25 при Re≤60000, λ
тр

= 0,1266 ⁄ Re-0,167 при Re>60000.

Коэффициент местного сопротивления λм

зависит от их типа, количества и выбирается из справочников.

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения35433
Гостиницы57.56.565
Учреждения686.565
Рестораны79776
Магазины89776

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455505550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции

Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

Pтр = (x*l/d) * (v*v*y)/2g,

z = Q* (v*v*y)/2g,

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В диаграмме потерь напора указаны диаметры круглых воздуховодов . Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды . Как правило, ширина воздуховода в 2 раза больше высоты).


Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ-
водственных и общественных зданий“. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета — от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где
— сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение

а × b, м
υ ф,
м/с
D l ,м Re λ Kmc потери на участке
Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери:
185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из. Материал воздухозаборной шахты — кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 Табл. 25.1 0,09
Отвод 90 Табл. 25.11 0,19
Тройник-проход 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление 0,63 0,61 Прил. 25.9 0,48
4 2 отвода 250 × 400 90 Прил. 25.11
Отвод 400 × 250 90 Прил. 25.11 0,22
Тройник-проход 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 Прил. 25.13 0,14
Отвод 600 × 500 90 Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений


Краснов Ю.С.,

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

Гостиницы

Учреждения

Рестораны

Магазины

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый или . Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

Рекомендуемая скорость движения воздуха в воздуховодах:

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

где L
— расход воздуха, м 3 /ч;
F
— площадь сечения канала, м 2 .

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1:
расход воздуха будет составлять 220 м 3 /ч. Принимаем диаметр воздуховода равным 200 мм, скорость — 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2:
повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м 3 /ч. Принимаем диаметр воздуховода равным 250 мм, скорость — 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3:
расход воздуха через этот участок будет составлять 1070 м 3 /ч.
Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

Участок 4:
расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость — 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5:
расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6:
расход воздуха через этот участок будет составлять 1570 м 3 /ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример.
Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

Определение потерь давления в воздуховодах.

Определение потерь давления в обратном клапане.

Подбор необходимого вентилятора.

Определение потерь давления в шумоглушителях.

Определение потерь давления на изгибах воздухуводов.

Определение потерь давления в диффузорах.


как рассчитать вентиляционную мощность вручную и на калькуляторе

Задача организованного воздухообмена комнат жилого дома либо квартиры – вывести лишнюю влагу и отработанные газы, заместив свежим воздухом. Соответственно, для устройства вытяжки и притока нужно определить количество удаляемых воздушных масс – произвести расчет вентиляции отдельно по каждому помещению. Методики вычислений и нормы расхода воздуха принимаются исключительно по СНиП.

Санитарные требования нормативных документов

Минимальное количество воздуха, подаваемое и удаляемое из комнат коттеджа вентиляционной системой, регламентируется двумя основными документами:

  1. «Здания жилые многоквартирные» — СНиП 31-01-2003, пункт 9.
  2. «Отопление, вентиляция и кондиционирование» — СП 60.13330.2012, обязательное Приложение «К».

В первом документе изложены санитарно-гигиенические требования к воздухообмену в жилых помещениях многоквартирных домов. На этих данных и должен базироваться расчет вентиляции. Применяется 2 типа размерности – расход воздушной массы по объему за единицу времени (м³/ч) и часовая кратность.

Справка. Кратность воздухообмена выражается цифрой, обозначающей, сколько раз в течение 1 часа полностью обновится воздушная среда помещения.

Проветривание — примитивный способ обновления кислорода в жилище

В зависимости от назначения комнаты приточно-вытяжная вентиляция должна обеспечивать следующий расход либо количество обновлений воздушной смеси (кратность):

  • гостиная, детская, спальня – 1 раз в час;
  • кухня с электрической плитой – 60 м³/ч;
  • санузел, ванная, туалет – 25 м³/ч;
  • для топочной с твердотопливным котлом и кухни с газовой плитой требуется кратность 1 плюс 100 м³/ч в период работы оборудования;
  • котельная с теплогенератором, сжигающим природный газ, — трехкратное обновление плюс объем воздуха, потребного для горения;
  • кладовка, гардеробная и прочие подсобные помещения – кратность 0.2;
  • сушильная либо постирочная – 90 м³/ч;
  • библиотека, рабочий кабинет – 0.5 раз в течение часа.

Примечание. СНиП предусматривает снижение нагрузки на общеобменную вентиляцию при неработающем оборудовании либо отсутствии людей. В жилых помещениях кратность уменьшается до 0.2, технических – до 0.5. Неизменным остается требование к комнатам, где расположены газоиспользующие установки, — ежечасное однократное обновление воздушной среды.

Выброс вредных газов за счет природной тяги — самый дешевый и простой способ обновлять воздух

В п. 9 документа подразумевается, что объем вытяжки равен величине притока. Требования СП 60.13330.2012 несколько проще и зависят от числа людей, находящихся в помещении 2 часа и более:

  1. Если на 1 проживающего приходится 20 м² и более площади квартиры, в комнаты обеспечивается свежий приток в объеме 30 м³/ч на 1 чел.
  2. Объем приточного воздуха считается по площади, когда на 1 жильца приходится меньше 20 квадратов. Соотношение такое: на 1 м² жилища подается 3 м³ притока.
  3. Если в квартире не предусмотрено проветривание (отсутствуют форточки и открывающиеся окна), на каждого проживающего необходимо подать 60 м³/ч чистой смеси независимо от квадратуры.

Перечисленные нормативные требования двух различных документов вовсе не противоречат друг другу. Изначально производительность вентиляционной общеобменной системы рассчитывается по СНиП 31-01-2003 «Жилые здания».

Результаты сверяются с требованиями Свода Правил «Вентиляция и кондиционирование» и при необходимости корректируются. Ниже мы разберем расчетный алгоритм на примере одноэтажного дома, показанного на чертеже.

Определение расхода воздуха по кратности

Данный типовой расчет приточно-вытяжной вентиляции выполняется отдельно для каждой комнаты квартиры либо загородного коттеджа. Чтобы выяснить расход воздушных масс по зданию в целом, полученные результаты суммируются. Используется довольно простая формула:

Расшифровка обозначений:

  • L – искомый объем приточного и вытяжного воздуха, м³/ч;
  • S – квадратура помещения, где рассчитывается вентиляция, м²;
  • h – высота потолков, м;
  • n – число обновлений воздушной среды комнаты в течение 1 часа (регламентируется СНиП).

Пример вычисления. Площадь гостиной одноэтажного здания с высотой потолков 3 м составляет 15.75 м². Согласно предписаниям СНиП 31-01-2003, кратность n для жилых помещений равна единице. Тогда часовой расход воздушной смеси составит L = 15.75 х 3 х 1 = 47.25 м³/ч.

Важный момент. Определение объема воздушной смеси, удаляемой из кухни с газовой плитой, зависит от устанавливаемого вентиляционного оборудования. Распространенная схема выглядит так: однократный обмен согласно нормативам обеспечивает система естественной вентиляции, а дополнительные 100 м³/ч выбрасывает бытовая кухонная вытяжка.

Аналогичные расчеты делаются по всем остальным комнатам, разрабатывается схема организации воздухообмена (естественной или принудительной) и определяются размеры вентиляционных каналов (смотрим пример ниже). Автоматизировать и ускорить процесс поможет расчетная программа.

Онлайн-калькулятор в помощь

Программа считает требуемое количество воздуха по кратности, регламентируемой СНиП. Просто выберите разновидность помещения и введите его габариты.

Примечание. Для котельных с газовым теплогенератором калькулятор учитывает только трехкратный обмен. Количество приточного воздуха, идущего на сжигание топлива, нужно прибавлять к результату дополнительно.

Выясняем воздухообмен по числу жильцов

Приложение «К» СП 60.13330.2012 предписывает производить расчёт вентиляции помещения по простейшей формуле:

Расшифруем обозначения представленной формулы:

  • L – искомая величина притока (вытяжки), м³/ч;
  • m – объем воздушной чистой смеси в расчете на 1 чел., указанный в таблице Приложения «К», м³/ч;
  • N – количество людей, постоянно находящихся в рассматриваемой комнате 2 часа в день и более.

Очередной пример. Резонно предположить, что в той же гостиной одноэтажного дома два члена семьи пребывают длительное время. Учитывая, что проветривание организовано и на каждого жильца приходится свыше 20 квадратов площади, параметр m принимается равным 30 м³/ч. Считаем количество притока: L = 30 х 2 = 60 м³/ч.

Важно. Заметьте, полученный результат больше значения, определенного по кратности (47.25 м³/ч). В дальнейшие расчеты следует включить цифру 60 м³/ч.

Результаты подсчетов лучше сразу нанести на планировку этажа здания

Если количество проживающих в квартире настолько велико, что каждому человеку отведено меньше 20 м² (в среднем), то представленную выше формулу использовать нельзя. Правила указывают: в данном случае площадь гостиной и других комнат следует умножить на 3 м³/ч. Поскольку общая квадратура жилища равна 91.5 м², расчетный объем вентиляционного воздуха составит 91.5 х 3 = 274.5 м³/ч.

В просторных залах с высокими потолками (от 3 м) обновление атмосферы считается двумя способами:

  1. Если в помещении часто пребывает большое число людей, вычисляйте кубатуру подаваемого воздуха по удельному показателю 30 м³/ч на 1 чел.
  2. Когда количество посетителей постоянно меняется, вводится понятие обслуживаемой зоны высотой 2 метра от пола. Определяете объем этого пространства (умножьте площадь на 2) и обеспечиваете требуемую нормами кратность, как описано в предыдущем разделе.

Пример расчета и обустройства вентиляции

За основу возьмем планировку частного дома внутренней площадью 91.5 м² и перекрытиями высотой 3 м, представленного выше на чертеже. Как рассчитать количество вытяжки / притока на здание целиком согласно методике СНиП:

  1. Объем удаленного воздуха из гостиной и спальни, имеющей равную квадратуру, составит 15.75 х 3 х 1 = 47.25 м³/ч.
  2. В детской комнате: 21 х 3 х 1 = 63 м³/ч.
  3. Кухня: 21 х 3 х 1 + 100 = 163 м³/ч.
  4. Санузел – 25 м³/ч.
  5. Итого 47.25 + 47.25 + 63 + 163 + 25 = 345.5 м³/ч.

Примечание. Воздушный обмен в прихожей и коридоре не нормируется.

Наружная схема подачи воздуха и выброса вредных газов из комнат загородного дома

Теперь проверим результаты на соответствие второму нормативному документу. Поскольку в доме проживает семья из 4 человек (2 взрослых + 2 детей), в гостиной, спальне и детской долго находятся по 2 чел. Пересчитаем воздухообмен в указанных комнатах по количеству людей: 2 х 30 = 60 м³/ч (в каждом помещении).

Объем вытяжки из детской удовлетворяет требованиям (63 куба в час), а вот значения для спальни и гостиной придется откорректировать. Двум человекам недостаточно 47.25 м³/ч, берем 60 кубов и снова пересчитываем общую величину воздухообмена: 60 + 60 + 63 + 163 + 25 = 371 м³/ч.

Не менее важно правильно распределить воздушные потоки в здании. В частных коттеджах принято устраивать системы естественной вентиляции – это значительно дешевле и проще монтажа электрических нагнетателей с воздуховодами. Добавим лишь один элемент принудительного удаления вредных газов – кухонную вытяжку.

Пример организация воздухообмена в одноэтажном дачном доме

Как правильно организовать естественное движение потоков:

  1. Приток во все жилые помещения обеспечим через автоматические клапаны, встроенные в оконный профиль либо прямо в наружную стену. Ведь стандартные металлопластиковые окна герметичны.
  2. В перегородке между кухней и санузлом устроим блок из трех вертикальных шахт, выходящих на кровлю.
  3. Под межкомнатными дверьми предусмотрим зазоры шириной до 1 см для прохода воздуха.
  4. Установим кухонную вытяжку и подключим к отдельному вертикальному каналу. Она возьмет на себя часть нагрузки – удалит 100 кубов отработанных газов за 1 час в процессе готовки пищи. Останется 371 — 100 = 271 м³/ч.
  5. Две шахты выведем решетками в санузел и кухню. Размеры труб и высоту рассчитаем в последнем разделе данного руководства.
  6. За счет естественной тяги, возникающей в двух каналах, воздух устремится из детской, спальни и зала в коридор, а дальше — к вытяжным решеткам.

Обратите внимание: свежие потоки, изображенные на планировке, направляются из комнат с чистой воздушной средой в более загрязненные зоны, затем выбрасываются наружу через шахты.

Подробнее об организации природной вентиляции смотрите на видео:

Вычисляем диаметры вентканалов

Дальнейшие расчеты несколько сложнее, поэтому каждый этап мы сопроводим примерами вычислений. Результатом станет диаметр и высота вентиляционных шахт нашего одноэтажного здания.

Весь объем вытяжного воздуха мы распределили на 3 канала: 100 м. куб. принудительно удаляет вытяжка на кухне в период включения плиты, оставшийся 271 кубометр уходит по двум одинаковым шахтам естественным образом. Расход через 1 воздуховод получится 271 / 2 = 135.5 м³/ч. Площадь сечения трубы определяется по формуле:

  • F – площадь поперечного сечения вентканала, м²;
  • L – расход вытяжки через шахту, м³/ч;
  • ʋ — скорость движения потока, м/с.

Справка. Скорость воздуха в каналах естественной вентиляции лежит в пределах 0.5—1.5 м/с. В качестве расчетного значения принимаем средний показатель – 1 м/с.

Как рассчитать сечение и диаметр одной трубы в примере:

  1. Находим размер поперечника в квадратных метрах F = 135.5 / 3600 х 1 = 0.0378 м².
  2. Из школьной формулы площади круга определяем диаметр канала D = 0.22 м. Выбираем ближайший больший воздуховод из стандартного ряда – Ø225 мм.
  3. Если речь идет о заложенной внутрь стены кирпичной шахте, то под найденное сечение подойдет размер вентканала 140 х 270 мм (удачное совпадение, F = 0.0378 м. кв.).

Кирпичные шахты имеют строго фиксированные размеры — 14 х 14 и 27 х 14 см

Диаметр отводящей трубы под бытовую вытяжку считается аналогичным образом, только скорость потока, нагнетаемого вентилятором, принимается больше – 3 м/с. F = 100 / 3600 х 3 = 0.009 м² или Ø110 мм.

Подбираем высоту труб

Следующий шаг – определение силы тяги, возникающей внутри вытяжного блока при заданном перепаде высот. Параметр зовется располагаемым гравитационным давлением и выражается в Паскалях (Па). Расчетная формула:

  • p – гравитационное давление в канале, Па;
  • Н – перепад высот между выходом вентиляционной решетки и срезом вентканала над крышей, м;
  • ρвозд – плотность воздуха помещения, принимаем 1.2 кг/м³ при домашней температуре +20 °С.

Методика расчета основана на подборе требуемой высоты. Вначале определитесь, на сколько вы готовы поднять трубы вытяжки над кровлей без ущерба внешнему виду здания, затем подставьте значение высоты в формулу.

Пример. Берем перепад высот 4 м и получаем давление тяги p = 9.81 х 4 (1.27 — 1.2) = 2.75 Па.

Теперь грядет сложнейший этап – аэродинамический расчет отводных каналов. Задача – выяснить сопротивление воздуховода потоку газов и сопоставить результат с располагаемым напором (2.75 Па). Если потеря давления окажется больше, трубу придется наращивать либо увеличивать проходной диаметр.

Аэродинамическое сопротивление воздуховода вычисляется по формуле:

  • Δp – общие потери давления в шахте;
  • R – удельное сопротивление трению проходящего потока, Па/м;
  • Н – высота канала, м;
  • ∑ξ – сумма коэффициентов местных сопротивлений;
  • Pv – давление динамическое, Па.

Покажем на примере, как считается величина сопротивления:

  1. Находим значение динамического давления по формуле Pv = 1.2 х 1² / 2 = 0.6 Па.
  2.  Сопротивление от трения R находим по таблице, ориентируясь на показатели динамического напора 0.6 Па, скорости потока 1 м/с и диаметра воздухопровода 225 мм. R = 0.078 Па/м (обозначено зеленым кружочком).
  3. Местные сопротивления вытяжной шахты – это жалюзийная решетка и отвод кверху 90°. Коэффициенты ξ этих деталей – величины постоянные, равные 1.2 и 0.4 соответственно. Сумма ξ = 1.2 + 0.4 = 1.6.
  4. Окончательное вычисление: Δp = 0.078 Па/м х 4 м + 1.6 х 0.6 Па = 1.27 Па.

Теперь сравниваем расчетный напор, образующийся в воздухопроводе, и полученное сопротивление. Сила тяги p = 2.75 Па значительно больше, чем потери давления (сопротивление) Δp = 1.27 Па, шахта высотой 4 метра слишком высока, строить такую бессмысленно.

Поскольку цифры отличаются вдвое (грубо), укоротим вентканал до 2 м, снова произведем перерасчет:

  1. Располагаемое давление p = 9.81 х 2 (1.27 — 1.2) = 1.37 Па.
  2. Удельное сопротивление R и местные коэффициенты ξ остаются прежними.
  3. Δp = 0.078 Па/м х 2 м + 1.6 х 0.6 Па = 1.15 Па.

Напор природной тяги 1.37 Па превышает сопротивление системы Δp = 1.15 Па, значит, шахта двухметровой высоты станет исправно работать на естественную вытяжку и обеспечит нужный расход удаляемых газов.

Замечание. Укорачивать воздуховод до 1 м не стоит, соотношение изменится в другую сторону: p = 0.69 Па, Δp = 1.04 Па, силы тяги не хватит.

Канал вентиляции Ø225 мм можно разделить на 2 меньших трубы, но не по диаметру, а по сечению. Получаем 2 круглых вентканала 150—160 мм, как сделано на фото. Высота обеих шахт остается неизменной — 2 м.

Как упростить задачу — советы

Вы могли убедиться, что расчеты и организация воздухообмена в здании – вопросы довольно сложные. Мы постарались разъяснить методику в максимально доступной форме, но вычисления все равно выглядят громоздкими для рядового пользователя. Дадим несколько рекомендаций по упрощенному решению задачи:

  1. Первые 3 этапа придется пройти в любом случае – выяснить объем выбрасываемого воздуха, разработать схему движения потоков и посчитать диаметры вытяжных воздуховодов.
  2. Скорость потока принимайте не более 1 м/с и по ней определяйте сечение каналов. Аэродинамику одолевать необязательно — правильно рассчитайте диаметры и просто выведите воздухопроводы на высоту не менее 2 метров над заборными решетками.
  3. Внутри здания старайтесь использовать пластиковые трубы – благодаря гладким стенкам они практически не сопротивляются движению газов.
  4. Вентканалы, проложенные по холодному чердаку, обязательно утеплите.
  5. Выходы шахт не перекрывайте вентиляторами, как это принято делать в туалетах квартир. Крыльчатка не даст нормально функционировать природной вытяжке.

Для притока установите в помещениях регулируемые стеновые клапаны, избавьтесь от всех щелей, откуда холодный воздух может бесконтрольно проникать в дом.

И не ошибиться в расчетах при приобретении оборудования? Тогда статья «Как посчитать объем воздуха в помещении?» как раз для Вас!

Для начала, давайте с Вами рассмотрим несколько интересных фактов: мы ежедневно вдыхаем и выдыхаем 20 000 л. воздуха. Все, чем мы дышим остается у нас в организме и возникает вопрос, а насколько пригоден вдыхаемый нами воздух?

Существует ряд основных показателей, определяющих качество окружающей нас воздушной среды, вот некоторые из них:

· Неприятные запахи ― создают ощущение дискомфорта и раздражают нервную систему, что негативно отражается на здоровье и работоспособности.

· Влажность воздуха. Пониженная влажность может вызывать неприятные ощущения. Пагубно она влияет и на людей с заболеваниями дыхательных путей, также может вызывать обострение болезней. Также из-за пониженной влажности двери, оконные рамы и мебель могут рассыхаться, а в помещениях с повышенной влажностью (бассейны, ванные комнаты), набухать.

· Температура воздуха, которая считается комфортной составляет 21-23°С в помещении. Отклонение от нормы влияет на физическую и умственную активность, а также на состояние здоровья.

· Подвижность воздуха. Повышенная скорость воздуха в помещении приводит к ощущению сквозняка, а пониженная ― к застою воздуха.

Теперь давайте рассмотрим с Вами, как высчитать и определить необходимые параметры вентиляции в Вашем помещении.

Итак, количество вентиляционного воздуха определяется для каждого помещения отдельно, учитывается содержание в воздухе вредных веществ и примесей. Если характер и количество вредных веществ невозможно подсчитать, то воздухообмен определяют по кратности (формуле):

Как узнать объем помещения?

Для начала необходимо вычислить общий объем помещения в метрах кубических. Используем формулу:

Длина х ширина х высота = объем помещения м3 A x B x H = V (м3)

К примеру: помещение длиной 8 м, шириной 5 м и высотой 2,8 м. Для определения объема воздуха, необходимого для вентиляции этого помещения, рассчитываем объем комнаты: 8 х 5 х 2,8 = 112 м3. Затем, используя приведенные ниже таблицы рекомендуемой кратности воздухообмена, определяем требуемую производительность вентилятора.

Определение воздухообмена в соответствии с количеством людей в помещении:

Где L1 – норма воздуха на одного человека, м3/ч*чел;

NL – количество людей в помещении.

Определение воздухообмена при выделении влаги можно расчитать по формуле:

Определение воздухообмена для удаления излишков тепла:

Таблица кратностей воздухообмена:

Определение воздухообмена в зависимости от предельно допустимой концентрации веществ:

Если у Вас возникнут вопросы, Вы можете «Климат-Маркет Украина» , которые квалифицированно и качественно проведут все необходимые расчеты и помогут Вам создать и установить систему вентиляции, не только соответствующую всем нормам и стандартам, но и Вашим эксклюзивным требованиям!!!

Если Вас заинтересовала данная статья, не забудьте также посмотреть и , которые предлагает в продаже «Климат-Маркет Украина» . По вопросам приобретения и установки оборудования, обращайтесь по !

Звоните и заказывайте!

Если расчет естественной вентиляции выполнен правильно, вы получите хорошо проветриваемое комфортное помещение. А для проектирования качественной и надежной системы, очень важно все грамотно учесть. В зависимости от того, как проведен расчет вентиляции, а также от соблюдения всех норм, можно обеспечить помещение необходимым объемом воздуха. А это создаст максимальный комфорт проживания в доме, даже если устроена неважно.

Что такое расчет вентиляции?

Каждому дому нужна качественная вентиляция. Расчет ее — это определение рабочих параметров всех системных элементов. Правильность проведения таких работ повлияет на эффективность функционирования всей системы. Процесс расчета имеет свои трудности, и сейчас мы рассмотрим, что он из себя представляет.

С чего начать?

Расчет вентиляции всегда нужно начинать с обозначения нужных параметров. Это назначение помещения, количество людей, находящихся в нем, количество приборов, которые выделяют тепло. Если мы сложим все эти значения, то получим производительность помещения по воздуху. Показатель этот поможет определить кратность воздухообъема — количество раз, когда полностью заменяется воздух в помещении за один час. Для жилых помещений нужная кратность воздухообмена — единица, а вот рабочим помещениям потребуется 2-3. Для всех помещений по все значения составляют производительность по воздуху, обычные значения которой составляют:

Офисы — 1000-10000 м 3 /ч;

Квартиры — 1000-2000 м 3 /ч;

Коттеджи — 100-800 м 3 /ч.

Проводим нужные измерения

Вам также придется рассчитать мощность калорифера. Учитывается при этом желаемая температура воздуха в помещении, а также нижняя величина температуры воздуха снаружи. Кроме того, выбирая оборудование, учтите рабочее давление, которое создает вентилятор, и необходимую скорость потока воздуха.

Проектируем воздухораспределительную сеть

Теперь можно переходить ко второму этапу — проектирование воздухораспределительной сети. В нее входят воздуховоды, переходники, распределители воздуха и др. Огромное значение при этом будут иметь диаметры воздуховодов и число переходов между разными диаметрами. Чем эти показатели больше, тем больше будет рабочее давление. Для тех, кто в данной терминологии, а также в особенностях сооружения систем вентиляции разбирается не очень хорошо, приводим формулу. Она поможет провести расчет вентиляции: мощность вентилятора в квартире должна быть равной объему комнаты, умноженному на два. Имейте в виду, что в случае с офисным помещением, одному человеку должно выделяться в один час 60 метров кубических свежего воздуха.

Находим оптимальные решения

Диаметр воздуховодов определяет среднюю скорость потока воздуха. Она, как правило, должна составлять 12-16 мм/с. При проектировании важно находить оптимальные соотношения между мощностью вентилятора и диаметрами воздуховодов. Рассчитывая мощность калорифера, учитывайте нужную температуру в помещении, нижний уровень температуры воздуха снаружи. Для квартир мощности калорифера находится в пределах от 1 до 5 кВт, а для офисов пределы — от 5 до 50 кВт.

Как видите, расчет вентиляции — сложный процесс, и если вы не уверены, что справитесь со всеми его тонкостями, лучше обратитесь к специалистам.

Основное требование к вентиляционной системе — обеспечить необходимый уровень обмена воздуха в помещении при соблюдении определенных климатических параметров внутри помещения. Именно от объема обработанного вентиляционной системой воздуха зависит и ее стоимость и последующие эксплуатационные расходы. Для ответа на сей непраздный вопрос мы определимся, что будем пока рассматривать требования к жилым и административным помещениям, а вот многовариантные требования к промышленным помещениям оставим и рассмотрим отдельно.

Итак, во-первых, всем понятно, зачем вообще необходим свежий воздух внутри помещения — конечно, для дыхания. И вот, руководствуясь именно этой основной задачей, и можно определить необходимый объем приточного воздуха в помещении. Очевидно, что он будет зависеть от количества людей в помещении. Итак, принято считать, что на одного взрослого человека необходимо 30 м 3 /час, на ребенка можно и 20 м 3 /ч. Эта цифра была подобрана почти опытным путем и закреплена в соответствующих документах, регламентирующих проектирование вентиляционных систем. (Представьте, что у среднего взрослого человека объем легких 4,5 литра или 0,0045 м 3 , и дышит он не чаще 1 раза в секунду, да и то неполной грудью, — это всего 16,2 м 3 . Но есть еще время, которое отработанный воздух будет находиться в помещении. Трудно же представить, что каждый следующий вдох будет свежим воздухом.)

Для жилых помещений в нашей стране определена также норма в 3 м 3 на кв.метр жилой площади, и она не лишена смысла, ибо точно определить количество людей в комнате невозможно, и эта величина отталкивается от принятых норм жилой площади на одного человека. Стоит учесть также, что вентиляция кроме подачи свежего воздуха производит удаление отработанного, который содержит в себе все вредности, выделяемые внутри помещения — от радиоактивного радона до ядовитых испарений современных моющих средств (один комет со своим замечательным хлором чего стоит!). Затронув проблему загрязнения внутреннего воздуха, мы подошли к следующему параметру вентиляционных систем — КРАТНОСТИ. Нормативные требования сводятся к 0,5-1 кратному обмену в жилых помещениях, и 3-кратному на кухнях. Но заметьте, что расчет на кратность не учитывает количество людей и интенсивность загрязнения внутреннего воздуха, расчет на количество людей не учитывает объемы помещений и также выделение вредностей в них.

Очевидно, необходим более точный расчет, который учитывает и то и другое, а стало быть, и более точное описание помещений. Однако, опыт, заключенный в регламентирующих документах ни в коем случае не стоит отвергать. Замечено, что при кратности воздухообмена в помещении менее 0,5 — человек ощущает духоту в жилом помещении, а в рабочем офисе рекомендуется кратность уже от 3 до 8. Ниже приведены рекомендованные значения рассмотренных параметров стандарту ASHRAE, DIN 1946, уважаемом во всем мире для определения объема вентиляции V.

Кратность воздухообмена. Объем V=s*Vp , где s- кратность, Vp — объем помещения.

Таблица 1.

Расчет на количество людей в помещении.

Объем вентиляции V =s s* Vi , гдеs s- количество человек, Vi — норма наружного воздуха на одного человека

Таблица 2.

Обратите внимание на значения в табл. 1 и табл. 2. Если принимать значения в табл.1 за основу, то, получается, они приводят к гораздо большему объему вентиляции, нежели тот, который бы получился при расчете от значений Vi по табл.2. Ну, например, офис — среднее рекомендованное значение воздухообмена 5,5 крат. Предположим, что в помещении площадью 100 м 2 и высоте потолков 3 м работают около 10 человек (10 м 2 на человека — достаточно плотно, при учете всей площади офиса). Тогда, отталкиваясь от расчета по табл.2, необходимый объем вентиляции 10*40 = 400 м 3 /час, а если отталкиваться от рекомендаций по табл.1, то получается 100*3*5,5 = 1750 м 3 /час — ничего себе разница! Но, что интересно, никакого парадокса здесь нет. Все дело в том, что рекомендации по табл. 1 основаны на основе усредненного учета всех параметров внутренней среды помещения, определяющих комфортные условия для находящихся там людей. Об этом мы говорили выше — температура, влажность, запахи, движение воздуха, температура ограждений (стен, потолка и т.п.).

Мечтаете, чтобы в доме был здоровый микроклимат и ни в одной комнате не пахло затхлостью и сыростью? Чтобы дом был по-настоящему комфортным, еще на стадии проектирования необходимо провести грамотный расчет вентиляции.

Если во время строительства дома упустить этот важный момент, в дальнейшем придется решать целый ряд проблем: от удаления плесени в ванной комнате до нового ремонта и установки системы воздуховодов. Согласитесь, не слишком приятно видеть на кухне на подоконнике или в углах детской комнаты рассадники черной плесени, да и заново погружаться в ремонтные работы.

В представленной нами статье собраны полезные материалы по расчету систем вентилирования, справочные таблицы. Приведены формулы, наглядные иллюстрации и реальный пример для помещений различного назначения и определенной площади, продемонстрированный в видеосюжете.

Причины проблем с вентиляцией

При правильных расчетах и грамотном монтаже вентилирование дома осуществляется в подходящем режиме. Это означает, что воздух в жилых помещениях будет свежий, с нормальной влажностью и без неприятных запахов.

Если же наблюдается обратная картина, например, постоянная духота, плесневый грибок в ванной комнате или другие негативные явления, то нужно проверить состояние вентиляционной системы.

Галерея изображенийРасчет и проектирование вентиляции выполняется на стадии проектирования строительства или перепланировки. Система нужна для обеспечения нормального микроклимата в помещенияхВо время проектирования и выполнения расчетов вентиляционной системы подбирается оптимальное сечение воздуховодов и мощность оборудованияВ вентиляционных системах с механическим побуждением воздуха за его движение отвечают вентиляторы. В приточных вентиляторы поставляют воздух в помещения, в вытяжных — отводят егоЕсли вентиляционная система сооружается параллельно системе кондиционирования или воздушного отопления, объем поставляемого ими воздуха должен быть учтен в расчетахКухонную вытяжку нельзя подключать к вентиляционному каналу. Это отдельные системы, каждая из которых решает собственные задачиТак как эксплуатационные условия разных по назначению помещений отличаются, то расчеты для них производятся отдельноВентиляционную систему разрабатывают не только для помещений, но и для отдельных конструкций здания. К примеру, вентиляцию подкровельного пространства устраивают для отвода конденсата из-под кровельного покрытияВ обязательном порядке вентиляционной системой оборудуют подвальные помещения и цоколь. Вентиляция продлит сроки службы заглубленных и контактирующих с грунтом конструкций, как следствие, увеличатся сроки эксплуатации постройкиВентиляция частного дома в стиле лофтВентканал в перекрытии каркасного домаКомпоненты приточной и вытяжной системыВентиляция в паре с кондиционированиемВентиляционная решетка и вывод вытяжкиВытяжной вентилятор в ванной комнатеВентиляция подкровельного пространстваПриточная труба для подвала

Немало проблем доставляет отсутствие характерных для окон и дверей тончайших зазоров, спровоцированное установкой герметичных пластиковых конструкций. В таком случае в дом поступает слишком мало свежего воздуха, нужно позаботиться о его притоке.

Засоры и разгерметизация воздуховодов могут стать причиной серьезных проблем с удалением отработанного воздуха, который насыщен неприятными запахами, а также избыточными водяными парами.

В результате в служебных помещениях могут появиться колонии грибка, что плохо отражается на здоровье людей и может спровоцировать ряд серьезных заболеваний.

Запотевшие окна, плесень и грибок в ванной комнате, духота – все это явные признаки того, что жилые помещения вентилируются неправильно

Но бывает и так, что элементы вентиляционной системы работают прекрасно, однако описанные выше проблемы остаются нерешенными. Возможно, расчеты вентиляционной системы для конкретного дома или квартиры были проведены неправильно.

Негативно может отразиться на вентилировании помещений их переделка, перепланировка, появление пристроек, установка уже упомянутых ранее пластиковых окон и т.п. При таких существенных изменениях не помещает повторно произвести расчеты и модернизировать имеющуюся вентиляционную систему в соответствии с новыми данными.

Один из простых способов обнаружить проблемы с вентилированием – проверка наличия тяги. К решетке вытяжного отверстия нужно поднести зажженную спичку или лист тонкой бумаги. Не стоит использовать для такой проверки открытый огонь, если в помещении используется газовое нагревательное оборудование.

Слишком герметичные внутренние двери могут препятствовать нормальной циркуляции воздуха по дому, рещить проблему помогут специальные решетки или отверстия

Если пламя или бумага уверенно отклоняется в сторону вытяжки, тяга имеется, если же этого не происходит или отклонение слабое, нерегулярное, проблема с отведением отработанного воздуха становится очевидной. Причиной могут быть засоры или повреждение воздуховода в результате неумелого ремонта.

Не всегда есть возможность устранить поломку, решением проблемы часто становится монтаж дополнительных средств вытяжного вентилирования. Перед их установкой также не помешает провести необходимые расчеты.

Определить наличие или отсутствие нормальной тяги в вытяжной вентиляционной системе дома можно с помощью пламени или листа тонкой бумаги

Как рассчитать воздухообмен?

Все расчеты по системам вентилирования сводятся к тому, чтобы определить объемы воздуха в помещении. В качестве такого помещения может рассматриваться как отдельная комната, так и совокупность комнат в конкретном доме или квартире.

На основании этих данных, а также сведений из нормативных документов рассчитывают основные параметры вентиляционной системы, такие как количество и сечение воздуховодов, мощность вентиляторов и т.п.

Существуют специализированные расчетные методики, позволяющие просчитать не только обновление воздушных масс в помещении, но и удаление тепловой энергии, изменение влажности, выведение загрязнений и т.п. Подобные расчеты выполняются обычно для зданий промышленного, социального или какого-либо специализированного назначения.

Если есть необходимость или желание выполнить настолько подробные расчеты, лучше всего обратиться к инженеру, изучившему подобные методики.

Для самостоятельных расчетов по жилым помещениям используют следующие варианты:

  • по кратностям;
  • по санитарно-гигиеническим нормам;
  • по площади.

Все эти методики относительно просты, уяснив их суть, даже неспециалист может просчитать основные параметры своей вентиляционной системы. Проще всего воспользоваться расчетами по площади. За основу принимается следующая норма: каждый час в дом должно поступать по три кубических метра свежего воздуха на каждый квадратный метр площади.

Количество людей, которые постоянно проживают в доме, при этом не учитывается.

Вентиляционная система в жилых зданиях устраивается таким образом, чтобы воздух поступал через спальню и гостиную, а удалялся из кухни и санузла

Расчет по санитарно-гигиеническим нормативам тоже относительно несложен. В этом случае для вычислений используют не площадь, а данные о количестве постоянных и временных жильцов.

Для каждого постоянно проживающего необходимо обеспечить приток свежего воздуха в количестве 60 кубических метров в час. Если в помещении регулярно присутствуют временные посетители, то на каждого такого человека нужно прибавить еще по 20 кубических метров в час.

Несколько сложнее производится расчет по кратности воздухообмена. При его выполнении учитывается назначение каждой отдельной комнаты и нормативы по кратности воздухообмена для каждой из них.

Кратностью воздухообмена называют коэффициент, отражающий количество полной замены отработанного воздуха в помещении в течение одного часа. Соответствующие сведения содержатся в специальной нормативной таблице (СНиП 2.08.01-89* Жилые здания, прил. 4).

С помощью этой таблицы выполняют расчет вентиляции дома по кратностям. Соответствующие коэффициенты отражают кратность воздухообмена за единицу времени в зависимости от назначения помещения

Рассчитать количество воздуха, которое должно быть обновлено в течение часа, можно по формуле:

L=N*V,

Где:

  • N – кратность воздухообмена за час, взятая из таблицы;
  • V – объём помещения, куб.м.

Объем каждого помещения вычислить очень просто, для этого нужно умножить площадь комнаты на ее высоту. Затем для каждого помещения рассчитывают объем воздухообмена в час по приведенной выше формуле.

Показатель L для каждой комнаты суммируется, итоговое значение позволяет составить представление о том, сколько именно свежего воздуха должно поступать в помещение за единицу времени.

Разумеется, через вытяжные каналы должно удаляться точно такое же количество отработанного воздуха. В одной и той же комнате не устанавливают и приточную, и вытяжную вентиляцию. Обычно приток воздуха осуществляется через “чистые” помещения: спальню, детскую, гостиную, кабинет и т.п.

Вытяжную вентиляцию в ванной комнате или санузле устанавливают в верхней части стены, встроенный вентилятор работает в автоматическом режиме

Удаляют же воздух из комнат служебного назначения: санузла, ванной, кухни и т.п. Это разумно, поскольку неприятные запахи, характерные для этих помещений, не распространяются по жилищу, а сразу же выводятся наружу, что делает проживание в доме более комфортным.

Поэтому при расчетах берут норматив только для приточной или только для вытяжной вентиляции, как это отражено в нормативной таблице.

Если воздух не нужно подавать в конкретное помещение или удалять из него, в соответствующей графе стоит прочерк. Для некоторых помещений указано минимальное значение кратности воздухообмена. Если расчетная величина оказалась ниже минимальной, следует использовать для расчетов табличную величину.

Если проблемы с вентиляцией обнаружились уже после того, как ремонт в доме был проведен, можно установить приточные и вытяжные клапаны в стене

Разумеется, в доме могут найтись помещения, назначение которых в таблице не отображено. В таких случаях используют нормативы, принятые для жилых помещений, т.е. 3 куб.м на каждый квадратный метр комнаты. Нужно просто умножить площадь комнаты на 3, полученное значение принять за нормативную кратность воздухообмена.

Все значения кратности воздухообмена L следует округлить в сторону увеличения, чтобы они были кратными пяти. Теперь нужно посчитать сумму кратности воздухообмена L для помещений, через которые осуществляется приток воздуха. Отдельно суммируют кратность воздухообмена L тех комнат, из которых производится отведение отработанного воздуха.

Если результат вычислений не отвечает санитарным требованиям, производится установка приточного клапана,бризера или вытяжки через стену, модернизируется существующая система или выполняется ее чистка.

Холодный наружный воздух может отрицательно сказаться на качестве отопления в доме, для таких ситуаций используют вентиляционные устройства с рекуператором

Затем следует сравнить эти два показателя. Если L по притоку оказался выше, чем L по вытяжке, то нужно увеличить показатели для тех комнат, по которым при расчетах использовались минимальные значения.

Примеры расчетов объема воздухообмена

Чтобы провести расчет для вентиляционной системы по кратностям, для начала нужно составить список всех помещений в доме, записать их площадь и высоту потолков.

Например, в гипотетическом доме имеются следующие помещения:

  • Спальня – 27 кв.м.;
  • Гостиная – 38 кв.м.;
  • Кабинет – 18 кв.м.;
  • Детская – 12 кв.м.;
  • Кухня – 20 кв.м.;
  • Санузел – 3 кв.м.;
  • Ванная – 4 кв.м.;
  • Коридор – 8 кв.м.

Учитывая, что высота потолка во всех помещениях составляет три метра, вычисляем соответствующие объемы воздуха:

  • Спальня – 81 куб.м.;
  • Гостиная – 114 куб.м.;
  • Кабинет – 54 куб.м.;
  • Детская – 36 куб.м.;
  • Кухня – 60 куб.м.;
  • Санузел – 9 куб.м.;
  • Ванная – 12 куб.м.;
  • Коридор – 24 куб.м.

Теперь, используя приведенную выше таблицу, нужно произвести расчёты вентиляции помещения с учетом кратности воздухообмена, увеличив каждый показатель до значения, кратного пяти:

  • Спальня – 81 куб.м.*1 = 85 куб.м.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м.;
  • Кабинет – 54 куб.м.*1 = 55 куб.м.;
  • Детская – 36 куб.м.*1 = 40 куб.м.;
  • Кухня – 60 куб.м. – не менее 90 куб.м.;
  • Санузел – 9 куб.м. не менее 50 куб.м;
  • Ванная – 12 куб.м. не менее 25 куб.м.

Сведения о нормативах для коридора в таблице отсутствуют, поэтому в расчете данные по этому небольшому помещению не учтены. Для гостиной выполнен расчет по площади с учетом норматива три куб. метра на каждый метр площади.

Правильно организованная система вентиляции обеспечит достаточный воздухообмен в гостиной. При проектировании обязательно следует учитывать требования и нормы СНиПов

Теперь нужно отдельно суммировать сведения по помещениям, в которых осуществляется приток воздуха, и отдельно — комнаты, где установлены вытяжные вентиляционные устройства.

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.мч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — не менее 90 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 165 куб.м/ч.

Теперь следует сравнить полученные суммы. Очевидно, что необходимый приток превышает вытяжку на 130 куб.м/ч (295 куб.м/ч-165 куб.м/ч).

Чтобы устранить эту разницу, нужно увеличить объемы воздухообмена по вытяжке, например, увеличив показатели по кухне. На практике это проводится, например, заменой воздуховодов на каналы бóльшего сечения.

Правила расчета площади воздушных каналов для замены или модернизации системы вентилирования приведены здесь. Советуем ознакомиться с полезным материалом.

После правок результаты расчета будут выглядеть следующим образом:

Объем воздухообмена по притоку:

  • Спальня – 81 куб.м.*1 = 85 куб.м/ч.;
  • Гостиная – 38 кв.м.*3 = 115 куб.м/ч;
  • Кабинет – 54 куб.м.*1 = 55 куб.м/ч;
  • Детская – 36 куб.м.*1 = 40 куб.м/ч;

Всего: 295 куб.мч.

Объем воздухообмена по вытяжке:

  • Кухня – 60 куб.м. — 220 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 25 куб.м/ч.

Всего: 295 куб.м/ч.

Объемы по притоку и вытяжке равны, что соответствует требованиям при расчетах воздухообмена по кратностям.

Расчет вентиляционной системы для кухни также чрезвычайно важен. Особенно, если там используется газовое оборудование для приготовления пищи

Расчет воздухообмена в соответствии с санитарными нормами выполнить значительно проще. Допустим, что в доме, рассмотренном выше, постоянно проживают два человека и еще двое пребывают в помещении нерегулярно.

Расчет выполняется отдельно для каждого помещения в соответствии с нормой 60 куб.мчел для постоянных жильцов и 20 куб.мчас для временных посетителей:

  • Спальня – 2 чел*60 = 120 куб.мчас;
  • Кабинет – 1 чел.*60 = 60 куб.мчас;
  • Гостиная 2 чел*60 + 2 чел*20 = 160 куб.мчас;
  • Детская 1 чел.*60 = 60 куб.мчас.

Всегопо притоку — 400 куб.мчас.

Для количества постоянных и временных обитателей дома не существует каких-то строгих правил, эти цифры определяются исходя из реальной ситуации и здравого смысла.

Достаточный объем воздуха, своевременно поступающий в ванную комнату, и также своевременная эвакуация отработанного позволяет предотвратить образование затхлого воздуха и появление плесневелых грибов

Вытяжку рассчитывают по нормам, изложенным в таблице, приведенной выше, и увеличивают до суммарного показателя по притоку:

  • Кухня – 60 куб.м. — 300 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 400 куб.м/ч.

Увеличен воздухообмен для кухни и ванной комнаты. Недостаточный объем по вытяжке можно разделить между всеми помещениями, в которых установлена вытяжная вентиляция. Или увеличить этот показатель только для одного помещения, как это было сделано при расчете по кратностям.

В соответствии с санитарными нормами воздухообмен рассчитывают подобным образом. Допустим, площадь дома составляет 130 кв.м. Тогда воздухообмен по притоку должен составлять 130 кв.м*3 куб.мчас = 390 куб.мчас.

Остается распределить этот объем на помещения по вытяжке, например, таким образом:

  • Кухня – 60 куб.м. — 290 куб.м/ч;
  • Санузел – 9 куб.м. — не менее 50 куб.м/ч;
  • Ванная – 12 куб.м. — не менее 50 куб.м/ч.

Всего по вытяжке: 390 куб.м/ч.

Баланс воздухообмена — один из основных показателей при проектировании вентиляционных систем. Дальнейшие расчеты выполняются на основе этих сведений.

Как подобрать сечение воздуховода?

Система вентилирования, как известно, может быть канальной или бесканальной. В первом случае нужно правильно подобрать сечение каналов. Если принято решение устанавливать конструкции с прямоугольным сечением, то соотношение его длины и ширины должно приближаться к 3:1.

Длина и ширина сечения канальных воздуховодов с прямоугольной конфигурацией должны соотноситься как три к одному, чтобы уменьшить количество шума

Стандартная скорость перемещения воздушных масс по основному вентканалу должна составлять около пяти метров в секунду, а на ответвлениях — до трех метров в секунду. Это обеспечит работу системы с минимальным количеством шума. Скорость движения воздуха во многом зависит от площади сечения воздуховода.

Чтобы подобрать размеры конструкции, можно использовать специальные расчетные таблицы. В такой таблице нужно выбрать слева объем воздухообмена, например, 400 куб.мч, а сверху выбрать значение скорости — пять метров в секунду.

Затем нужно найти пересечение горизонтальной линии по воздухообмену с вертикальной линией по скорости.

С помощью этой диаграммы вычисляют сечение воздуховодов для канальной вентиляционной системы. Скорость движения в магистральном канале не должна превышать 5 м/сек

От этого места пересечения проводят линию вниз до кривой, по которой можно определить подходящее сечение. Для прямоугольного воздуховода это будет значение площади, а для круглого – диаметр в миллиметрах. Сначала делают расчеты для магистрального воздуховода, а затем – для ответвлений.

Таким образом расчеты делают, если в доме планируется только один вытяжной канал. Если же предполагается установить несколько вытяжных каналов, то общий объем воздуховода по вытяжке нужно разделить на количество каналов, а затем провести расчеты по изложенному принципу.

Эта таблица позволяет подобрать сечение воздуховода для канальной вентиляции с учетом объемов и скорости перемещения воздушных масс

Кроме того, существуют специализированные калькуляционные программы, с помощью которых можно выполнить подобные расчеты. Для квартир и жилых домов такие программы могут быть даже удобнее, поскольку дают более точный результат.

На нормальный воздухообмен оказывает влияние такое явление как обратная тяга, со спецификой которой и способами борьбы с ней ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Ролик #1. Полезные сведения по принципам работы системы вентилирования:

Ролик #2. Вместе с отработанным воздухом жилище покидает и тепло. Здесь наглядно продемонстрированы расчеты тепловых потерь, связанных с работой системы вентиляции:

Правильный расчет вентиляции — основа ее благополучного функционирования и залог благоприятного микроклимата в доме или квартире. Знание основных параметров, на которых базируются такие вычисления, позволит не только правильно спроектировать систему вентилирования во время строительства, но и откорректировать ее состояние, если обстоятельства изменятся.

Хотите поделиться собственным опытом в расчете и сооружении вентиляции? Возникли вопросы в ходе ознакомления с информацией? Нашли недоработки в тексте? Пишите, пожалуйста, комментарии в блоке, находящимся под текстом статьи.

Используемые источники:

  • https://otivent.com/raschet-ventiljacii-pomeshhenija
  • https://kvartalmuz.ru/ventilation-in-private-house/calculation-of-ventilation-by-room-volume-how-to-calculate-the-volume-of-air-in-the-room/
  • https://sovet-ingenera.com/vent/raschety/raschet-ventilyacii.html

Правильный аэродинамический расчет по формулам и онлайн

Аэродинамический расчет систем это очень важная составляющая проекта. Ведь именно за результатами этого расчета подбирается вентиляционное оборудование, а также в процессе подбирают размеры воздуховодов. Это прям можно назвать «сердцем» проекта. Расчет производится для круглых и прямоугольных воздуховодов, также значение имеет их материал и параметры воздуха. Разберем аэродинамический расчет воздуховодов на примере общеобменной вентиляции. Для систем аспирации и некоторых других местных вентиляционных систем расчет немножко другой.

Содержание статьи:

Основные формулы аэродинамического расчета

Первым делом необходимо сделать аэродинамический расчет магистрали. Напомним что магистральным воздуховодом считается наиболее длинный и нагруженный участок системы. За результатами этих вычислений и подбирается вентилятор. 

Рассчитывая магистральную ветвь желательно, чтобы скорость в воздуховоде увеличивалась по ходу приближения к вентилятору!

Только не забывайте об увязке остальных ветвей системы. Это важно! Если нет возможности произвести увязку на ответвлениях воздуховодов в пределах 10% нужно применять диафрагмы. Коэффициент сопротивления диафрагмы рассчитывается за формулой: 

Если неувязка будет больше 10%, когда горизонтальный воздуховод входит в вертикальный кирпичный канал в месте стыковки  необходимо разместить прямоугольные диафрагмы.

Основная задача расчета состоит из нахождения потерь давления. Подбирая при этом оптимальный размер воздуховодов и контролирую скорость воздуха. Общие потери давления представляют собой сумму двух компонентов — потерь давления по длине воздуховодов (на трение) и потерь в местных сопротивлениях. Расчитываются они по формулам

Эти формулы правильны для стальных воздуховодов, для всех остальных вводится коэффициент поправки. Он берется из таблицы в зависимости от скорости и шероховатости воздуховодов.

Для прямоугольных воздухопроводов расчетной величиной принимается эквивалентный диаметр.

Рассмотрим последовательность аэродинамического расчета воздуховодов на примере офисов, приведенных в предыдущей статье, по формулам. А затем покажем как он выглядит в программке Excel.

Пример расчета

По расчетам в кабинете воздухообмен составляет 800 м3/час. Задание было запроектировать воздуховоды в кабинетах не больше 200 мм высотой.  Размеры помещения даны заказчиком. Воздух подается при температуре 20°С, плотность воздуха 1,2 кг/м3.

Проще будет если результаты заносить в таблицу такого вида

Сначала мы сделаем аэродинамический расчет главной магистрали системы. Теперь все по-порядку:

  • Разбиваем магистраль на участки по приточным решеткам. У нас в помещении восемь решеток, на каждую приходится по 100 м3/час. Получилось 11 участков. Вводим расход воздуха на каждом участке в таблицу.
  • Записываем длину каждого участка.
  • Рекомендуемая максимальная скорость внутри воздуховода для офисных помещений до 5 м/с. Поэтому подбираем такой размер воздуховода, чтобы скорость увеличивалась по мере приближения к вентиляционному оборудованию и не превышала максимальную. Это делается для избежания шума в вентиляции. Возьмем для первого участка берем воздуховод 150х150, а для последнего 800х250. 

    V1=L/3600F =100/(3600*0,023)=1,23 м/с. 

    V11= 3400/3600*0,2= 4,72 м/с

    Нас результат устраивает. Определяем размеры воздуховодов и скорость по этой формуле на каждом участке и вносим в таблицу.

  • Начинаем расчеты потерь давления. Определяем эквивалентный диаметр для каждого участка, например первого dэ=2*150*150/(150+150)=150.  Затем заполняем все данные необходимые для расчета из справочной литературы или вычисляем: Re=1,23*0,150/(15,11*10^-6)=12210.0,25=0,0996 Шероховатость разных материалов разная.
  • Динамическое давление Pд=1,2*1,23*1,23/2=0,9 Па тоже записывается в столбец.
  • Из таблицы 2.22 определяем удельные потери давления или рассчитываем R=Pд*λ/d= 0,9*0,0996/0,15=0,6 Па/м  и заносим в столбик. Затем на каждом участке определяем потери давления на трение: ΔРтр=R*l*n=0,6*2*1=1,2 Па.
  • Коэффициенты местных сопротивлений берем из справочной литературы. На первом участке у нас решетка и увеличение воздуховода в сумме их КМС составляет 1,5.
  • Потери давления в местных сопротивлениях ΔРм=1,5*0,9=1.35 Па
  • Находим суму потерь давления на каждом участке = 1.35+1.2=2,6 Па. А в итоге и потери давления во всей магистрали = 185,6 Па. таблица к тому времени будет иметь вид

Далее производится по тому же методу расчет остальных ветвей и их увязка. Но об этом поговорим отдельно.

 При увязке ответвлений расхождение в потерях давления должно быть не более 15%, если воздух поступает в одно помещение (цех) и не более 10%, если в разные помещения

После этого аэродинамический расчет можно считать завершенным. Для круглых воздуховодов принцип расчета такой же, только эквивалентный диаметр приравнивается к диаметру воздуховода.

Поэтапная работа с аэродинамическим расчетом в Excel

Если вам нужно сделать аэродинамический расчет, но вы не готовы просчитывать эти колоссальные формулы вручную, тогда поможет Excel.

 По ссылке размещен файл Excel, который можно скачать или редактировать онлайн. Для получения результата необходимо заполнить всего 6 столбцов таблицы, а далее программа сделает все сама. Возьмем все те же офисы для достоверности результатов. Поэтапно вводим:

  1. Расход воздуха на каждом участке.
  2. Длину каждого из них.
  3. Рекомендуемую скорость. После заполнения, в файле уже будет рассчитано минимальная необходимая площадь сечения.
  4. Ориентируясь по рекомендуемой площади нужно подобрать размер воздуховода. Просто введите высоту и ширину в столбик F и G, как тут же рассчитается скорость на участке и эквивалентный диаметр. В итоге и число Рейнольдса.
  5. Эквивалентная шероховатость вводится также вручную.
  6. На каждом участке необходимо будет посчитать сумму КМС и также занести в таблицу.
  7. Наслаждаться результатом расчетов!

Напомним, аэродинамический расчет в Excel сделан для прямоугольных стальных воздуховодов при температуре подаваемого воздуха 20°С. Если у вас параметры другие, замените значение плотности, шероховатости и вязкости на ваши. Таблица полностью отвечает расчетным формулам и готова к использованию. Успешных вам аэродинамических расчетов!!!

Читайте также:

Калькулятор подбора круглых воздуховодов онлайн по диаметру. Как рассчитать сечение и диаметр воздуховода

Параметры показателей микроклимата определяются положениями ГОСТ 12.1.2.1002-00, 30494-96, СанПин 2.2.4.548, 2.1.2.1002-00. На основании существующих государственных нормативных актов разработан Свод правил СП 60.13330.2012. Скорость воздуха в должна обеспечивать выполнение существующих норм.

Что учитывается при определении скорости движения воздуха

Для правильного выполнения расчетов проектировщики должны выполнять несколько регламентируемых условий, каждое из них имеет одинаково важное значение. Какие параметры зависят от скорости движения воздушного потока?

Уровень шума в помещении

В зависимости от конкретного использования помещений санитарные нормы устанавливают следующие показатели максимального звукового давления.

Таблица 1. Максимальные значения уровня шума.

Превышение параметров допускается только в кратковременном режиме во время пуска/остановки вентиляционной системы или дополнительного оборудования.
Уровень вибрации в помещении
Во время работы вентиляторов продуцируется вибрация. Показатели вибрации зависят от материала изготовления воздуховодов, способов и качества виброгасящих прокладок и скорости движения воздушного потока по воздуховодам. Общие показатели вибрации не могут превышать установленные государственными организациями предельные значения.

Таблица 2. Максимальные показатели допустимой вибрации.

При расчетах подбирается оптимальная скорость воздуха, не усиливающая вибрационные процессы и связанные с ними звуковые колебания. Система вентиляции должна поддерживать в помещениях определенный микроклимат.

Значения по скорости движения потока, влажности и температуре содержатся в таблице.

Таблица 3. Параметры микроклимата.

Еще один показатель, принимаемый во внимание во время расчета скорости потока – кратность обмена воздуха в системах вентиляции. С учетом их использования санитарные нормы устанавливают следующие требования по воздухообмену.

Таблица 4. Кратность воздухообмена в различных помещениях.

Бытовые
Бытовые помещенияКратность воздухообмена
Жилая комната (в квартире или в общежитии)3м 3 /ч на 1м 2 жилых помещений
Кухня квартиры или общежития6-8
Ванная комната7-9
Душевая7-9
Туалет8-10
Прачечная (бытовая)7
Гардеробная комната1,5
Кладовая1
Гараж4-8
Погреб4-6
Промышленные
Промышленные помещения и помещения большого объемаКратность воздухообмена
Театр, кинозал, конференц-зал20-40 м 3 на человека
Офисное помещение5-7
Банк2-4
Ресторан8-10
Бар, Кафе, пивной зал, бильярдная9-11
Кухонное помещение в кафе, ресторане10-15
Универсальный магазин1,5-3
Аптека (торговый зал)3
Гараж и авторемонтная мастерская6-8
Туалет (общественный)10-12 (или 100 м 3 на один унитаз)
Танцевальный зал, дискотека8-10
Комната для курения10
Серверная5-10
Спортивный залне менее 80 м 3 на 1 занимающегося и не менее 20 м 3 на 1 зрителя
Парикмахерская (до 5 рабочих мест)2
Парикмахерская (более 5 рабочих мест)3
Склад1-2
Прачечная10-13
Бассейн10-20
Промышленный красильный цел25-40
Механическая мастерская3-5
Школьный класс3-8

Алгоритм расчетов
Скорость воздуха в воздуховоде определяется с учетом всех вышеперечисленных условий, технические данные указываются заказчиком в задании на проектирование и монтаж вентиляционных систем. Главный критерий при расчетах скорости потока – кратность обмена. Все дальнейшие согласования делаются за счет изменения формы и сечения воздуховодов. Расход в зависимости от скорости и диаметра воздуховода можно взять из таблицы.

Таблица 5. Расход воздуха в зависимости от скорости потока и диаметра воздуховода.

Самостоятельный расчет

К примеру, в помещении объемом 20 м 3 согласно требованиям санитарных норм для эффективной вентиляции нужно обеспечить трехкратную смену воздуха. Это значит, что за один час сквозь воздуховод должно пройти не менее L = 20 м 3 ×3= 60 м 3 . Формула расчета скорости потока V= L / 3600× S, где:

V – скорость потока воздуха в м/с;

L – расход воздуха в м 3 /ч;

S – площадь сечения воздуховодов в м 2 .

Возьмем круглый воздуховод Ø 400 мм, площадь сечения равняется:

В нашем примере S = (3.14×0,4 2 м)/4=0,1256 м 2 . Соответственно, для обеспечения нужной кратности обмена воздуха (60 м 3 /ч) в круглом воздуховоде Ø 400 мм (S = 0,1256 м 3) скорость воздушного потока равняется: V= 60/(3600×0,1256) ≈ 0,13 м/с.

С помощью этой же формулы при заранее известной скорости можно рассчитать объем воздуха, перемещающийся по воздуховодам в единицу времени.

L = 3600×S (м 3)×V(м/с). Объем (расход) получается в квадратных метрах.

Как уже описывалось ранее, от скорости воздуха зависят и показатели шумности вентиляционных систем. Для минимизации негативного влияния этого явления инженеры сделали расчеты максимально допустимых скоростей воздуха для различных помещений.

По такому же алгоритму определяется скорость воздуха в воздуховоде при расчете подачи тепла, устанавливаются поля допусков для минимизации потерь на содержание зданий в зимний период времени, подбираются вентиляторы по мощности. Данные по воздушному потоку требуются и для уменьшения потерь давления, а это позволяет повышать коэффициент полезного действия вентиляционных систем и сокращает потребление электрической энергии.

Расчет выполняется по каждому отдельному участку, с учетом полученных данных подбираются параметры главных магистралей по диаметру и геометрии. Они должны успевать пропускать откачанный воздух из всех отдельных помещений. Диаметр воздуховодов выбирается таким образом, чтобы минимизировать шумность и потери на сопротивление. Для расчетов кинематической схемы важны все три показатели вентиляционной системы: максимальный объем нагнетаемого/удаляемого воздуха, скорость передвижения воздушных масс и диаметр воздуховодов. Работы по расчету вентиляционных систем относятся к категории сложных с инженерной точки зрения, выполнять их могут только профессиональные специалисты со специальным образованием.

Для обеспечения постоянных значений скорости воздуха в каналах с различным сечением используются формулы:

После расчета за окончательные данные принимаются ближайшие значения стандартных трубопроводов. За счет этого уменьшается время монтажа оборудования и упрощается процесс его периодического обслуживания и ремонта. Еще один плюс – уменьшение сметной стоимости вентиляционной системы.

Для воздушного обогрева жилых и производственных помещений скорости регулируются с учетом температуры теплоносителя на входе и выходе, для равномерного рассеивания потока теплого воздуха продумывается схема монтажа и размеры вентиляционных решеток. Современные системы воздушного обогрева предусматривают возможность автоматической регулировки скорости и направления потоков. Температура воздуха не может превышать +50°С на выходе, расстояние до рабочего места не менее 1,5 м. Скорость подачи воздушных масс нормируется действующими государственными стандартами и отраслевыми актами.

Во время расчетов по требованию заказчиков может учитываться возможность монтажа дополнительных ответвлений, с этой целью предусматривается запас производительности оборудования и пропускной способности каналов. Скорости потока рассчитываются таким образом, чтобы после увеличения мощности вентиляционных систем они не создавали дополнительную звуковую нагрузку на присутствующих в помещении людей.

Выбор диаметров выполняется от минимально приемлемого, чем меньше габариты – тем универсальное система вентиляции, тем дешевле обходится ее изготовление и монтаж. Системы местных отсосов рассчитываются отдельно, могут работать как в автономном режиме, так и подключаться к существующим вентиляционным системам.

Государственные нормативные документы устанавливают рекомендованные скорости движения в зависимости от расположения и назначения воздуховодов. При расчетах нужно придерживаться этих параметров.

Тип и место установки воздуховода и решеткиВентиляция
ЕстественнаяМеханическая
Воздухоприемные жалюзи0,5-1,02,0-4,0
Каналы приточных шахт1,0-2,02,0-6,0
Горизонтальные сборные каналы0,5-1,02,0-5,0
Вертикальные каналы0,5-1,02,0-5,0
Приточные решетки у пола0,2-0,50,2-0,5
Приточные решетки у потолка0,5-1,01,0-3,0
Вытяжные решетки0,5-1,01,5-3,0
Вытяжные шахты1,0-1,53,0-6,0

Внутри помещений воздух не может двигаться со скоростью более 0,3 м/с, допускается кратковременное превышение параметра не более чем 30%. Если в помещении имеется две системы, то скорость воздуха в каждой из них должна обеспечивать не менее 50% расчетного объема подачи или удаления воздуха.

Пожарные организации выдвигают свои требования по скорости перемещения воздушных масс в воздуховодах в зависимости от категории помещения и особенностей технологического процесса. Нормативы направлены на уменьшение скорости распространения дыма или огня по воздуховодам. В случае необходимости на вентиляционных системах должны устанавливаться клапаны и отсекатели. Срабатывание устройств происходит после сигнала датчика или выполняется вручную ответственным лицом. В одну систему вентиляции можно подключать только определенные группы помещений.

В холодный период времени в отапливаемых зданиях температура воздуха в результате функционирования вентиляционной системы не может понижаться ниже нормируемых. Нормируемая температура обеспечивается до начала рабочей смены. В теплый период времени эти требования не актуальны. Движение воздушных масс не должно ухудшать предусмотренные СанПин 2.1.2.2645 нормативы. Для достижения нужных результатов во время проектирования систем изменяется диаметр воздуховодов, мощность и количество вентиляторов и скорости потока.

Принимаемые расчетные данные по параметрам движения в воздуховодах должны обеспечивать:

  1. Выполнение параметров микроклимата в помещениях, поддержку качества воздуха в регламентируемых пределах. При этом принимаются меры по снижению непродуктивных тепловых потерь. Данные берутся как из существующих нормативных документов, так и из технического задания заказчиков.
  2. Скорость движения воздушных масс в рабочих зонах не должна вызывать сквозняки, обеспечивать приемлемую комфортность пребывания в помещении. Механическая вентиляция предусматривается только в тех случаях, когда добиться желаемых результатов за счет естественной невозможно. Кроме этого, механическая вентиляция обязательно монтируется в цехах с вредными условиями труда.

Во время расчетов показателей движения воздуха в системах с естественной вентиляцией берется среднегодовое значение разности плотности внутреннего и наружного воздуха. Минимальные фактические данные по производительности должны обеспечивать допустимые нормативные значения кратности обмена воздуха.

Комментариев:

  • Факторы, оказывающие влияние на размеры воздухопроводов
  • Расчет габаритов воздухопровода
  • Подбор габаритов под реальные условия

Для передачи приточного или вытяжного воздуха от вентиляционных установок в гражданских или производственных зданиях применяются воздухопроводы различной конфигурации, формы и размера. Зачастую их приходится прокладывать по существующим помещениям в самых неожиданных и загроможденных оборудованием местах. Для таких случаев правильно рассчитанное сечение воздуховода и его диаметр играют важнейшую роль.

Факторы, оказывающие влияние на размеры воздухопроводов

На проектируемых или вновь строящихся объектах удачно проложить трубопроводы вентиляционных систем не составляет большой проблемы – достаточно согласовать месторасположение систем относительно рабочих мест, оборудования и других инженерных сетей. В действующих промышленных зданиях это сделать гораздо сложнее в силу ограниченного пространства.

Этот и еще несколько факторов оказывают влияние на расчет диаметра воздуховода:

  1. Один из главных факторов – это расход приточного или вытяжного воздуха за единицу времени (м 3 /ч), который должен пропустить данный канал.
  2. Пропускная способность также зависит от скорости воздуха (м/с). Она не может быть слишком маленькой, тогда по расчету размер воздухопровода выйдет очень большим, что экономически нецелесообразно. Слишком высокая скорость может вызвать вибрации, повышенный уровень шума и мощности вентиляционной установки. Для разных участков приточной системы рекомендуется принимать различную скорость, ее значение лежит в пределах от 1.5 до 8 м/с.
  3. Имеет значение материал воздуховода. Обычно это оцинкованная сталь, но применяются и другие материалы: различные виды пластмасс, нержавеющая или черная сталь. У последней самая высокая шероховатость поверхности, сопротивление потоку будет выше, и размер канала придется принять больше. Значение диаметра следует подбирать согласно нормативной документации.

В Таблице 1 представлена нормаль размеров воздуховодов и толщина металла для их изготовления.

Таблица 1

Примечание: Таблица 1 отражает нормаль не полностью, а только самые распространенные размеры каналов.

Воздуховоды производят не только круглой, но и прямоугольной и овальной формы. Их размеры принимаются через значение эквивалентного диаметра. Также новые методы изготовления каналов позволяют использовать металл меньшей толщины, при этом повышать в них скорость без риска вызвать вибрации и шум. Это касается спирально-навивных воздухопроводов, они имеют высокую плотность и жесткость.

Вернуться к оглавлению

Расчет габаритов воздухопровода

Сначала необходимо определиться с количеством приточного или вытяжного воздуха, которое требуется доставить по каналу в помещение. Когда эта величина известна, площадь сечения (м 2) рассчитывают по формуле:

В этой формуле:

  • ϑ – скорость воздуха в канале, м/с;
  • L – расход воздуха, м 3 /ч;
  • S – площадь поперечного сечения канала, м 2 ;

Для того чтобы связать единицы времени (секунды и часы), в расчете присутствует число 3600.

Диаметр воздуховода круглого сечения в метрах можно высчитать исходя из площади его сечения по формуле:

S = π D 2 / 4, D 2 = 4S / π, где D – величина диаметра канала, м.

Порядок расчета размера воздухопровода следующий:

  1. Зная расход воздуха на данном участке, определяют скорость его движения в зависимости от назначения канала. В качестве примера можно принять L = 10 000 м 3 /ч и скорость 8 м/с, так как ветка системы – магистральная.
  2. Вычисляют площадь сечения: 10 000 / 3600 х 8 = 0.347 м 2 , диаметр будет – 0,665 м.
  3. По нормали принимают ближайший из двух размеров, обычно берут тот, который больше. Рядом с 665 мм есть диаметры 630 мм и 710 мм, следует взять 710 мм.
  4. В обратном порядке производят расчет действительной скорости воздушной смеси в воздухопроводе для дальнейшего определения мощности вентилятора. В данном случае сечение будет: (3.14 х 0.71 2 / 4) = 0.4 м 2 , а реальная скорость – 10 000 / 3600 х 0.4 = 6.95 м/с.
  5. В том случае если необходимо проложить канал прямоугольной формы, его габариты подбирают по рассчитанной площади сечения, эквивалентного круглому. То есть высчитывают ширину и высоту трубопровода так, чтобы площадь равнялась 0.347 м 2 в данном случае. Это может быть вариант 700 мм х 500 мм или 650 мм х 550 мм. Такие воздухопроводы монтируют в стесненных условиях, когда место для прокладки ограничено технологическим оборудованием или другими инженерными сетями.

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R
— потери давления на трение в расчете на 1 погонный метр воздуховода, l
z
— потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение Pтр
считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x
— коэффициент сопротивления трения, l
— длина воздуховода в метрах, d
— диаметр воздуховода в метрах, v
y
g
— ускорение свободного падения (9,8 м/с2).

Замечание:
Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q
— сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v
— скорость течения воздуха в м/с, y
— плотность воздуха в кг/куб.м., g
— ускорение свободного падения (9,8 м/с2). Значения Q
содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  1. Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  2. Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  3. Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  4. Вычисляем потери давления на трение Pтр.
  5. По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  6. Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду
Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

3

5

4

3

3

Гостиницы

5

7.5

6.5

6

5

Учреждения

6

8

6.5

6

5

Рестораны

7

9

7

7

6

Магазины

8

9

7

7

6

Примечание:
скорость воздушного потока в таблице дана в метрах в секунду.

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции.

  1. В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  2. По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  3. Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  4. Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.
  5. Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.
Диаграмма определения потерь напора и диаметра воздуховодов
Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Замечания:

  1. Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды.
  2. Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты). В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.
Таблица эквивалентных диаметров воздуховодов
Размеры

150

200

250

300

350

400

450

500

250

210

245

275

300

230

265

300

330

350

245

285

325

355

380

400

260

305

345

370

410

440

450

275

320

365

400

435

465

490

500

290

340

380

425

455

490

520

545

550

300

350

400

440

475

515

545

575

600

310

365

415

460

495

535

565

600

650

320

380

430

475

515

555

590

625

700

390

445

490

535

575

610

645

750

400

455

505

550

590

630

665

800

415

470

520

565

610

650

685

850

480

535

580

625

670

710

900

495

550

600

645

685

725

950

505

560

615

660

705

745

1000

520

575

625

675

720

760

1200

620

680

730

780

830

1400

725

780

835

880

1600

830

885

940

1800

870

935

990

Расчет потерь давления на местные сопротивления вентиляция формулы

Главная » Блог » Расчет потерь давления на местные сопротивления вентиляция формулы

Расчет потери давления в воздуховодах в системе вентиляции

Вентиляция › Услуги по вентиляции › Проектирование вентиляции ›

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

3

5

4

3

3

Гостиницы

5

7.5

6.5

6

5

Учреждения

6

8

6.5

6

5

Рестораны

7

9

7

7

6

Магазины

8

9

7

7

6

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Размеры

150

200

250

300

350

400

450

500

250

210

245

275

300

230

265

300

330

350

245

285

325

355

380

400

260

305

345

370

410

440

450

275

320

365

400

435

465

490

500

290

340

380

425

455

490

520

545

550

300

350

400

440

475

515

545

575

600

310

365

415

460

495

535

565

600

650

320

380

430

475

515

555

590

625

700

390

445

490

535

575

610

645

750

400

455

505

550

590

630

665

800

415

470

520

565

610

650

685

850

480

535

580

625

670

710

900

495

550

600

645

685

725

950

505

560

615

660

705

745

1000

520

575

625

675

720

760

1200

620

680

730

780

830

1400

725

780

835

880

1600

830

885

940

1800

870

935

990

Получите коммерческое предложение на email:

Нужна консультация? Звоните:

8(495) 118-27-34

Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

Расчет потери напора воздуха в системе вентиляции

Назначение

Основное требование
БесшумностьМин. потери напора
Магистральные каналыГлавные каналыОтветвления
ПритокВытяжкаПритокВытяжка
Жилые помещения35433
Гостиницы57.56.565
Учреждения686.565
Рестораны79776
Магазины89776

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

Размеры

150200250300350400450500
250210245275
300230265300330
350245285325355380
400260305345370410440
450275320365400435465490
500290340380425455490520545
550300350400440475515545575
600310365415460495535565600
650320380430475515555590625
700390445490535575610645
750400455
505
550590630665
800415470520565610650685
850480535580625670710
900495550600645685725
950505560615660705745
1000520575625675720760
1200620680730780830
1400725780835880
1600830885940
1800870935990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции

Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Калькулятор

Порядок расчета потерь давления в воздуховодах

Комментариев:

Рейтинг: 30

Сердцем любой вентиляционной системы с механическим побуждением воздушного потока является вентилятор, который создает этот поток в воздуховодах. Мощность вентилятора напрямую зависит от напора, который необходимо создать на выходе из него, а для того, чтобы определить величину этого давления, требуется произвести расчет сопротивления всей системы каналов.

Для расчета потерь давления нужна схема и размеры воздуховода и дополнительного оборудования.

Исходные данные для вычислений

Когда известна схема вентиляционной системы, размеры всех воздухопроводов подобраны и определено дополнительное оборудование, схему изображают во фронтальной изометрической проекции, то есть аксонометрии. Если ее выполнить в соответствии с действующими стандартами, то на чертежах (или эскизах) будет видна вся информация, необходимая для расчета.

Аэродинамическая характеристика по вентилятора.

  1. С помощью поэтажных планировок можно определить длины горизонтальных участков воздухопроводов. Если же на аксонометрической схеме проставлены отметки высот, на которых проходят каналы, то протяженность горизонтальных участков тоже станет известна. В противном случае потребуются разрезы здания с проложенными трассами воздухопроводов. И в крайнем случае, когда информации недостаточно, эти длины придется определять с помощью замеров по месту прокладки.
  2. На схеме должно быть изображено с помощью условных обозначений все дополнительное оборудование, установленное в каналах. Это могут быть диафрагмы, заслонки с электроприводом, противопожарные клапаны, а также устройства для раздачи или вытяжки воздуха (решетки, панели, зонты, диффузоры). Каждая единица этого оборудования создает сопротивление на пути воздушного потока, которое необходимо учитывать при расчете.
  3. В соответствии с нормативами на схеме возле условных изображений воздуховодов должны быть проставлены расходы воздуха и размеры каналов. Это определяющие параметры для вычислений.
  4. Все фасонные и разветвляющие элементы тоже должны быть отражены на схеме.

Если такой схемы на бумаге или в электронном виде не существует, то придется ее начертить хотя бы в черновом варианте, при вычислениях без нее не обойтись.

Вернуться к оглавлению

Диаграмма потери напора на каждый метр воздуховода.

Очень часто приходится сталкиваться с достаточно простыми схемами вентиляции, в которых присутствует воздухопровод одного диаметра и нет никакого дополнительного оборудования. Такие схемы просчитываются достаточно просто, но что делать, если схема сложная с множеством ответвлений? Согласно методике просчета потерь давления в воздуховодах, которая изложена во многих справочных изданиях, нужно определить самую длинную ветвь системы либо ветку с наибольшим сопротивлением. Выяснить таковую по сопротивлению на глаз удается редко, поэтому принято вести расчет по самой протяженной ветви. После этого пользуясь величинами расходов воздуха, проставленных на схеме, всю ветку делят на участки по этому признаку. Как правило, расходы меняются после разветвлений (тройников) и при делении лучше всего ориентироваться на них. Бывают и другие варианты, например, приточные или вытяжные решетки, встроенные прямо в магистральный воздуховод. Если на схеме это не показано, а такая решетка имеется, потребуется расход после нее высчитать. Участки нумеруют начиная от самого удаленного от вентилятора.

Вернуться к оглавлению

Таблица максимальной скорости воздуха.

Общая формула расчета потерь давления в воздуховодах для всей вентиляционной системы выглядит следующим образом:

HB = ∑(Rl + Z), где:

  • HB — потери давления во всей системе воздуховодов, кгс/м²;
  • R — сопротивление трению 1 м воздухопровода эквивалентного сечения, кгс/м²;
  • l — протяженность участка, м;
  • Z — величина давления, теряемого воздушным потоком в местных сопротивлениях (фасонных элементах и дополнительном оборудовании).

Примечание: значение площади поперечного сечения воздуховода, участвующее в расчете, принимается изначально как для круглой формы канала. Сопротивление трению для каналов прямоугольной формы определяется по площади сечения, эквивалентному круглому.

Расчет начинают от самого отдаленного участка №1, затем переходят ко второму участку и так далее. Результаты вычислений по каждому участку складываются, о чем и говорит математический знак суммирования в расчетной формуле. Параметр R зависит от диаметра канала (d) и динамического давления в нем (Рд), а последнее, в свою очередь, зависит от скорости движения воздушного потока. Коэффициент абсолютной шероховатости стенок (λ) традиционно принимается как для воздухопровода из оцинкованной стали и составляет 0,1 мм:

R = (λ / d) Рд.

Диаграмма определения потерь напора и диаметра воздуховодов.

Пользоваться этой формулой в процессе расчета потерь давления не имеет смысла, так как значения R для различных скоростей воздуха и диаметров уже просчитаны и являются справочными величинами (Р. В. Щекин, И.Г. Староверов — справочники). Поэтому просто необходимо найти эти значения в соответствии с конкретными условиями перемещения воздушных масс и подставить их в формулу. Еще один показатель, динамическое давление Рд, который связан с параметром R и участвует в дальнейшем подсчете местных сопротивлений, тоже величина справочная. Учитывая эту связь между двумя параметрами, в справочных таблицах они приводятся совместно.

Значение Z потерь давления в местных сопротивлениях рассчитывают по формуле:

Z = ∑ξ Рд.

Знак суммирования обозначает, что нужно сложить результаты расчета по каждому из местных сопротивлений на заданном участке. Кроме уже известных параметров, в формуле присутствует коэффициент ξ. Его величина безразмерна и зависит от вида местного сопротивления. Значения параметра для многих элементов вентиляционных систем посчитаны либо определены опытным путем, поэтому находятся в справочной литературе. Коэффициенты местного сопротивления вентиляционного оборудования зачастую указывают сами производители, определив их значения опытным путем на производстве или в лаборатории.

Таблица эквивалентных диаметров воздуховодов.

Вычислив длину участка №1, количество и вид местных сопротивлений, следует правильно определить все параметры и подставить их в расчетные формулы. Получив результат, переходить ко второму участку и далее, до самого вентилятора. При этом не следует забывать о том участке воздухопровода, который расположен уже за вентиляционной установкой, ведь напора вентилятора должно хватить и на преодоление его сопротивления.

Закончив расчеты по самой протяженной ветви, производят такие же по соседней ветке, потом по следующей и так до самого конца. Обычно эти все ветви имеют много общих участков, поэтому вычисления пойдут быстрее. Целью определения потерь давления на всех ветвях есть их общая увязка, ведь вентилятор должен распределить свой расход равномерно по всей системе. То есть в идеале потери давления в одной ветви должны отличаться от другой не более чем на 10%. Простыми словами, это значит, что самое ближнее к вентилятору ответвление должно иметь самое высокое сопротивление, а дальнее — самое низкое. Если это не так, рекомендуется вернуться к пересчету диаметров воздуховодов и скоростей движения воздуха в них.

Когда по какой-либо причине увязать ветви невозможно, в них устанавливают дополнительные искусственные сопротивления — диафрагмы, которые следует подбирать. Для упрощения процесса вместо диафрагм устанавливают дроссель — клапаны, с их помощью можно сопротивление ветви регулировать, перекрывая поток заслонкой.

Как показывает практика, правильно просчитанная и отрегулированная после монтажа вентиляционная система работает безупречно.

Расчет сопротивления воздуховода калькулятор. Расчет давления в воздуховодах

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.

Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.

Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.

Вычисляем потери давления на трение P тр.

По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.

Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.

По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.

Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.

Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;

Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Этим материалом редакция журнала „Мир Климата“ продолжает публикацию глав из книги „Системы вентиляции и кондиционирования. Рекомендации по проектированию для произ- водственных и общественных зданий“. Автор Краснов Ю.С.

Аэродинамический расчет воздуховодов начинают с вычерчивания аксонометрической схемы (М 1: 100), проставления номеров участков, их нагрузок L (м 3 /ч) и длин I (м). Определяют направление аэродинамического расчета — от наиболее удаленного и нагруженного участка до вентилятора. При сомнениях при определении направления рассчитывают все возможные варианты.

Расчет начинают с удаленного участка: определяют диаметр D (м) круглого или площадь F (м 2) поперечного сечения прямоугольного воздуховода:

Скорость растет по мере приближения к вентилятору.

По приложению Н из принимают ближайшие стандартные значения: D CT или (а х b) ст (м).

Гидравлический радиус прямоугольных воздуховодов (м):

где — сумма коэффициентов местных сопротивлений на участке воздуховодов.

Местные сопротивления на границе двух участков (тройники, крестовины) относят к участку с меньшим расходом.

Коэффициенты местных сопротивлений даны в приложениях.

Схема приточной системы вентиляции, обслуживающей 3-этажное административное здание

Пример расчета

Исходные данные:

№ участков подача L, м 3 /ч длина L, м υ рек, м/с сечение а × b, м υ ф, м/с D l ,м Re λ Kmc потери на участке Δр, па
решетка рр на выходе 0,2 × 0,4 3,1 1,8 10,4
1 720 4,2 4 0,2 × 0,25 4,0 0,222 56900 0,0205 0,48 8,4
2 1030 3,0 5 0,25× 0,25 4,6 0,25 73700 0,0195 0,4 8,1
3 2130 2,7 6 0,4 × 0,25 5,92 0,308 116900 0,0180 0,48 13,4
4 3480 14,8 7 0,4 × 0,4 6,04 0,40 154900 0,0172 1,44 45,5
5 6830 1,2 8 0,5 × 0,5 7,6 0,50 234000 0,0159 0,2 8,3
6 10420 6,4 10 0,6 × 0,5 9,65 0,545 337000 0,0151 0,64 45,7
10420 0,8 ю. Ø0,64 8,99 0,64 369000 0,0149 0 0,9
7 10420 3,2 5 0,53 × 1,06 5,15 0,707 234000 0,0312 ×n 2,5 44,2
Суммарные потери: 185
Таблица 1. Аэродинамический расчет

Воздуховоды изготовлены из оцинкованной тонколистовой стали, толщина и размер которой соответствуют прил. Н из . Материал воздухозаборной шахты — кирпич. В качестве воздухораспределителей применены решетки регулируемые типа РР с возможными сечениями: 100 х 200; 200 х 200; 400 х 200 и 600 х 200 мм, коэффициентом затенения 0,8 и максимальной скоростью воздуха на выходе до 3 м/с.

Сопротивление приемного утепленного клапана с полностью открытыми лопастями 10 Па. Гидравлическое сопротивление калориферной установки 100 Па (по отдельному расчету). Сопротивление фильтра G-4 250 Па. Гидравлическое сопротивление глушителя 36 Па (по акустическому расчету). Исходя из архитектурных требований проектируют воздуховоды прямоугольного сечения.

Сечения кирпичных каналов принимают по табл. 22.7 .

Коэффициенты местных сопротивлений

Участок 1. Решетка РР на выходе сечением 200×400 мм (рассчитывают отдельно):

№ участков Вид местного сопротивления Эскиз Угол α, град. Отношение Обоснование КМС
F 0 /F 1 L 0 /L ст f прох /f ств
1 Диффузор 20 0,62 Табл. 25.1 0,09
Отвод 90 Табл. 25.11 0,19
Тройник-проход 0,3 0,8 Прил. 25.8 0,2
∑ = 0,48
2 Тройник-проход 0,48 0,63 Прил. 25.8 0,4
3 Тройник-ответвление 0,63 0,61 Прил. 25.9 0,48
4 2 отвода 250 × 400 90 Прил. 25.11
Отвод 400 × 250 90 Прил. 25.11 0,22
Тройник-проход 0,49 0,64 Табл. 25.8 0,4
∑ = 1,44
5 Тройник-проход 0,34 0,83 Прил. 25.8 0,2
6 Диффузор после вентилятора h=0,6 1,53 Прил. 25.13 0,14
Отвод 600 × 500 90 Прил. 25.11 0,5
∑= 0,64
Конфузор перед вентилятором D г =0,42 м Табл. 25.12 0
7 Колено 90 Табл. 25.1 1,2
Решетка жалюзийная Табл. 25.1 1,3
∑ = 1,44
Таблица 2. Определение местных сопротивлений

Краснов Ю.С.,

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R — потери давления на трение в расчете на 1 погонный метр воздуховода, l — длина воздуховода в метрах, z — потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x — коэффициент сопротивления трения, l — длина воздуховода в метрах, d — диаметр воздуховода в метрах, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q — сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v — скорость течения воздуха в м/с, y — плотность воздуха в кг/куб.м., g — ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

Гостиницы

Учреждения

Рестораны

Магазины

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной — его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Выбор и расчет фильтров

По известному нам количеству воздуха
и начальной запылённости определяем:

  1. Количество фильтров

  2. Тип фильтров

  3. Начальное и конечное сопротивление
    фильтрующей установки.

  4. Время между регенерациями

Регенерация фильтра производится, когда
сопротивление максимально и составляет
20 мм.в.ст. Тип фильтра определяется в
зависимости от начальной запылённости.
Выбираем масляный фильтр типа ФяР(по справочнику [3] стр.
80, табл. 4.2), по этой же таблице определяем
воздушную нагрузку на фильтр, для фильтра
типаФяРона рекомендуется60003/(чм2)].
Выбранный нами фильтр масляный поэтому
выбор масла производят с учётом того,
что температура его замерзания ниже
температуры наружного воздухаtНАР
= —270С.

Зная
максимальное количество воздуха
проходящего через фильтр и площадь
живого сечения фильтра (по справочнику
/3/ стр. 80
), задаёмся количеством фильтров
10 шт, пересчитываем удельную воздушную
нагрузку на фильтр:

6000,93/(чм2)]

fЖ.С .=
0,22
10
= 2,2 м
2– площадь живого
сечения всех10 фильтров.

LПР = 12169,83/ч]– количество
воздуха проходящего через фильтр.

Т.к. максимальная воздушная нагрузка
на фильтр составляет 7000 м3/чм2, то количество фильтров которым мы
задались подходит по удельной воздушной
нагрузке на фильтр.

По удельной воздушной нагрузке по
справочнику /3/ на стр. 78 рис. 4.3, определяем
начальное сопротивление фильтра РНАЧ
= 2,81 [
кгс/м2],
конечным сопротивлением фильтра задаёмся
оно должно лежать в пределах1520[кгс/м2],
принимаемРКОН
= 20 [
кгс/м2].
По превышению сопротивления запылённого
материала по сравнению с начальным
сопротивлениемР=
РКОН
РНАЧ
= 20 – 2,81 = 17,19 [
кгс/м2],
на стр 79, справочника /3/. Рис. 4.4, находим
пылевую характеристику фильтраФяРи определяем массу уловленной фильтром
пыли на1 [м2] поверхности,
она составляетММАХ=
3000 [
г/м2].

В той же номограмме определяем проскок
пыли в %. Для нашего фильтра он составляет
(1 — Е) % = 17 %,т.е эффективность фильтраЕ = 83%.

Для того, что бы определить время между
регенерациями фильтра, определяем
количество пыли улавливаемого фильтром
в сутки:

М= 0,001 L

Е

nЧАС =
0,001
255740,83
4 = 84,90568 [
г/сут]

Lпроизводительность
нашей системы L
= 25574 [м
3/ч]

Е – эффективность в долях единицыЕ = 0,83

nЧАС
количество часов работы зрительного
зала в сутки:

nЧАС
= 4
[ Ч/СУТКИ
]

Определяем количество суток между
регенерациями:

[суток]

ММАХ– максимальное
количество пыли улавливаемое фильтром;

М— количество пыли улавливаемого
фильтром в сутки.

Фильтры закрепляются в металлическую
раму из уголка, размеры которой приведены
в экспликации оборудования приточной
камеры (Лист № ).

Аэродинамический расчёт сети воздуховодов.

В курсовом проекте рассчитываем одну
приточную систему зрительного зала
(П1) и одну вытяжную систему (В1),
обеспечивающей вытяжку из туалетов и
курительной.

Цель аэродинамического расчета:

  1. Подбор размера воздуховода, что бы по
    каждому участку сети транспортировался
    требуемый расчётный расход воздуха.

  2. Определение полных потерь давления на
    трение и потерь в местных сопротивлениях,
    которые должен преодалеть вентилятор
    расчитываемой системы.

Расчёт приточной и вытяжной систем

  1. Вычерчиваем аксонометрическую схему

  2. На каждом приточном или вытяжном
    отверстии и на каждом участке сети
    проставляется его длина и требуемые
    расчетные расходы воздуха.

  3. Выбирается основная магистраль, которая
    представляет собой путь воздуха через
    вентилятор от самого нагруженного
    воздухозаборного отверстия, до наиболее
    нагруженного и удалённого выпускного
    отверстия.

  4. Проставляются номера участков по
    главной магистрали и ответвлениям.

Аксонометрическая схема приточной
системы зрительного зала П1 и вытяжной
системы вспомогательных помещений В1
см. в приложении к данной работе

Аэродинамический расчёт для каждого
участка осуществляется в следующем
порядке:

  1. Определяют размеры сечений расчетных
    участков

FР =[м2]

L– количество воздуха
проходящего по воздуховоду;

W– рекомендуемая
скорость движения воздуха на участке,
которой задаются.

При механическом побуждении скорость
в воздуховоде принимают не более 8 м/с.

По FРподбирают
стандартные размеры воздуховодов так,
что бы фактическая площадь поперечного
сечения была близка к расчетной.

Т.к. канал прямоугольного сечения, то
определяем для него диаметр эквивалентный,
который рассчитывается по формуле :

DЭК=

a, b– стороны прямоугольного воздуховода.

После пересчитываем фактическую скорость
в воздуховоде WФ.

WФ=

Fстандартная
площадь воздуховода.

Зная dЭКи
скоростьWФпо табл.12.17 (/3/ стр.250) определим:

динамический напор

Rпотери на трение
на1 мдлины воздуховода.

Шероховатость материала КЭ,
определяем по табл.12.13(/3/ стр. 249) в
зависимости от скорости в воздуховоде
поправочный коэффициентnна потери давления определим по табл.12.14
(/3/ стр. 249). Для стальных воздуховодов
принимаемn=1.

Полные потери напора определяем, как
произведение LRn

L – расчетный
расход на участке;

R– удельные потери
на трение;

n– поправочный
коэффициент на потери давления.

Потери давления на участке складывают
с потерями давления в местных сопротивлениях
(R
ln+z).

Потери в местных сопротивлениях
определяются:

Z=

сумма коэффициентов местных
сопротивлений;

— динамический напор.

Расчет потерь давления для приточной
системы (П1) и вытяжной (В1) приведен в
таблице №. 4 см. ниже.

Коэффициенты местных сопротивлений
определяем по справочнику[1]:

  1. Первого бокового отверстия стр.266, табл.
    12.21

  2. Последнего бокового отверстия стр.267,
    табл. 12.25

  3. Значение среднего отверстия стр.267,
    табл. 12.26 (на приток)

  4. Значение среднего отверстия стр.266,
    табл. 12.22 (на вытяжку)

  5. Значение отвода гнутого квадратного
    сечения стр.269, табл. 12.36

  6. Значение колена с острыми кромками
    стр.268, табл. 12.31

  7. Тройник прямой (на вытяжку) стр.270, табл.
    12.38

  8. Тройник прямой (на приток) стр.270, табл.
    12.39

  9. Дроссель-клапан стр.271, табл. 12.46

  10. Диафрагмы для прямоугольных воздуховодов
    стр.275, табл. 12.52

Коэффициенты местных сопротивлений
решеток определяем по справочнику/6/:

  1. Решетки регулируемые =1.2

  2. Щелевые решетки =0,5

  3. Жалюзийные решетки с подвижными жалюзи
    =1.21

Просчитав приточную систему (П1) по
главному направлению необходимо увязать
потери давления на главном направлении
с ответвлениями для этого вводим
дополнительное сопротивление в виде
диафрагмы. Разница между потерями
давления в главном направлении и
ответвлении не должна превышать 10 %.
В случае несоблюдения данного условия
необходимо подобрать размеры диафрагмы
подиафрагмы (по /3/ табл. 12.52 стр. 275 либо по данным
табл. 12.48 /3/ стр. 272).

Коэффициент местного сопротивления
диафрагмы определяют по формуле:

= РИЗ / РС

РСдинамическое
давление определяется по табл. 12.17 /3/
стр. 250

Так же необходимо увязать потери давления
в приточной шахте с потерями давления
в рециркуляционном воздуховоде. Сумма
потерь давлений в приточной шахте и
утеплённой заслонке должны быть равны
сумме потерь давлений в рециркуляционном
воздуховоде и заслонке с электроприводом
на рециркуляционном воздуховоде.
Разница должна составлять не более 10%.
Регулирование производится изменением
угла поворота створок заслонки, в
следствии чего увеличивается коэффициент
местного сопротивления заслонки. Угол
поворота створок заслонки на
рециркуляционном воздуховоде составил
о=
36,4
оС.

Просчитав потери давления на главных
направлениях приточной и вытяжной
системы и увязав ответвления производят
выбор вентилятора. Вся увязка воздуховодов
приведена в табл. №4

Потери на трение в воздуховоде в рабочем состоянии

150180150180

Вытяжки:

Как выглядят эти вытяжки?
Нет Гладкий конец воздуховода Конец воздуховода с фланцем
Bellmouth Entry Отверстие с острыми краями Стандартный кожух шлифовального станка (конический)
Стандартный кожух шлифовального станка (без конуса) Ловушка или отстойная камера

Абразивоструйная камера Абразивоструйный подъемник Сепаратор абразива
Лифты (корпуса) Фланцевая труба с закрытым коленом Труба гладкая с закрытым коленом


Покажите мне, как выглядит коническая вытяжка
Конические кожухи Угол конуса (градусы): 15304560

Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ

Покажите мне, как выглядит составной кожух
Составные вытяжки
Размеры паза: Номер паза: Угол конуса (градусы):
Высота (дюйм.): 15304560

Длина (дюймы): Тип кожуха: ПРЯМОУГОЛЬНЫЙ ИЛИ КВАДРАТНЫЙ

Другое
Коэффициент потерь для другого типа воздуховода:

Вводы ответвлений (поправки на изменение скорости):

Показать конфигурацию входа в филиал
Сегмент воздуховода берет начало в филиале
Расход во входном патрубке №1 (ACFM):
Давление скорости во входном патрубке №1 (дюймы водяного столба):
Расход во входном патрубке №2 (ACFM):
Давление скорости входного ответвления №2 (дюймы водяного столба):
Примечание. Сумма потоков в ответвлениях №1 и №2 должна равняться скорости потока во вводе ACFM выше.
Примечание: нельзя смешивать круглые и прямоугольные воздуховоды в одном расчете.
Круглые воздуховоды:
Покажите мне, как выглядят эти круглые локти

Номер: Тип:
Штампованные: 5 шт., 4 шт., 3 шт.
0.50.751.001.502.002.50
Размах колена (градусы):
530
Номер: Тип:
Штампованные: 5 шт., 4 шт., 3 шт.
0.50.751.001.502.002.50
Размах колена (градусы):
530
Номер: Тип:
Штампованные: 5 шт., 4 шт., 3 шт.
0.50.751.001.502.002.50
Размах колена (градусы):
530

Прямоугольные воздуховоды (можно выбрать до трех различных типов колен):
Покажите мне, как выглядят эти прямоугольные колена
Число: Соотношение сторон (Ш / Г):
0.250.51.02.03.04.0
Р / Д:
0.00.51.01.52.03.0
Номер: Соотношение сторон (W / D):
0.250.51.02.03.04.0
Р / Д:
0.00.51.01.52.03.0
Номер: Соотношение сторон (W / D):
0.250.51.02.03.04.0
Р / Д:
0.00.51.01.52.03.0
Магистральный воздуховод
(ветвь 1 на этом чертеже)


Филиал Вход

Угол въезда ответвления (градусы):
1015202530354045506090
(ветвь 2 на этом чертеже)


Покажите мне, как выглядят эти расширения и сокращения
Расширение в воздуховоде Угол конуса (градусы):
3.55101520253090
Соотношение диаметров (выходной диаметр / входной диаметр):
1.25: 11.5: 11.75: 12: 12.5: 1
Расширение превышает 5 диаметров от колена или вентилятора ?:
ДА НЕТ

Расширение в конце воздуховода

Отношение длины конуса к диаметру на входе:
1.0: 11.5: 12.0: 13.0: 14.0: 15.0: 17.5: 1
Соотношение диаметров (выходной диаметр / входной диаметр):
1.2: 11.3: 11.4: 11.5: 11.6: 11.7: 1
Расширение превышает 5 диаметров от колена или вентилятора ?:
ДА НЕТ

Конический контакт Угол усадки конуса (градусы):
510152025304560 Более 60
Диаметр выпускной трубы (дюймы):

Вертикальный напор, без потерь

Расчет удельной потери давления в воздуховоде

Перейти к основному содержанию

Авторизоваться

  • EN
  • CZ
  • RU

Форма поиска

Поиск

  • Товары

    • Единицы

      • AeroMaster Cirrus

      • AeroMaster XP

      • АэроМастер FP

      • Vento

      • ТОРТ

    • Воздушные завесы

      • DoorMaster C

      • DoorMaster D

      • DoorMaster P

    • Системы управления

      • VCS

      • Мобильное приложение

  • Заявление

    • Нормальная вентиляция

    • Бассейновые залы

    • Чистые помещения и здравоохранение

    • Сейсмические районы

  • Рекомендации

  • Поддерживать

    • Программное обеспечение для проектирования AeroCAD

    • Форма гарантийного требования

  • Услуги

  • О нас

    • Профиль компании

    • Новости

    • Материалы для скачивания

  • Контакты

    • Штаб-квартира

    • Отдел продаж CZ / SK

    • Дилерский центр

    • Отдел обслуживания

    • отдел кадров

  • Скачать

  • h-x диаграмма
  • Расчет свойств влажного воздуха
  • Расчет площади вентиляционной установки
  • Поперечное сечение воздуховода
  • Расчет теплоизоляции и теплопотерь воздуховодов
  • Расчет удельной потери давления в воздуховоде
  • Конвертер единиц массового расхода воздуха
  • Общий расчет местного сопротивления потери давления
  • Расчет состояния воздуха при обогреве и мощность обогревателя

тел.+420 571 877 778

факс +420 571 877 777

электронная почта [email protected]

  • © 2021 REMAK a.s. | Администрация Gapanet solution s.r.o.

Что такое потеря давления?

Сопротивление воздуха в системе вентиляции в основном определяется скоростью воздуха в этой системе.Сопротивление воздуха растет прямо пропорционально потоку воздуха. Это явление известно как потеря давления. Статическое давление, создаваемое вентилятором, вызывает движение воздуха в системе вентиляции с определенным сопротивлением. Чем выше сопротивление вентиляции в системе, тем меньше воздушный поток вентилятора. Потери на трение в воздуховодах, а также сопротивление сетевого оборудования (фильтр, глушитель, нагреватель, клапаны и демпферы и т. Д.) Можно рассчитать с помощью таблиц и диаграмм, содержащихся в каталоге.Полная потеря давления равна всем значениям потери давления в вентиляционной системе.

Рекомендуемая скорость движения воздуха внутри воздуховодов:

Тип Скорость воздуха, м / с
Главные воздуховоды 6,0 — 8,0
Боковые ответвления 4,0 — 5,0
Воздуховоды 1,5 — 2,0
Приточная решетка потолочная 1,0 — 3,0
Вытяжные решетки 1,5 — 3,0

Расчет скорости воздуха в воздуховодах:

V = L / (3600 * F) (м / с)

л — объем воздуха [м 3 / час];
F — сечение воздуховода [м 2 ];

Рекомендация 1.
Потери давления в системе воздуховодов могут быть уменьшены за счет большего сечения воздуховода, что обеспечивает относительно равномерную скорость воздуха во всей системе. На рисунке ниже показано, как обеспечить относительно равномерную скорость воздуха в системе воздуховодов с минимальной потерей давления.

Рекомендация 2.
Для длинных систем с большим количеством вентиляционных решеток установите вентилятор посередине сети. Такое решение имеет ряд преимуществ. С одной стороны, снижаются потери давления, с другой — используются воздуховоды меньшего размера.

Пример расчета системы вентиляции:

Начните расчет с черчения системы, показывая расположение воздуховода, вентиляционных решеток, вентиляторов, а также длины участков воздуховода между тройниками. Затем рассчитайте объем воздуха в каждой секции.

Для расчета потери давления в секциях 1-6 используйте диаграмму потери давления для круглых воздуховодов. Для этого необходимо определить требуемые диаметры воздуховодов и потери давления при условии допустимого расхода воздуха в воздуховоде.

Секция 1: Расход воздуха 200 м 3 / ч. Предположим, что диаметр воздуховода составляет 200 мм, а скорость воздуха составляет 1,95 м / с, тогда потеря давления составляет 0,21 Па / м x 15 м = 3 Па (см. Диаграмму потери давления для воздуховодов).

Раздел 2: такие же расчеты должны быть выполнены с учетом того, что скорость воздуха на этом участке составляет 220 + 350 = 570 м 3 / ч. Предположим, что диаметр воздуховода составляет 250 мм, а скорость воздуха составляет 3,23 м / с, тогда потеря давления равна 0.9 Па / м x 20 м = 18 Па.

Секция 3: Расход воздуха через эту секцию составляет 1070 м 3 / ч. Предположим, что диаметр воздуховода составляет 315 мм, а скорость воздуха составляет 3,82 м / с, тогда потеря давления составляет 1,1 Па / м x 20 м = 22 Па.

Секция 4: Расход воздуха через эту секцию составляет 1570 м 3 / ч. Предположим, что диаметр воздуховода составляет 315 мм, а скорость воздуха составляет 5,6 м / с, тогда потеря давления составляет 2,3 Па / м x 20 м = 46 Па.

Секция 5: Расход воздуха через эту секцию составляет 1570 м 3 / ч.Предположим, что диаметр воздуховода составляет 315 мм, а скорость воздуха составляет 5,6 м / с, тогда потеря давления составляет 2,3 Па / м x 1 м = 23 Па.

Секция 6: Расход воздуха через эту секцию составляет 1570 м 3 / ч. Предположим, что диаметр воздуховода составляет 315 мм, а скорость воздуха составляет 5,6 м / с, тогда потеря давления составляет 2,3 Па / м x 10 м = 23 Па. Общее давление воздуха в системе воздуховодов составляет 114,3 Па.

По окончании расчета потерь давления в последней секции можно приступить к расчету потерь давления в элементах сети, таких как глушитель SR 315/900 (16 Па) и в обратном демпфере KOM 315 (22 Па).Рассчитайте также потери давления в ответвлениях к решеткам. Суммарное сопротивление воздуха в 4-х ветвях составляет 8 Па.

Расчет потерь давления в тройниках воздуховодов.

Диаграмма позволяет рассчитать потерю давления в ответвлениях на основе угла изгиба, диаметра воздуховода и производительности по воздуху.

Пример. Рассчитайте потерю давления для колена 90 °, Ø 250 мм и расхода воздуха 500 м. 3 / ч. Для этого найдите точку пересечения вертикальной линии, показывающей объем воздуха, с вертикальной линией.Найдите потерю давления на вертикальной линии слева для изгиба трубы на 90 °, что составляет 2 Па.

Допустим, мы устанавливаем диффузоры потолочные PF с сопротивлением воздуху 26 Па.

Теперь просуммируем все потери давления для прямого участка воздуховода, элементов сети, колен и решеток. Целевое значение 186,3 Па.

После всех расчетов приходим к выводу, что нам нужен вытяжной вентилятор производительностью 1570 м 3 3 / ч при сопротивлении воздуха 186.3 Па. С учетом всех требуемых рабочих параметров вентилятор ВЕНТС ВКМС 315 — лучшее решение.

Расчет потерь давления в воздуховодах

Расчет падения давления в обратном демпфере

Выбор вентилятора

Расчет потери давления в глушителях

Расчет потери давления в воздуховоде Тройник

Расчет потерь давления в диффузорах воздуховодов

Доступен новый калькулятор размеров воздуховодов

Контактное лицо для СМИ:
Аллен Хейнс
404.446.1677
[email protected]

ATLANTA (20 декабря 2016 г.) — Новый калькулятор размеров воздуховодов от ASHRAE и Института распределения воздуха (ADI) позволяет разработчикам систем распределения воздуха HVAC более точно определять размеры воздуховодов, особенно гибких воздуховодов при различной степени сжатия, на основе результаты исследования.

Калькулятор размеров воздуховода — это быстрый справочный инструмент для приблизительного определения размеров воздуховодов и эквивалентных размеров воздуховода из листового металла по сравнению с гибким воздуховодом. В калькуляторе используется информация из исследовательского проекта ASHRAE 1333 «Меры эффективности воздуховодов HVAC», который был разработан при финансовой поддержке ASHRAE и ADI.Технический комитет ASHRAE 5.2, Дизайн воздуховодов, спонсировал проект.

«Хотя калькулятор напоминает колесо, подобное тому, что использовалось во времена правил скольжения, в нем есть три новых поля для эквивалентных размеров воздуховода», — сказал Крис Ван Райт, разработчик калькулятора. «Эти новые поля помогают продемонстрировать значительную потерю воздушного потока из-за неправильной установки гибких воздуховодов».

В калькуляторе есть поля для 4, 15 и 30 процентов сжатия в гибких воздуховодах.Ван Райт отмечает, что расчеты, использованные для создания этих эталонов размеров, основаны на прямолинейном сжатии, которое выполняется в лаборатории на плоской поверхности. Устанавливаемые на месте гибкие воздуховоды с изгибами, перегибами и чрезмерной длиной будут иметь дополнительное сопротивление, что приведет к уменьшению воздушного потока.

«Использование этого инструмента позволяет разработчикам воздуховодов учитывать неоптимальную установку и дает более точное соответствие конструкции установленным характеристикам», — сказал Ван Райт.

Исследование ASHRAE количественно оценило эффекты сжатия (не растяжения) гибкого воздуховода, что увеличивает шероховатость и, следовательно, потери на трение внутри гибкого воздуховода.Тестирование воздушного потока проводится в соответствии с протоколами, предписанными стандартом ANSI / ASHRAE 120-2008 «Метод тестирования для определения гидравлического сопротивления воздуховодов и фитингов HVAC».

Испытания в Национальной лаборатории Лоуренса в Беркли и Техасском университете A&M вместе с анализом данных, проведенным Техническим университетом Теннесси, позволили количественно оценить неблагоприятное воздействие сжатия на воздушный поток. Эти корреляции полностью совпадают с уравнениями, опубликованными в главе 21 Справочника ASHRAE 2013 г. «Основы», поэтому уравнения были использованы для создания нового калькулятора, сказал он.

Калькулятор размеров воздуховода показывает единицы измерения дюйм-фунт (I-P) с одной стороны и международную систему единиц (SI) с другой.

Стоимость калькулятора составляет 34 доллара США для членов ASHRAE (40 долларов США для нечленов). Чтобы сделать заказ, посетите сайт www.ashrae.org/bookstore или свяжитесь с центром обслуживания клиентов ASHRAE по телефону 1-800-527-4723 (США и Канада) или 404-636-8400 (по всему миру) или по факсу 678-539-2129.

О компании ASHRAE
ASHRAE, основанная в 1894 году, представляет собой глобальное общество, способствующее повышению благосостояния людей с помощью устойчивых технологий для искусственной среды.Общество и его более 56 000 членов по всему миру уделяют особое внимание системам зданий, энергоэффективности, качеству воздуха в помещениях, охлаждению и устойчивости. Благодаря исследованиям, написанию стандартов, публикации, сертификации и непрерывному обучению ASHRAE сегодня формирует построенную среду завтрашнего дня. Более подробную информацию можно найти на сайте www.ashrae.org/news.

###

Размеры воздуховодов, расчет и проектирование для обеспечения эффективности

Как спроектировать систему воздуховодов ws

Как спроектировать систему воздуховодов.В этой статье мы узнаем, как рассчитать и спроектировать систему воздуховодов для повышения эффективности. Мы включим полностью проработанный пример, а также моделирование CFD для оптимизации производительности и эффективности с помощью SimScale. Прокрутите вниз, чтобы посмотреть БЕСПЛАТНЫЙ видеоурок на YouTube!

🏆🏆🏆 Создайте бесплатную учетную запись SimScale для тестирования облачной платформы моделирования CFD здесь: https://www.simscale.com/ Имея более 100 000 пользователей по всему миру, SimScale представляет собой революционную облачную платформу CAE, которая мгновенно доступ к технологиям моделирования CFD и FEA для быстрого и простого виртуального тестирования, сравнения и оптимизации конструкций в нескольких отраслях, включая HVAC , AEC и электронику .

Методы проектирования воздуховодов

Существует множество различных методов, используемых для проектирования систем вентиляции, наиболее распространенными из которых являются:

  • Метод снижения скорости: (жилые или небольшие коммерческие установки)
  • Метод равного трения: (от среднего до большого размера коммерческие установки)
  • Восстановление статического электричества: Очень большие установки (концертные залы, аэропорты и промышленные объекты)

Мы собираемся сосредоточиться на методе равного трения в этом примере, поскольку это наиболее распространенный метод, используемый для коммерческих систем HVAC и его достаточно просто следовать.

Пример проектирования

План здания

Итак, сразу перейдем к проектированию системы. Мы возьмем небольшое инженерное бюро в качестве примера, и мы хотим сделать чертеж-компоновку здания, который мы будем использовать для проектирования и расчетов. Это действительно простое здание, в нем всего 4 офиса, коридор и механическое помещение, в котором будут расположены вентилятор, фильтры и воздухонагреватель или охладитель.

Нагрузка на отопление и охлаждение в здании

Первое, что нам нужно сделать, это рассчитать нагрузку на отопление и охлаждение для каждой комнаты.Я не буду рассказывать, как это сделать, в этой статье, нам придется рассказать об этом в отдельном руководстве, так как это отдельная предметная область.

Когда они у вас есть, просто сложите их вместе, чтобы найти самую большую нагрузку, так как нам нужно определить размер системы, чтобы она могла работать при пиковом спросе. Охлаждающая нагрузка обычно самая высокая, как в данном случае.

Теперь нам нужно преобразовать охлаждающую нагрузку в объемный расход, но для этого нам сначала нужно преобразовать это в массовый расход, поэтому мы используем формулу:

mdot = Q / (cp x Δt)

Рассчитать массовый расход воздуха скорость от охлаждающей нагрузки

Где mdot означает массовый расход (кг / с), Q — охлаждающая нагрузка помещения (кВт), cp — удельная теплоемкость воздуха (кДж / кг.K), а Δt — разница температур между расчетной температурой воздуха и расчетной температурой обратки. Просто отметим, что мы будем использовать стандартную скорость 1,026 кДж / кг.k., а дельта T должна быть меньше 10 * C, поэтому мы будем использовать 8 * c.

Нам известны все значения этого параметра, поэтому мы можем рассчитать массовый расход (сколько килограммов в секунду воздуха необходимо для поступления в комнату). Если мы посмотрим на расчет для помещения 1, то увидим, что он требует 0,26 кг / с. Поэтому мы просто повторяем этот расчет для остальной части комнаты, чтобы найти все значения массового расхода.

Расчет массового расхода воздуха для каждой комнаты

Теперь мы можем преобразовать их в объемный расход. Для этого нам нужен определенный объем или плотность воздуха. Мы укажем 21 * c и примем атмосферное давление 101,325 кПа. Мы можем найти это в наших таблицах свойств воздуха, но я предпочитаю использовать онлайн-калькулятор http://bit.ly/2tyT8yp, поскольку он работает быстрее. Мы просто добавляем эти числа и получаем плотность воздуха 1,2 кг / м3.

Вы видите, что плотность измеряется в кг / м3, но нам нужен удельный объем, который составляет м3 / кг, поэтому для преобразования мы просто возьмем обратное, что означает вычисление 1.-1), чтобы получить ответ 0,83 м3 / кг.
Теперь, когда у нас есть, что мы можем рассчитать объемный расход по формуле:

vdot = mdot, умноженное на v.

Рассчитайте объемный расход воздуха на основе массового расхода

, где vdot равно объемному расходу, mdot равно массовому расходу скорость комнаты и v равна удельному объему, который мы только что рассчитали.
Таким образом, если мы опустим эти значения для помещения 1, мы получим объемный расход 0,2158 м3 / с, то есть сколько воздуха необходимо для входа в комнату, чтобы удовлетворить охлаждающую нагрузку.Так что просто повторите этот расчет для всех комнат.

Объемный расход воздуха в здании — размер воздуховода

Теперь мы нарисуем наш маршрут воздуховода на плане этажа, чтобы мы могли начать его размер.

Схема воздуховодов

Прежде чем мы продолжим, нам нужно рассмотреть некоторые вещи, которые будут играть большую роль в общей эффективности системы.

Соображения по конструкции

Первый — это форма воздуховода. Воздуховоды бывают круглой, прямоугольной и плоскоовальной формы.Круглый воздуховод, безусловно, является наиболее энергоэффективным типом, и это то, что мы будем использовать в нашем рабочем примере позже. Если мы сравним круглый воздуховод с прямоугольным, мы увидим, что:

Сравнение круглого воздуховода и прямоугольного воздуховода

Круглый воздуховод с площадью поперечного сечения 0,6 м2 имеет периметр 2,75 м
Прямоугольный воздуховод с равной площадью поперечного сечения имеет периметр 3,87 м
Следовательно, для конструкции прямоугольного воздуховода требуется больше металла, что увеличивает вес и стоимость конструкции.Более крупный периметр также означает, что больше воздуха будет контактировать с материалом, и это увеличивает трение в системе. Трение в системе означает, что вентилятор должен работать интенсивнее, а это приводит к более высоким эксплуатационным расходам. По возможности всегда используйте круглый воздуховод, хотя во многих случаях необходимо использовать прямоугольный воздуховод, поскольку пространство ограничено.

Падение давления в воздуховодах

Второе, что следует учитывать, — это материал, из которого изготовлены воздуховоды, и шероховатость этого материала, поскольку он вызывает трение. Например, если у нас есть два воздуховода с одинаковыми размерами, объемным расходом и скоростью, единственная разница заключается в материале.Один изготовлен из стандартной оцинкованной стали, другой — из стекловолокна, перепад давления на расстоянии 10 м для этого примера составляет около 11 Па для оцинкованной стали и 16 Па для стекловолокна.

Энергоэффективные фитинги для воздуховодов

Третье, что мы должны учитывать, — это динамические потери, вызванные фитингами. Мы хотим использовать максимально гладкую фурнитуру для повышения энергоэффективности. Например, используйте изгибы с большим радиусом, а не под прямым углом, поскольку резкое изменение направления тратит огромное количество энергии.

Моделирование воздуховодов CFD

Мы можем быстро и легко сравнить характеристики воздуховодов различных конструкций с помощью CFD или вычислительной гидродинамики. Эти симуляции были произведены с использованием революционной облачной инженерной платформы CFD и FEA компанией SimScale, которая любезно спонсировала эту статью.
Вы можете получить бесплатный доступ к этому программному обеспечению, щелкнув здесь, и они предлагают несколько различных типов учетных записей в зависимости от ваших потребностей моделирования.

SimScale не ограничивается проектированием воздуховодов, он также используется для центров обработки данных, приложений AEC, проектирования электроники, а также для теплового и структурного анализа.

Просто взгляните на их сайт, и вы можете найти тысячи симуляторов для всего, от зданий, систем отопления, вентиляции и кондиционирования, теплообменников, насосов и клапанов до гоночных автомобилей и самолетов, которые можно скопировать и использовать в качестве шаблонов для вашего собственного дизайна. анализ.

Они также предлагают бесплатные вебинары, курсы и учебные пособия, которые помогут вам настроить и запустить собственное моделирование. Если, как и я, у вас есть некоторый опыт создания симуляций CFD, то вы знаете, что этот тип программного обеспечения обычно очень дорогое, и вам также понадобится мощный компьютер для его запуска.

Однако с SimScale все можно сделать из веб-браузера. Поскольку платформа основана на облаке, всю работу выполняют их серверы, и мы можем получить доступ к нашим проектным симуляциям из любого места, что значительно облегчает нашу жизнь как инженеров.

Итак, если вы инженер, дизайнер, архитектор или просто кто-то, кто хочет опробовать технологию моделирования, я настоятельно рекомендую вам проверить это программное обеспечение, получить бесплатную учетную запись, перейдя по этой ссылке.

Стандартный и оптимизированный дизайн воздуховодов CFD

Теперь, если мы посмотрим на сравнение двух конструкций, мы увидим стандартный дизайн слева и более эффективный дизайн справа, который был оптимизирован с помощью simscale.В обеих конструкциях используется скорость воздуха 5 м / с, цвета представляют скорость: синий означает низкую скорость, а красный — области высокой скорости.

Стандартный дизайн воздуховодов

Из цветовой шкалы скорости и линий обтекания видно, что на рисунке слева впускаемый воздух напрямую ударяет по резким поворотам, присутствующим в системе, что вызывает увеличение статического давления. Резкие повороты вызывают появление большого количества рециркуляционных зон внутри воздуховодов, что препятствует плавному движению воздуха.

Тройник на дальнем конце главного воздуховода заставляет воздух внезапно делиться и менять направление. Здесь наблюдается большой обратный поток, который снова увеличивает статическое давление и уменьшает количество подаваемого воздуха

Высокая скорость в основном воздуховоде, вызванная резкими поворотами и резкими изгибами, уменьшает поток в 3 ветви на оставили.

Воздуховоды, оптимизированная конструкция, энергоэффективность

Если теперь мы сосредоточимся на оптимизированной конструкции справа, мы увидим, что используемые фитинги имеют гораздо более гладкий профиль без внезапных препятствий, рециркуляции или обратного потока, что значительно улучшает скорость воздушного потока в системе.В дальнем конце основного воздуховода воздух делится на две ветви через пологую изогнутую тройниковую секцию. Это позволяет воздуху плавно менять направление и, таким образом, не происходит резкого увеличения статического давления, а скорость потока воздуха в комнаты резко увеличивается.

Три ответвления в главном воздуховоде теперь получают равный воздушный поток, что значительно улучшает конструкцию. Это связано с тем, что дополнительная ветвь теперь питает три меньшие ветви, позволяя некоторой части воздуха плавно отделяться от основного потока и поступать в эти меньшие ветви.

С учетом этих соображений мы можем вернуться к конструкции воздуховода.

Этикетки для воздуховодов и фитингов

Теперь нам нужно пометить каждую секцию воздуховодов, а также фитинги буквой. Обратите внимание, что мы разрабатываем здесь только очень простую систему, поэтому я включил только воздуховоды и базовую арматуру, я не включил такие вещи, как решетки, воздухозаборники, гибкие соединения, противопожарные клапаны и т. Д.

Теперь мы хотим сделать стол с строки, помеченные как в примере. Для каждого воздуховода и фитинга нужен отдельный ряд. Если воздушный поток разделяется, например, в тройнике, тогда нам нужно добавить линию для каждого направления, мы увидим это позже в статье.

Просто добавьте буквы в отдельные строки и укажите, какой тип фитинга или воздуховода соответствует.

Схема воздуховода для воздуховодов

Мы можем начать вводить некоторые данные. Сначала мы можем включить объемный расход для каждого из ответвлений. Это просто, так как это просто объемный расход для помещения, которое оно обслуживает. Вы можете видеть на диаграмме, которую я заполнил.

Схема воздуховодов Скорость потока в главном воздуховоде

Затем мы можем начать определять размеры главных воздуховодов. Для этого убедитесь, что вы начинаете с самого дальнего главного воздуховода.Затем мы просто складываем объемные расходы для всех ответвлений после этого. Для главного воздуховода G мы просто суммируем ветви L и I. Для D это просто сумма L I и F, а для воздуховода A — это сумма L, I, F и C. Просто введите их в таблицу.

Из чернового чертежа мы измеряем длину каждой секции воздуховода и заносим ее в таблицу.

Размеры воздуховодов — Как определить размеры воздуховодов

Для определения размеров воздуховодов вам понадобится таблица размеров воздуховодов. Вы можете получить их у производителей воздуховодов или в отраслевых организациях, таких как CIBSE и ASHRAE.Если у вас его нет, вы можете найти их по следующим ссылкам. Ссылка 1 и Ссылка 2

Эти диаграммы содержат много информации. Мы можем использовать их, чтобы найти падение давления на метр, скорость воздуха, объемный расход, а также размер воздуховода. Схема диаграммы может немного отличаться в зависимости от производителя, но в этом примере вертикальные линии показывают падение давления на метр воздуховода. Горизонтальные линии показывают объемный расход. Нисходящие диагональные линии соответствуют скорости, восходящие диагональные линии — диаметру воздуховода.

Мы начинаем подбирать размеры с первого главного воздуховода, который является участком А. Чтобы ограничить шум в этом разделе, мы укажем, что он может иметь максимальную скорость только 5 м / с. Мы знаем, что для этого воздуховода также требуется объемный расход 0,79 м3 / с, поэтому мы можем использовать скорость и объемный расход, чтобы найти недостающие данные.

Пример размера воздуховода

Возьмем диаграмму и прокрутим ее снизу слева, пока не достигнем объемного расхода 0,79 м3 / с. Затем мы определяем, где линия скорости составляет 5 м / с, и проводим линию поперек, пока не достигнем ее.Затем, чтобы найти перепад давления, мы проводим вертикальную линию вниз от этого пересечения. В данном случае мы видим, что он составляет 0,65 Па на метр. Так что добавьте эту цифру в диаграмму. Поскольку мы используем метод равного падения давления, мы можем использовать это падение давления для всех длин воздуховодов, поэтому заполните и их. Затем мы снова прокручиваем вверх и выравниваем наше пересечение с направленными вверх диагональными линиями, чтобы увидеть, что для этого требуется воздуховод диаметром 0,45 м, поэтому мы также добавляем его в таблицу.

Нам известны объемный расход и падение давления, поэтому теперь мы можем рассчитать значения для секции C, а затем для остальных воздуховодов.

Для остальных воздуховодов мы используем тот же метод.

Подбор размеров воздуховода, метод равного давления

На диаграмме мы начинаем с рисования линии от 0,65 Па / м на всем протяжении вверх, а затем проводим линию поперек нашего требуемого объемного расхода, в данном случае для секции C нам нужно 0,21 м3 / с . На этом пересечении мы проводим линию, чтобы найти скорость, и мы видим, что она попадает в пределы линий 3 и 4 м / с, поэтому нам нужно оценить значение, в этом случае оно составляет около 3,6 м / с, поэтому мы добавляем что к диаграмме.Затем мы рисуем еще одну линию на другой диагональной сетке, чтобы найти диаметр нашего воздуховода, который в данном случае составляет около 0,27 м, и мы тоже добавим его в таблицу.

Повторяйте этот последний процесс для всех оставшихся воздуховодов и ответвлений, пока таблица не будет заполнена.

Теперь найдите общие потери в воздуховоде для каждого воздуховода и ответвления. Это очень легко сделать, просто умножив длину воздуховода на падение давления на метр. В нашем примере мы обнаружили, что оно составляет 0,65 Па / м. Проделайте то же самое со всеми воздуховодами и ответвлениями на столе.

Подбор размеров фитингов для воздуховодов

Первый фитинг, который мы рассмотрим, это изгиб 90 * между воздуховодами J и L

Для этого мы ищем наш коэффициент потерь для изгиба от производителя или промышленного органа, вы можете найти, что нажав на эту ссылку.

Коэффициент потери давления в фитинге с коленом воздуховода

В этом примере мы видим, что коэффициент равен 0,11

Затем нам нужно рассчитать динамические потери, вызванные изгибом, изменяющим направление потока. Для этого мы используем формулу Co, умноженную на rho, умноженную на v в квадрате, деленную на 2, где co — наш коэффициент, rho — плотность воздуха, а v — скорость.

Формула потери давления на изгибе воздуховода

Мы уже знаем все эти значения, поэтому, если мы опустим цифры, мы получим ответ 0,718 паскаля. Так что просто добавьте это в таблицу. (Посмотрите видео внизу страницы, чтобы узнать, как это вычислить).

Потери давления на тройнике в воздуховоде

Следующий фитинг, который мы рассмотрим, — это тройник, который соединяет основной воздуховод с ответвлениями. Мы будем использовать пример тройника с буквой H между G и J в системе. Теперь для этого нам нужно учесть, что воздух движется в двух направлениях, прямо насквозь, а также сворачивает в ответвление, поэтому нам нужно выполнить расчет для обоих направлений.

Если мы посмотрим на воздух, движущийся по прямой, то сначала мы найдем соотношение скоростей, используя формулу скорости out, деленной на скорость на входе. В этом примере выход воздуха составляет 3,3 м / с, а входящий — 4 м / с, что дает us 0,83

Затем мы выполняем еще один расчет, чтобы найти отношение площадей, для этого используется формула: диаметр вне квадрата, деленный на диаметр в квадрате. В этом примере выходной диаметр составляет 0,24 м, а внутренний диаметр — 0,33 м, поэтому, если мы возведем их в квадрат, а затем разделим, мы получим 0.53

Теперь мы ищем фитинги, которые мы используем, от производителя или отраслевого органа, снова ссылка здесь для этого.

Размер тройника для воздуховода

В руководствах мы находим две таблицы, одна из которых зависит от направления потока. Мы используем прямое направление, поэтому определяем ее местонахождение и затем просматриваем каждое соотношение, чтобы найти коэффициент потерь. Здесь вы можете увидеть, что оба рассчитанных нами значения попадают между значениями, указанными в таблице, поэтому нам необходимо выполнить билинейную интерполяцию. Чтобы сэкономить время, мы просто воспользуемся онлайн-калькулятором, чтобы найти это, ссылка здесь (посмотрите видео, чтобы узнать, как выполнить билинейную интерполяцию).

Мы заполняем наши значения и находим ответ 0,143

Расчет потери давления в тройнике

Теперь мы рассчитываем динамические потери для прямого пути через тройник, используя формулу co, умноженную на rho, умноженную на v в квадрате, деленную на 2. Если мы опускаем наши значения и получаем ответ 0,934 паскаля, так что добавьте это в таблицу.

Затем мы можем рассчитать динамические потери для воздуха, который превращается в изгиб. Для этого мы используем те же формулы, что и раньше. Выходная скорость рассчитывается путем вычисления нашего отношения скоростей.Затем мы находим соотношение площадей, используя формулу: диаметр вне квадрата, деленный на диаметр в квадрате. Мы берем наши значения из нашей таблицы и используем 3,5 м / с, разделенные на 4 м / с, чтобы получить 0,875 для отношения скоростей, и мы используем 0,26 м в квадрате, деленные на 0,33 м в квадрате, чтобы получить 0,62 для отношения площадей.

Тройник изгиб с потерями

Затем мы используем таблицу изгибов для тройника, опять же между значениями, перечисленными в таблице, поэтому нам нужно найти числа с помощью билинейной интерполяции. Мы опускаем значения, чтобы получить ответ 0.3645 паскалей. Так что просто добавьте это в таблицу.

Теперь повторите этот расчет для других тройников и фитингов, пока таблица не заполнится.

Нахождение индексного участка — размер воздуховода

Затем нам нужно найти индексный участок, который является участком с наибольшим падением давления. Обычно это самый длинный пробег, но он также может быть пробегом с наибольшим количеством приспособлений.

Мы легко находим, складывая все потери давления от начала до выхода каждой ветви.

Например, чтобы добраться от A до C, мы теряем 5.04 Па
A (1,3 Па) + B (1,79 Па) + C (1,95 Па)

От A до F мы теряем 8,8 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E ( 2,55 Па) + F (1,95)

Для A — I мы теряем 10,56
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H ( 0,36 Па) + I (1,95 Па)

Для A — L мы теряем 12,5 Па
A (1,3 Па) + B (1,7 Па) + D (1,3 Па) + E (1,34 Па) + G (2,6 Па) + H (0,93 Па) + J (0,65 Па) + K (0,72 Па) + L (1,95 Па)

Следовательно, вентилятор, который мы используем, должен преодолевать пробег с наибольшими потерями, а именно A — L с 12.5pa, это индексный прогон.

Заслонки воздуховода — балансировка системы

Чтобы сбалансировать систему, нам необходимо добавить заслонки к каждой из ветвей, чтобы обеспечить равный перепад давления во всем, чтобы достичь проектных расходов в каждой комнате.

Мы можем рассчитать, какой перепад давления должен обеспечивать каждый демпфер, просто вычтя потери на ходу из индексного прогона.

От A до C составляет 12,5 Па — 5,04 Па = 7,46 Па

От A до F составляет 12,5 Па — 8,8 Па = 3,7 Па

От A до I составляет 12.5 Па — 10,56 Па = 1,94 Па

И это наша система воздуховодов. Мы сделаем еще один урок, посвященный дополнительным способам повышения эффективности системы воздуховодов.

Конструкция воздуховода 5 — Определение размеров воздуховодов

К этому моменту в нашей небольшой серии статей о конструкции воздуховодов мы вычисляли промежуточные количественные показатели: доступное статическое давление, общую эффективную длину и коэффициент трения. Сегодня мы используем все это, чтобы выяснить, какого размера должны быть воздуховоды. Мы следуем протоколу Manual D для проектирования воздуховодов, стандарту, разработанному компанией Air Conditioning Contractors of America (ACCA).Давайте сразу же посмотрим, как это работает.

Определение размеров воздуховодов по коэффициенту трения

Напомним, что номинальное общее внешнее статическое давление (TESP) говорит нам, какое сопротивление мы можем иметь через печь или воздухообрабатывающий агрегат, когда он обеспечивает номинальный воздушный поток. Чтобы достичь этого числа, мы должны контролировать сопротивление системы воздуховодов.

При прочих равных условиях система воздуховодов с большей общей эффективной длиной (TEL) имеет большее сопротивление. Однако это не означает, что общее внешнее статическое давление больше, поскольку потери на трение в воздуховодах зависят как от длины, так и от площади поперечного сечения.Это неравная часть — ручка, которую мы используем для управления сопротивлением.

Если общая эффективная длина велика, необходимо увеличить площадь воздуховода. Если длина мала, можно использовать воздуховоды меньшего размера. Таким образом мы гарантируем, что воздуховоды доставляют необходимое количество воздуха. (Конечно, его тоже нужно установить и ввести в эксплуатацию.)

Скорость трения, которую я обсуждал в части 4 этой серии статей, позволяет нам количественно оценить этот процесс. (Это один из двух факторов, на которые мы должны обратить внимание при определении размера.Другой ниже.) В части 4 я показал пример, где коэффициент трения составлял 0,073 iwc на 100 футов общей эффективной длины.

Следующим шагом является использование этой скорости трения и расхода воздуха для каждой секции воздуховода в кубических футах в минуту (куб. Фут / мин), чтобы найти размер, необходимый для перемещения этого количества воздуха. Мы делаем это с помощью программного обеспечения, но калькуляторы воздуховодов дают ту же информацию.

Вот пример нового калькулятора размеров воздуховодов ASHRAE. Наша скорость трения составляет 0,073 iwc / 100 ′. Допустим, у нас есть участок воздуховода, который должен двигаться на 400 кубических футов в минуту.В части шкалы «Потери на трение / количество воздуха» мы выставляем 0,073 на 400 куб. Футов в минуту, как показано ниже.

Как видите, нам нужен круглый металлический воздуховод чуть больше 10 дюймов, чтобы делать то, что мы хотим здесь. Если гибкость установлена ​​правильно (внутренняя облицовка плотно натянута без провисания или сжатия), она будет такого же размера. (Если вы не верите, см. Мою статью о сжатии гибких воздуховодов.)

Мы не проектируем для сжатия, но вы можете видеть, что если бы установщик использовал гибкость и не натягивал внутреннюю прокладку, оставляя 4% продольного сжатия, вам понадобился бы гибкий воздуховод диаметром 12 дюймов, а не 10 дюймов.Если бы они установили гибкий воздуховод диаметром 10 дюймов, сжатый на 4%, сопротивление было бы выше, статическое давление было бы выше, а воздушный поток был бы ниже.

Понял? Процесс несложный. Вы бы проделали одно и то же для каждой секции воздуховода, используя одинаковую скорость трения, но устанавливая разные требования к потоку воздуха для каждой части.

Размер воздуховодов по скорости

Но просто взглянуть на эти две части калькулятора воздуховода — это еще не конец процесса.Мы также хотим убедиться, что скорость воздуха не слишком высока. Итак, мы смотрим на раздел «Скорость / количество воздуха». В моем примере 400 кубических футов в минуту при 0,073 кубических футов в минуту / 100 футов соответствуют скорости около 725 футов в минуту (футов в минуту). Это нормально для приточных каналов. Чтобы переместить 400 кубических футов в минуту на обратной стороне в этой системе воздуховодов, нам потребуется перейти в воздуховод большего размера.

В Руководстве D в таблице N3-1 указаны максимальные скорости для подводящих и обратных магистралей и ответвлений. Для расходных материалов это 900 футов в минуту.Для возвратов это 700 футов в минуту. Вот почему в данном случае мы увеличили бы до 12 дюймов для обратного перемещения 400 куб. Футов в минуту при 0,073 iwc / 100 ′.

Если размер по скорости трения приводит к слишком высокой скорости, мы выбираем размер по скорости, что приводит к увеличению диаметра воздуховода. Но более крупные воздуховоды также приводят к меньшему сопротивлению, а это означает, что мы можем получить слишком много воздуха во время этого пробега. Что нам с этим делать? Установить балансировочные демпферы.

В нашем подразделении по проектированию систем отопления, вентиляции и кондиционирования воздуха в Energy Vanguard мы обычно не указываем воздуховоды меньше 4 дюймов.Мы делаем круглые воздуховоды с шагом в один дюйм от 4 до 10 дюймов, а затем каждые 2 дюйма после этого, поэтому я сказал, что в этом примере мы будем использовать 12-дюймовый воздуховод вместо 10-дюймового воздуховода для возврата.

Теперь у нас есть процедура определения размеров всех воздуховодов в конструкции. У меня осталось только несколько тем в этой серии: прокладка воздуховодов, выбор типов воздуховодов, а также регистры и решетки. А затем я представлю тематическое исследование, чтобы показать, как все это работает, от проектирования до установки и ввода в эксплуатацию.

Другие статьи из серии Duct Design:

Основные принципы проектирования воздуховодов, часть 1

Конструкция воздуховода 2 — Доступное статическое давление

Конструкция воздуховода 3 — Общая полезная длина

Конструкция воздуховода 4 — Расчет скорости трения

Статьи по теме

2 основные причины снижения потока воздуха в воздуховодах

Как правильно установить гибкий воздуховод

The Science of Sag — Flex Duct and Air Flow

Секрет эффективного движения воздуха через систему воздуховодов

ПРИМЕЧАНИЕ: Комментарии модерируются.Ваш комментарий не появится ниже, пока не будет одобрен.

Калькулятор размеров воздуховодов ASHRAE и ADI

Калькулятор размеров воздуховодов — это быстрый справочный инструмент, который позволяет проектировщикам систем распределения воздуха HVAC более точно определять размеры воздуховодов, особенно гибких воздуховодов при различной степени сжатия, на основе результатов исследований.

В калькуляторе используется информация из исследовательского проекта ASHRAE 1333 «Измерения эффективности воздуховодов HVAC». Он включает три новых поля для эквивалентных размеров воздуховодов, которые помогают продемонстрировать значительную потерю воздушного потока из-за неправильной установки гибких воздуховодов.В калькуляторе есть поля для 4, 15 и 30 процентов сжатия в гибких воздуховодах. Расчеты, используемые для создания этих эталонных размеров, основаны на прямолинейном сжатии, которое выполняется в лаборатории на плоской поверхности. Устанавливаемые на месте гибкие воздуховоды с изгибами, перегибами и чрезмерной длиной будут иметь дополнительное сопротивление, что приведет к уменьшению воздушного потока. Использование этого инструмента позволяет разработчикам воздуховодов учитывать неоптимальную установку и дает более точный расчет для корреляции установленных характеристик.

Исследование ASHRAE количественно оценило эффекты сжатия (не растяжения) гибкого воздуховода, что увеличивает шероховатость и, следовательно, потери на трение внутри гибкого воздуховода. Тестирование воздушного потока проводится в соответствии с протоколами, предписанными стандартом ANSI / ASHRAE 120-2008 «Метод тестирования для определения гидравлического сопротивления воздуховодов и фитингов HVAC».

Испытания в Национальной лаборатории Лоуренса в Беркли и Техасском университете A&M вместе с анализом данных, проведенным Техническим университетом Теннесси, позволили количественно оценить неблагоприятное воздействие сжатия на воздушный поток.Эти корреляции полностью совпадают с уравнениями, опубликованными в главе 21 Справочника ASHRAE 2013 г. «Основы», поэтому уравнения были использованы для создания нового калькулятора, сказал он.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *