Классификация турбин: Классификация паровых турбин | Энергетика
Классификация паровых турбин | Энергетика
Может быть предложена следущая классификация паровых турбин:
А. В зависимости от характера теплового процесса паротурбинной установки.
1.Турбины конденсационные
а). турбины конденсационные без отборов пара
б). турбины конденсационные с промежуточными отборами пара
1.с нерегулируемыми отборами
2.с регулируемыми отборами
3.как с регулируемыми, так и нерегулируемыми отборами
в). турбины с промежуточным подводом пара
г). турбины мятого пара
2.Турбины с повышенным давлением на выхлопе
а). турбины с ухудшенным вакуумом
б). турбины с противодавлением
в). турбины предвключенные
Б. В зависимости от давления пара, поступающего в турбину: низкого, среднего, высокого и сверхкритического.
Турбины конденсационные без отборов пара
В этих турбинах всё количество подводимого свежего пэра, пройдя турбину и расширившись в ней до давления, меньшего, чем атмосферное (обычно 0,0035 – 0,005 МПа), направляется в кон-денсатор, где тепло отработавшего пара отдается охлаждающей воде и полезно не используется.
Турбины конденсационные с нерегулируемыми отборами
Нерегулируемые отборы пара, называемые также регенеративными, предназначены для по-догрева питательной воды, поступающей затем в парогенераторы. Количество регенеративных отборов зависит от начальных параметров пара в турбоустановке и составляет от 5 до 8 (рис.10). Свое название (нерегулируемые) они получили от того, что давление пара в них не остается постоянным, а изменяется самопроизвольно, в зависимости от расхода пара на турбоагрегат.
Турбины с регулируемыми отборами
Регулируемыми называются отборы, в которых давление отбираемого пара на всех режимах работы турбоагрегата автоматически поддерживается постоянным или же регулируется в заданных пределах с тем, чтобы потребитель получал пар определенного качества. Существует два вида тепловых потребителей: промышленные, где требуется пар с давлением до 1,3 1,5 МПа (производственный отбор) и отопительные, с потребным давлением 0,05 0,25 МПа (теплофикационный отбор) (Рис.11а). Если требуется пар как производственного, так и отопительного назначения, то в одной турбине могут быть осуществлены два регулируемых отбора: промышленный и теплофикационный (рис11б).
Турбины с регулируемыми и нерегулируемыми отборами
В таких турбинах предусмотрены как регенеративные, так и регулируемые. Отборы (рис.12, а). и б).). Как правило, из камеры регулируемого отбора часть пара направляется на подогрев питательной воды, а остальное количество (по потребности) – тепловым потребителям.
Турбины с промежуточным подводом пара (турбины двух давлений)
В этих турбинах в промежуточную ступень подводится пар, имеющий достаточный потенциал (давление), отработавший где-либо в технологических процессах, т.е., пар с производства, который по каким-то причинам не может быть рационально использован на самом производстве (рис.13).
Турбины мятого пара
Эти турбины применяются для использования пара низкого давления, отходящего с производства после технологических процессов, который по каким-либо причинам не может быть использован для отопительных или технологических нужд. Давление такого пара обычно несколько выше атмосферного, и он направляется в специальную конденсационную турбину, называемую турбиной мятого пара.
Турбины с ухудшенным вакуумом
Турбины с ухудшенным вакуумом имеют давление на выхлопе ниже атмосферного, но в 15 – 20 раз выше, чем обычные конденсационные, т.е., 0,05 -0,09 МПа. Отработавший пар, соответст-венно, имеет значительную температуру – до 90 °С. Вместо конденсатора здесь ставится бойлер, через который прокачивается сетевая вода, используемая далее для отопительных, бытовых или агрономических целей.
Турбины с противодавлением
У этих турбин отсутствует конденсатор. Отработавший пар, имеющий давление выше атмосферного, поступает в специальный сборный коллектор, откуда направляется к тепловым потребителям, отопительным или производственным.
Давление на выхлопе (и в коллекторе) поддерживается в соответствии с требованиями объекта теплоснабжения, (рис.14).
Предвключенные турбины
Предвключенными называются турбины с противодавлением, отработавший пар которых направляется далее в обычные конденсационные турбины для глубокого расширения. В таком варианте предусматриваются два электрогенератора (рис.15), т.е., турбоагрегат является единым по паровому потоку, но с раздельной выработкой электроэнергии.
КЛАССИФИКАЦИЯ ТУРБИН — Студопедия
Турбины паровые стационарные для привода турбогенераторов (ГОСТ 3618— 82) выпускаются мощностью от 2,5 до 1600 МВт на параметры свежего пара ро = 3,4÷23,5 МПа и to = 435÷565 °С.
Турбины изготовляются следующих типов: конденсационные (К), конденсационные с отопительным (теплофикационным) отбором пара с давлением отбора 0,18 МПа (Т), с производственным отбором пара для промышленного потребления (П), с двумя регулируемыми отборами пара (ПТ), с противодавлением (Р), с производственным отбором и противодавлением (ПР) и теплофикационные с противодавлением и отопительным отбором пара (ТР).В обозначении после буквы (тип турбины) приводится ее номинальная мощность в МВт, а затем номинальное давление пара (перед стопорным клапаном турбины) в кгс/см2. Для турбин П и ПТ в обозначении давления под чертой отмечается номинальное давление производственного отбора или противодавления турбины в кгс/см2.
Пример. Турбина номинальной мощностью 60 МВт на начальное давление 12,74 МПа (130 кгс/см2) с двумя регулируемыми отборами пара — производственным 1,274 МПа (13 кгс/см2) и теплофикационным отбором обозначается ПТ-60-130/13.
Мощные конденсационные турбины типа К характеризуются тем, что почти весь пар, пройдя через турбину, направляется в конденсатор и выделяющаяся при конденсации теплота полностью теряется. Из нескольких промежуточных ступеней турбины часть пара отбирается для регенеративного подогрева питательной воды, повышающего, как показано в § 6.4, термический КПД цикла. Таких отборов, называемых нерегулируемыми (давление отбора колеблется при изменении нагрузки), может быть от двух до девяти.
В конденсационных турбинах типа Т, предназначенных для совместной выработки электроэнергии и теплоты, пар в количестве, значительно большем, чем на регенерацию, отбирается на теплофикацию, а оставшийся, пройдя последние ступени турбины, направляется в конденсатор. Давление пара, отбираемого на теплофикацию, поддерживается постоянным, отсюда отбор называют регулируемым.
Турбины типа П отличаются от турбин типа Т лишь тем, что пар из них отбирается для промышленного потребления и имеет более высокие параметры. Промышленный отбор также является регулируемым, так как потребители требуют постоянного давления.
Турбины типа Р отличаются от всех предыдущих типов тем, что после них отсутствует конденсатор и весь отработавший пар идет на отопление или производственные нужды.
Турбинами с противодавлением являются также предвключенные турбины, после которых пар используется в турбинах среднего давления. Такие турбины применяют и для «надстройки» турбинного оборудования электрических станций при переводе их на пар более высоких параметров с целью повышения экономичности.
При расширении пара в многоступенчатых турбинах удельный объем его от ступени к ступени возрастает, вызывая увеличение общего объема пара, проходящего через проточную часть турбины. Например, пар, входя в турбину с давлением 2,85 МПа и температурой 400 °С, имеет удельный объем, равный 0,103 м3/кг, а при выходе из турбины в конденсатор, где давление пара 4 кПа и влажность 12 %, удельный объем составляет уже 31 мэ/кг, т. е. в 300 раз больше. Для пропуска возрастающего объема пара приходится увеличивать живое сечение сопл и лопаточных кана-
лов Но с увеличением высоты лопаток и диаметра дисков возрастают окружные скорости их движения, превышать которые по условиям прочности сверх допустимых (н = 350-=-400 м/с) нельзя. Так как наибольшую высоту имеют лопатки последних ступеней, то именно их пропускная способность по пару лимитирует предельную мощность турбины
В настоящее время предельная мощность однопоточной конденсационной турбины на высокое давление не превышает 50 МВт.
ПАРОВАЯ ТУРБИНА • Большая российская энциклопедия
ПАРОВА́Я ТУРБИ́НА, турбина, в которой в качестве рабочего тела используется водяной пар; служит для преобразования тепловой энергии пара в механич. работу. В отличие от паровой машины, в П. т. используют не потенциальную, а кинетич. энергию пара. Осн. назначение П. т. – привод (первичный двигатель) для генераторов электрич. тока на тепловых и атомных электростанциях. П. т. и электрогенератор составляют турбоагрегат.
Конструкция паровых турбин
Схематический продольный разрез активной паровой турбины с тремя ступенями давления: 1 – кольцевая камера свежего пара; 2 – сопла первой ступени; 3 – лопатки первой ступени; 4 – сопла второй ступени; …
П. т. состоит из двух осн. частей – ротора с лопатками (подвижная часть турбины) и статора с соплами (неподвижная часть). Поток пара, образующийся в паровом котле, под высоким давлением поступает через направляющие (статор с соплами) на криволинейные лопатки турбины, закреплённые по окружности ротора, и, воздействуя на них, приводит ротор, закреплённый на одном валу с электрогенератором, во вращение (происходит преобразование тепловой энергии пара в механич. работу). Каждый ряд направляющих и лопаток называется ступенью турбины (как правило, П. т. имеет неск. ступеней). Корпус П. т. с несколькими ступенями давления разделяют диафрагмами на отд. камеры, в каждой из которых помещён один из дисков с лопатками (рис.). Пар может проникать из одной камеры в другую только через сопла, расположенные по окружности диафрагм. Давление пара снижается после каждой ступени, а скорости истечения пара остаются примерно одинаковыми, что достигается выбором соответствующих размеров сопел.
Роторы П. т., предназначенные для привода электрич. генераторов, работающих на электрич. сеть, имеют фиксированную частоту вращения – 3000 об/мин в России и 3600 об/мин в США и др. странах. Роторы П. т., предназначенных для др. потребителей мощности, могут иметь др. частоту вращения, соответствующую характеристикам оборудования потребителя (напр., транспортные турбины). Давление и темп-ра пара перед турбиной определяются её назначением.
Мощные П. т. имеют сложную конструкцию и большие размеры (см. рис. к ст. Конденсационная турбина). Длина всего агрегата может достигать 30 м. П. т. располагается на фундаменте, представляющем собой многоопорную жел.-бетон. конструкцию, опирающуюся на общую фундаментную плиту. Конструкция П. т. разделяется на неск. цилиндров (частей) – высокого давления (ЦВД), среднего давления (ЦСД) и низкого давления (ЦНД). Обычно мощная П. т. имеет один ЦВД, один или два ЦСД и неск. ЦНД. Пар поступает в турбину, проходит через ЦВД последовательно все ступени, далее через ЦСД (одним или двумя параллельными потоками), затем, разветвляясь ещё на неск. параллельных потоков, проходит ЦНД и сбрасывается в конденсатор. Разветвление потоков перед конденсатором необходимо для увеличения единичной мощности турбины, т. к. однопоточная турбина может вырабатывать ограниченную мощность, которая зависит от длины рабочих лопаток последней ступени. Для обеспечения надёжной эксплуатации П. т. оснащается системой безопасности, предотвращающей возникновение и развитие аварийных ситуаций. Осн. преимущества П. т.: высокая единичная мощность, широкий диапазон мощностей, высокий ресурс работы. Недостатки П. т.: высокая инерционность (долгое время пуска и останова), дороговизна строительства и ремонта. В П. т., используемых на ТЭС, давление пара может достигать 24 МПа и более, темп-ра – 545–600 °C; мощности П. т., работающих на ТЭС, – до 1200 МВт, АЭС – до 1900 МВт. Кпд современных П. т. достигает 40–42%.
Классификация паровых турбин
По принципу действия выделяют активные турбины и реактивные турбины. По количеству ступеней П. т. подразделяют на одноступенчатые и многоступенчатые турбины. В одноступенчатой П. т. не удаётся достаточно полно использовать энергию пара, поэтому совр. П. т. строят многоступенчатыми. По направлению потока рабочего тела выделяют осевые (аксиальные) П. т. (направление потока совпадает с направлением оси ротора, наиболее распространённый тип П. т., используемых для привода электрогенераторов) и радиальные П. т. (поток осуществляется в радиальном направлении либо от оси ротора к периферии дисков, либо наоборот – от периферии к оси). В зависимости от давления пара П. т. бывают: низкого (не выше 0,9 МПа), среднего (не выше 4 МПа), высокого (9–14 МПа) и сверхкритич. давления (24 МПа и более).
В зависимости от характера теплового процесса П. т. подразделяют на 3 группы: конденсационные турбины, теплофикационные и спец. назначения.
Теплофикационные П. т. служат для одноврем. получения электрич. и тепловой энергии. Осн. конечный продукт таких П. т. – теплота. ТЭС, на которых установлены теплофикационные П. т., называются теплоэлектроцентралями. К теплофикационным П. т. относятся турбины с противодавлением, с регулируемым отбором пара, а также с отбором и противодавлением. У турбин с противодавлением отсутствует конденсатор. Отработавший пар, имеющий давление выше атмосферного, поступает в спец. сборный коллектор, откуда направляется к тепловым потребителям для технологич. целей (варка, сушка, отопление и др.). В турбинах с регулируемым отбором часть пара отводится из первой или второй промежуточных ступеней, а остальной пар идёт в конденсатор. Давление отбираемого пара на всех режимах работы турбоагрегата автоматически поддерживается постоянным или же регулируется в заданных пределах, с тем чтобы потребитель получал пар определённого качества. Существует два вида тепловых потребителей: промышленные, где требуется пар с давлением до 1,3–1,5 МПа (производств. отбор), и отопительные, с давлением 0,05–0,25 МПа (теплофикационный отбор). Если требуется пар как производственного, так и отопит. назначения, то в одной турбине могут быть осуществлены два регулируемых отбора; место отбора (ступень турбины) выбирают в зависимости от нужных параметров пара. У турбин с отбором и противодавлением часть пара отводится из первой или второй промежуточных ступеней, а весь отработавший пар направляется из выпускного патрубка в отопит. систему или к сетевым подогревателям.
П. т. специального назначения обычно работают на отбросном тепле металлургич., машиностроит. и химич. предприятий. К ним относятся П. т. «мятого пара», с промежуточным подводом пара (турбины двух давлений) и предвключённые. П. т. «мятого пара» используют отработавший пар низкого давления после технологич. процессов (пар поршневых машин, паровых молотов и прессов), который по к.-л. причинам не может быть использован для отопит. или технологич. нужд. Давление такого пара обычно несколько выше атмосферного, и он направляется в спец. конденсац. турбину (турбину «мятого пара»). П. т. двух давлений работают как на свежем, так и на отработавшем паре паровых механизмов, подводимом в одну из промежуточных ступеней. Предвключённые П. т. представляют собой турбины с высоким начальным давлением и высоким противодавлением; весь отработавший пар этих П. т. направляют далее в обычные конденсационные турбины.
Историческая справка.
Первое устройство, приводимое в движение паром (эолипил), было описано Героном Александрийским. В России П. Д. Кузьминский в нач. 1890-х гг. построил и опробовал судовую П. т. собств. конструкции.
П. т. получила практич. применение лишь в кон. 19 в., когда такие отрасли, как термодинамика, машиностроение и металлургия, достигли необходимого уровня. К. Г. П. де Лаваль (1878) и Ч. А. Парсонс (1884) создали первые промышленно пригодные паровые турбины. В П. т. Парсонса использован принцип поступенчатого расширения пара, который лежит в основе конструкции совр. паровых турбин.
В Европе П. т. получили всеобщее признание в качестве привода электрогенераторов только с 1899, когда на электростанции г. Эльберфельд (Германия) впервые были применены две П. т. Парсонса мощностью по 1000 кВт каждая.
В дореволюц. России строились как стационарные, так и судовые П. т. Особенно большие успехи были достигнуты рос. конструкторами и технологами в 1910–14 в проектировании и изготовлении П. т. для крупных воен. кораблей. Впервые отеч. стационарные П. т. построили на металлич. заводе в С.-Петербурге (позднее Ленингр. металлич. завод, ЛМЗ), на котором в 1907 изготовили П. т. для привода электрогенератора мощностью 200 кВт. В 1937 на ЛМЗ выпущена первая конденсационная двухцилиндровая одновальная турбина мощностью 100 МВт; в 1977 построена и сдана в эксплуатацию самая крупная отеч. конденсационная турбина мощностью 1200 МВт. Начиная с 1964 в СССР освоен выпуск П. т. для АЭС.
Типы паровых турбин и их назначение
Паровая турбина — это механизм, осуществляющий переработку тепловой энергии, полученной от пара, в энергию вращения
Турбины работают при наличии в них нагретого пара, который является источником энергии. Поступает такой пар в турбины из специального котла. Температура пара, поступившего в турбину, может различаться. Но основные показатели находятся в пределах 490-580 градусов Цельсия. Давление также отличается. Основные его показатели — 90 атмосфер, 140 атмосфер, 230 атмосфер.
Классифицируются паровые турбины следующим образом: противодавленческие, теплофикационные с отбором пара на производство, конденсационные, теплофикационные.
Все эти турбины отличаются количеством пара, использованного в работе и количеством пара, не участвовавшего в производстdе, а использующийся для других нужд.
Конденсационные турбины
Является самым распространенным в производстве типом паровых турбин. Обычно, с такой турбиной в комплекте идет конденсатор-устройство, предназначенной для сбора использованного пара. Абсолютно весь отработавший пар поступает в конденсатор.
Основной задачей конденсационных паровых турбин является выработка электричества. Соответственно, подобного типа турбины используются на электростанциях. На ТЭЦ также можно поставить, но обычно они там не используются. Пар из котла поступает в турбину и совершает работу, необходимую для получения электроэнергии. Возможность получения тепловой энергии с таких турбин присутствует, но обычно не используется.
В Советское время производством таких труб занимался Ленинградский металлический завод. Сейчас же это ОАО «Силовые машины».
Теплофикационные турбины
Представляют собой турбины типа «Т». Широко используются на тепловых электростанциях, так как с их помощью имеется возможность вырабатывать не только электричество но и тепловую энергию.
Турбина способна отбирать пар с помощью поворотной диафрагмы. Данный процесс является контролируемым. Отобранный пар затем поступает в определенные обогреватели, с которых энергия тепла уже передается воде.
В летнее время теплофикационные турбины способны работать в конденсационном режиме. В данном случае пар до сетевых подогревателей не доходит, а в полном объеме используется для выработки электричества.
Производством теплофикационных турбин занимается Уральский турбинный завод.
Теплофикационные турбины с промышленным отбором пара
Турбины с маркировкой «ПТ»
Название данных турбин дает понять, что определенная часть пара в процессе производства энергии уходит на промышленные нужды( к примеру для работы самого завода и т.п). После пар возвращается в виде жидкости, то есть конденсата, либо же полностью испаряется.
На данный момент теплофикационные турбины на производстве практически не используются, за редким исключением. В СССР они пользовались популярность для установки на тепловые электростанции недалеко от промышленных предприятий, заводов и т.д.
Противодавленческие турбины
Маркирова противодавленческих турбин «P».
Особенность противодавленческих турбин является отсутствия конденсатора, куда бы поступал использованный пар. Поэтому последний в свою очередь поступает на использование стороннему потребителю, что немного схоже с теплофикационными турбинами промышленного типа.
На данный момент противодавленческие турбины также как и турбины с маркировкой «ПТ» не используются в производстве, если не брать во внимание отдельные случаи. В Советское время данная модель еще находила себе применение, но после распада союза надобность в таких типах турбин отпала, так как возникла проблема в нахождении внешнего потребителя. При отсутствии последнего невозможно использование противодавленческих турбин для осуществления выработки энергии, соответственно они пришли в ненадобность.
Но затем инженеры нашли отличное решение для усовершенствования противодавленческих турбин. В придачу к ним устанавливались турбины с маркировкой «К», то есть конденсационные, рассчитанные на работу с паром, имеющим низкое давление. Как известно, турбинам типа «Р» необходимо наличие стороннего потребителя, что решается с помощью конденсационных турбин. После того как пар отработал в противодавленческих турбинах, он поступает в турбины типа К, где уже окончательно завершает свою работу и переходит в конденсат.
КЛАССИФИКАЦИЯ ТУРБИН — Студопедия
Турбины паровые стационарные для привода турбогенераторов (ГОСТ 3618— 82) выпускаются мощностью от 2,5 до 1600 МВт на параметры свежего пара ро = 3,4÷23,5 МПа и to = 435÷565 °С.
Турбины изготовляются следующих типов: конденсационные (К), конденсационные с отопительным (теплофикационным) отбором пара с давлением отбора 0,18 МПа (Т), с производственным отбором пара для промышленного потребления (П), с двумя регулируемыми отборами пара (ПТ), с противодавлением (Р), с производственным отбором и противодавлением (ПР) и теплофикационные с противодавлением и отопительным отбором пара (ТР).В обозначении после буквы (тип турбины) приводится ее номинальная мощность в МВт, а затем номинальное давление пара (перед стопорным клапаном турбины) в кгс/см2. Для турбин П и ПТ в обозначении давления под чертой отмечается номинальное давление производственного отбора или противодавления турбины в кгс/см2.
Пример. Турбина номинальной мощностью 60 МВт на начальное давление 12,74 МПа (130 кгс/см2) с двумя регулируемыми отборами пара — производственным 1,274 МПа (13 кгс/см2) и теплофикационным отбором обозначается ПТ-60-130/13.
Мощные конденсационные турбины типа К характеризуются тем, что почти весь пар, пройдя через турбину, направляется в конденсатор и выделяющаяся при конденсации теплота полностью теряется. Из нескольких промежуточных ступеней турбины часть пара отбирается для регенеративного подогрева питательной воды, повышающего, как показано в § 6.4, термический КПД цикла. Таких отборов, называемых нерегулируемыми (давление отбора колеблется при изменении нагрузки), может быть от двух до девяти.
В конденсационных турбинах типа Т, предназначенных для совместной выработки электроэнергии и теплоты, пар в количестве, значительно большем, чем на регенерацию, отбирается на теплофикацию, а оставшийся, пройдя последние ступени турбины, направляется в конденсатор. Давление пара, отбираемого на теплофикацию, поддерживается постоянным, отсюда отбор называют регулируемым.
Турбины типа П отличаются от турбин типа Т лишь тем, что пар из них отбирается для промышленного потребления и имеет более высокие параметры. Промышленный отбор также является регулируемым, так как потребители требуют постоянного давления.
Турбины типа Р отличаются от всех предыдущих типов тем, что после них отсутствует конденсатор и весь отработавший пар идет на отопление или производственные нужды.
Турбинами с противодавлением являются также предвключенные турбины, после которых пар используется в турбинах среднего давления. Такие турбины применяют и для «надстройки» турбинного оборудования электрических станций при переводе их на пар более высоких параметров с целью повышения экономичности.
При расширении пара в многоступенчатых турбинах удельный объем его от ступени к ступени возрастает, вызывая увеличение общего объема пара, проходящего через проточную часть турбины. Например, пар, входя в турбину с давлением 2,85 МПа и температурой 400 °С, имеет удельный объем, равный 0,103 м3/кг, а при выходе из турбины в конденсатор, где давление пара 4 кПа и влажность 12 %, удельный объем составляет уже 31 мэ/кг, т. е. в 300 раз больше. Для пропуска возрастающего объема пара приходится увеличивать живое сечение сопл и лопаточных кана-
лов Но с увеличением высоты лопаток и диаметра дисков возрастают окружные скорости их движения, превышать которые по условиям прочности сверх допустимых (н = 350-=-400 м/с) нельзя. Так как наибольшую высоту имеют лопатки последних ступеней, то именно их пропускная способность по пару лимитирует предельную мощность турбины
В настоящее время предельная мощность однопоточной конденсационной турбины на высокое давление не превышает 50 МВт.
Классификация паровых турбин — Уралэнергомаш
Широкое и разностороннее применение паровых турбин в различных отраслях народного хозяйства породило разнообразие конструкций паровых турбин
Паровые турбины один из самых эффективных механизмов придуманных человеком за последние триста лет. Они востребованы, подобные агрегаты можно встретить практических во всех областях человеческой деятельности. Для улучшения эксплуатационных характеристик производится модернизация паровых турбин. Древо классификации парового оборудования растет.
Турбины на транспорте
Сила нагретого до высоких температур пара обладает высокой энергией и используется традиционно на транспорте.
На различных судах паровая турбина чаще всего приводит в движение гребные винты. Такие агрегаты при компактных размерах и небольшом весе могут генерировать высокий КПД.
Турбины в промышленности
Турбины в промышленных секторах экономики способствуют обеспечение паром самые разные виды технологических процессов. Их можно встретить на предприятиях, которые производят бумагу, ткани, резину, автомобили и т.д.
Вспомогательные турбины встречаются в качестве дополнительных элементов в различных насосах, вентиляционных системах и т.п. Для стационарных турбин вопросы размеров и веса не так актуальны. Паровая турбина имеет дополнительное значение: она может менять частоту вращения. Она соединяется с приводами генераторов, что способствуют выработке электроэнергии. Встретить подобные массивные агрегаты чаще всего можно на гидроэлектростанции. У турбин, установленных на ТЭЦ, главным показателем является стабильная скорость вращения.
Турбины на ТЭЦ и АЭС
Конденсационные турбины отвечают за выработку электрической энергии их можно увидеть на крупных ГРЭС и даже Атомных станциях. Пар, который выработал свой потенциал в конденсационных агрегатах, удаляется в конденсатор, в нем присутствует вакуум. Энергетические турбины обладают отборами теплоты, чтобы подогревать гидроконтуры собственных блоков, а также активно используются для обогрева домов.
Теплофикационные агрегаты генерируют тепло и электроэнергию. Они дифференцируются на механизмы с противодавлением и агрегаты с регулируемым отбором. В паровых машинах созданные на основе противодавления, выработанный пар применяется для технологических целей. Сила пара варьируется на выходе 0,41-4,2 МПа. Электрическая нагрузка турбины связана прямо пропорционально с производством теплоты. Электрическая нагрузка турбин с противодавлением зависит от производства теплоты. Агрегаты, которые имеют регулируемый отбор пара, работают при давлении 0,071-0,241 Мпа, они также носят название теплофикационные, так как способствуют нагреву воды в сети, чтобы отапливать жилой сектор.
Турбины различаются по ряду критериев, которые позволяют их легко идентифицировать. Существует также специальная маркировка, по которой безошибочно можно определить назначение того или иного агрегата.
Турбины в электроэнергетике
Существуют агрегаты:
- Базовые;
- Пиковые;
- Полупиковые.
Первый вид может работать более 5500 часов в году, это современные высокотехнологичные агрегаты отличаются прекрасным режимом экономии.
Второй вид турбин используется в качестве вспомогательных устройств. Когда требуется дополнительная энергия в праздничные или выходные дни. Они могут функционировать не более пяти тысяч часов в году, базовое их преимущество:
- Мобильность;
- Дешевизна
Пиковые агрегаты способны функционировать до двух тысяч часов в году, они подключаются, когда не хватает электроэнергии в часы пик (утро и вечер).
Конструктивные различия
Турбины также различаются по конструктивным характеристикам:
- Число цилиндров. В одноцилиндровых турбинах все блоки компонуются в одном цилиндре. Есть также устройства, где подобная компоновка сочетается в нескольких цилиндрах; Все это дает возможность получать на выходе более высокий КПД. Многоцилиндровые агрегаты более сложные в устройстве, стоят дороже.
- Есть также одновальные турбины и двухвальные. У первых существует один генератор, к которому крепятся роторы цилиндров, они соединяются муфтами. Двухвальные турбины имеют два ротора, они имеют два генератора. Встречаются они не так часто.
Маркировка турбин
Первые буквы характеризуют вид агрегата:
- К – конденсационная турбина;
- Т с отбором пара по теплофикационной технологии (тоже конденсационное устройство).
После первой буквы указывается мощность агрегата в МВт (номинальная и максимальная). Первоначальное давление пара перед стопорным клапаном агрегата. Для турбин:
Под чертой ставится номинальное давление пара, единица измерения МПа. Пример:
К-206-14,8; Р-12-4,5/0,8; П-6-8,7/0,6; ПР-14/15-8,9/1,6/0,8; Т-255/305-23,8; ПТ-62/77-12,8/1,28).
Для агрегатов с отбором пара небольшой мощности, проектная температура охлаждающей жидкости берется 22 градуса Цельсия. Причина: турбина монтируется в пределах города или на предприятии, там используется циклическое водоснабжение (градирни).
Турбин классификация — Энциклопедия по машиностроению XXL
Труба Вентури 78 Турбин классификация 36 [c.487]
ОСНОВНОЕ УРАВНЕНИЕ ГИДРАВЛИЧЕСКИХ ТУРБИН. КОЭФФИЦИЕНТ БЫСТРОХОДНОСТИ. КЛАССИФИКАЦИЯ И ПРИМЕРЫ КОНСТРУКЦИЙ ГИДРАВЛИЧЕСКИХ ТУРБИН [c.277]
Как и в теории центробежных насосов, для классификации и подбора гидравлических турбин используется понятие о коэффициенте быстроходности. Здесь коэффициентом быстроходности называется число оборотов такой эталонной гидравлической турбины, которая при напоре 1 м развивает мощность 1 уг. с. = = 0,736 кет. В 73 было получено выражение для коэффици- [c.278]
Классификация гидравлических турбин по коэффициенту быстроходности [c.279]
Классификация, принцип действия и рабочий процесс в паровых и газовых турбинах [c.179]
Классификация турбин. По характеру тепловых процессов, происходящих в турбинах, они подразделяются на несколько групп [c.192]
КЛАССИФИКАЦИЯ СУДОВЫХ ТУРБИН [c.21]
Как уже говорилось, по роду рабочего тела судовые турбины разделяют на паровые и газовые. Кроме того, приняты следующие основные принципы классификации судовых турбин. [c.21]
Для паровых турбин дополнительно принята следующая классификация. [c.22]
Классификация. По месту расположения уплотнения турбин и турбокомпрессоров делятся на концевые, диафрагменные и бандажные. По принципу действия различают уплотнения лабиринтовые, контактные (угольные) и лабиринтово-контактные. По принципу расположения зазоров уплотнения делят на осевые, радиальные и радиально-осевые. По роду рабочего тела различают уплотнения паровых турбин, газовых турбин и компрессоров. [c.42]
Классификация — нормаль конструкций перемешивающих устройств предусматривает только следующие четыре типа лопастные, рамные, пропеллерные и турбинные. [c.209]
В свете изложенного нужно особенно подчеркнуть большое значение правильной классификации заготовок деталей машин применительно к разработке технологических рядов, ибо, как уже упоминалось, существующие и применяемые в настоящее время критерии классификации в своем большинстве основаны на терминологических признаках, а не на признаках технологической преемственности. Это подтверждается общепринятым распределением деталей на такие классы, как валы, втулки, эксцентрики и т. д. . при этом в класс валов входят валы мощных турбин и валик швейной машины, в класс втулок включены цилиндр двигателя внутреннего сгорания диаметром 800 мм, длиной 1000 мм и весом 1000 кг и втулка поршневого пальца, мотоцикла, в класс дисков — маховик диаметром 4000 мм и весом 5000 кг крупного двигателя внутреннего сгорания и маховичок управления диаметром 100 мм для токарного станка, в класс эксцентриков — коленчатый вал длиной 6000 мм и весом 5000 кг и эксцентриковый палец ламельного прибора ткацкого станка. [c.238]
КЛАССИФИКАЦИЯ ПАРОВЫХ ТУРБИН [c.11]
Для паровых турбин, в зависимости от характера происходящего в них теплового процесса и назначения турбинных установок, принимается обычно классификация на основе приводимых ниже признаков. [c.218]
Такая классификация носит условный характер, так как фактические условия пуска определяются непосредственно температурным состоянием основных элементов блока котел-турбина, а также зависят от предшествующих режимов, конкретных особенностей каждой установки (отличий по конструкции и состоянию изоляции, проточной части, систем трубопроводов, дренажей и т.д.). [c.23]
Классификация конструкций. Корпусные элементы (корпуса клапанов и цилиндров турбин мощностью 160—300 МВт) можно подразделить на две группы (рис. 4.2). [c.135]
Элементы классификации паровых турбин Паровые турбины различают [c.586]
Рассмотрим основные типы ВРД в соответствии с приведенной классификацией. В классе воздушно-реактивных двигателей значительное место занимают газотурбинные двигатели (ГТД). Для этого вида двигателей характерно наличие турбокомпрессора — агрегата, состоящего из компрессора, камеры сгорания и турбины. В современных ГТД преимущественно применяются осевые компрессоры и турбины, хотя имеются двигатели (в основном маломощные), в которых используются центробежные или диагональные компрессоры и радиальные турбины. [c.11]
Кроме приведенной классификации, АЭС классифицируют в зависимости от типа и конструктивных особенностей реакторов, параметров н вида теплоносителя, параметров пара, типа паровых турбин. Состав оборудования двухконтурной АЭС с паротурбинными установками и связи между отдельными ее элементами показаны на рис. 16-2. [c.266]
КЛАССИФИКАЦИЯ РЕЖИМОВ РАБОТЫ ТЕПЛОФИКАЦИОННЫХ ТУРБИН [c.305]
Для теплофикационных турбин, обеспечивающих выработку электрической и тепловой энергии, характерно очень большое число возможных режимов работы. Оно настолько велико, что их классификация весьма затруднительна и потому условна. [c.305]
Технология пуска турбины в большой степени зависит от температурного состояния оборудования перед пуском. В соответствии с этим различают пуски из холодного, неостывшего и горячего состояний. Эта классификация (для энергоблоков) производится по температуре турбины и главных паропроводов перед пуском. [c.374]
КЛАССИФИКАЦИЯ И ОСНОВНЫЕ КОНСТРУКЦИИ ПАРОВЫХ ТУРБИН [c.195]
Паровые турбины. Классификация паровых тзфбин. [c.530]
Классификация узлов и групп гидротурбинного оборудования выработалась в длительной практике производства гидротурбин на ЛМЗ. Она позволяет определенным образом составить всю конструкторскую документацию. Гидро-, турбинное оборудование обычно разделяют на две основные части собственно гидротурбинное оборудование и офрудование системы регулирования, которое здесь не рассматривается. [c.9]
Классификация и конструкция. По конструкции муфты разделяют на жесткие, полужесткие (шлицевые), эластичные по назначению— на муфты паровых турбин, газовых турбин и компрессоров. [c.48]
Разработка общей классификации ЭУ, включающей различные виды источников энергии (ИЭ), все возможные виды преобразователей энергии (ПЭ) и разные потребители энергии,— нелегкая задача из-за традиции применения неодинаковых классификационных критериев внутри различных типов, родов и видов ПЭ и ЭУ. Так, например, термомеханические ПЭ классифицируют по конструкции рабочего органа (поршневые, турбинные, реактивные), термодинамическому циклу, виду рабочего тела и т. д. термоэлектрические — по механизму рабочего процесса (термоэлект- [c.41]
Фирма Сименс составила классификацию и дала типовые ре-шенич конструкции предвключенных турбин или ц. в. д. многоцилиндровых турбин в зависимости от температуры пара. В частности, эти решения предусматривают [c.285]
Механическая форма энергии относится к твердому телу, которое либо воспринимает гидравлическую энергию и своим двихмеханическую энергию своим движением переводит в гидравлическую энергию (насос). Эти преобразования осуществляются в различных формах. На фиг. 2-2 приведена построенная на этом энергетическом принципе классификация гидравлических машин по И. И. Куколевскому и В. С. Квятковскому. Во всех этих случаях обтекание лопасти машины является процессом полезного преобразования энергии. [c.20]
В зависимости от назначения классификации возможно при ее проведении применить различные признаки. Для энергетических задач для ГЭС наиболее важными помимо классификации по схемам получения гидроэнергии являются классификация по напбру, расходу и мощности. В части деления на классы или группы неизбежна условность, поскольку резких признаков разделения групп между собой нет, и кроме того, с развитием техники границы меняются. Так, напоры выше 25 ж считаются высокими. Значение 25 м определялось в свое время как граница, для лопастных поворотных турбин (Каплана), а в настояп ее время для таких турбин потолок передвинз л-ся за 40 м. Раньше малые ГЭС считались в пределе мощностью до 250—300 кет, теперь с ростом сельской электрификации и созданием малых электросистем ГЭС мощностью до 1 ООО кет относятся к малым ГЭС и т. Д-Вместе с тем, несмотря на условность классификация необходима, ибо позволяет не только анализировать по различным признакам ГЭС, но и, распределяя их по группам, находить для каждой из групп методы общих технических решений. [c.157]
В настоящее время для двух- или трехвальных двигателей сложилась следующая классификация турбин турбина высокого давления (турбина компрессора), турбина среднего давления (турбина компрессора среднего давления в трехвальном двигателе), турбина низкого давления (турбина вентилятора в ДТРД или компрессора низкого давления в двухвальном ТРД) и свободная турбина (турбина винта) в ТВД или турбовальном ГТД. В одновальном двигателе все турбинные ступени соединены в один узел турбины. [c.48]
Для понимания места и роли теплофикационных паровых турбин рассмотрим общую классификацию паровых турбин. Из большого разнообразия используемых паровых турбин прежде всего можно выделить турбинытранспортные и стационарные. [c.241]
Турбина | Британника
Турбина , любое из различных устройств, преобразующих энергию потока жидкости в механическую энергию. Преобразование обычно осуществляется путем пропускания жидкости через систему неподвижных каналов или лопаток, которые чередуются с каналами, состоящими из лопастей, похожих на ребра, прикрепленных к ротору. Путем организации потока на лопасти ротора действует тангенциальная сила или крутящий момент, ротор вращается, и работа извлекается.
Ветряные турбины возле Техачапи, Калифорния. © Greg Randles / Shutterstock.com
Турбины можно разделить на четыре основных типа в зависимости от используемых жидкостей: вода, пар, газ и ветер. Хотя одни и те же принципы применимы ко всем турбинам, их конкретные конструкции достаточно различаются, чтобы заслужить отдельное описание.
Водяная турбина использует потенциальную энергию, возникающую в результате разницы в высоте между верхним водным резервуаром и уровнем воды на выходе из турбины (отводом), для преобразования этого так называемого напора в работу.Водяные турбины — современные преемники простых водяных колес, которым около 2000 лет. Сегодня гидротурбины в основном используются для производства электроэнергии.
Однако наибольшее количество электроэнергии вырабатывается паровыми турбинами, соединенными с электрогенераторами. Турбины приводятся в действие паром, вырабатываемым либо в генераторе, работающем на ископаемом топливе, либо в атомном генераторе. Энергию, которую можно извлечь из пара, удобно выражать через изменение энтальпии в турбине.Энтальпия отражает формы как тепловой, так и механической энергии в процессе потока и определяется суммой внутренней тепловой энергии и произведением давления на объем. Доступное изменение энтальпии через паровую турбину увеличивается с увеличением температуры и давления парогенератора и с уменьшением давления на выходе из турбины.
Получите эксклюзивный доступ к контенту из нашего 1768 First Edition с подпиской.
Подпишитесь сегодня
Для газовых турбин энергия, извлекаемая из текучей среды, также может быть выражена через изменение энтальпии, которое для газа почти пропорционально перепаду температуры в турбине.В газовых турбинах рабочим телом является воздух, смешанный с газообразными продуктами сгорания. Большинство газотурбинных двигателей включает, по крайней мере, компрессор, камеру сгорания и турбину. Обычно они монтируются как единое целое и работают как законченный первичный двигатель в так называемом открытом цикле, когда воздух всасывается из атмосферы, а продукты сгорания, наконец, снова выбрасываются в атмосферу. Поскольку успешная работа зависит от интеграции всех компонентов, важно рассматривать устройство в целом, которое фактически является двигателем внутреннего сгорания, а не только турбиной.По этой причине газовые турбины рассматриваются в статье двигатель внутреннего сгорания.
Энергия ветра может быть извлечена ветровой турбиной для производства электроэнергии или для откачки воды из скважин. Ветряные турбины являются преемниками ветряных мельниц, которые были важными источниками энергии с позднего средневековья до XIX века.
Фред Лэндис
Водяные турбины обычно делятся на две категории: (1) импульсные турбины, используемые для высокого напора воды и низкого расхода, и (2) реакционные турбины, обычно используемые для напора ниже примерно 450 метров и среднего или высокого расхода.Эти два класса включают в себя основные типы, обычно используемые, а именно, импульсные турбины Пелтона и реактивные турбины типа Фрэнсиса, пропеллера, Каплана и Дериаза. Турбины могут иметь горизонтальный или, чаще, вертикальный вал. Для каждого типа возможны широкие вариации конструкции для соответствия конкретным местным гидравлическим условиям. Сегодня большинство гидравлических турбин используются для выработки электроэнергии на гидроэлектростанциях.
Импульсные турбины
В импульсной турбине потенциальная энергия или напор воды сначала преобразуется в кинетическую энергию путем выпуска воды через сопло тщательно продуманной формы.Струя, выбрасываемая в воздух, направляется на изогнутые лопатки, закрепленные на периферии рабочего колеса, для извлечения энергии воды и преобразования ее в полезную работу.
Современные импульсные турбины основаны на конструкции, запатентованной в 1889 году американским инженером Лестером Алленом Пелтоном. Свободная водная струя попадает в лопасти турбины по касательной. Каждый ковш имеет высокий центральный гребень, так что поток разделяется, оставляя желоб с обеих сторон. Колеса Пелтона подходят для высоких напоров, обычно выше 450 метров при относительно низком расходе воды.Для максимальной эффективности скорость конца рабочего колеса должна составлять примерно половину скорости ударной струи. КПД (работа, производимая турбиной, деленная на кинетическую энергию свободной струи) может превышать 91 процент при работе с 60–80 процентами полной нагрузки.
Мощность одного колеса можно увеличить, используя более одного жиклера. Для горизонтальных валов характерны двухструйные устройства. Иногда на одном валу устанавливаются два отдельных бегунка, приводящих в движение один электрогенератор. Агрегаты с вертикальным валом могут иметь четыре или более отдельных форсунок.
Если электрическая нагрузка на турбину изменяется, ее выходная мощность должна быть быстро отрегулирована в соответствии с потребностями. Это требует изменения расхода воды, чтобы поддерживать постоянную скорость генератора. Скорость потока через каждую форсунку регулируется расположенным в центре наконечником или иглой аккуратной формы, которая скользит вперед или назад под управлением гидравлического серводвигателя.
Правильная конструкция иглы гарантирует, что скорость воды, выходящей из сопла, остается практически неизменной независимо от отверстия, обеспечивая почти постоянную эффективность в большей части рабочего диапазона.Нецелесообразно внезапно уменьшать поток воды, чтобы соответствовать уменьшению нагрузки. Это может привести к разрушительному скачку давления (гидроудару) в подающем трубопроводе или водопроводе. Таких скачков можно избежать, добавив временное сопло для разлива, которое открывается при закрытии основного сопла, или, что чаще, частично вставляя отражающую пластину между струей и колесом, отклоняя и рассеивая часть энергии при медленном закрытии иглы.
Другой тип импульсной турбины — турбина турго.Струя падает под косым углом на бегунок с одной стороны и продолжает двигаться по единственному пути, выбрасывая его с другой стороны. Этот тип турбины использовался в установках среднего размера с умеренно высоким напором.
Реакционные турбины
В реактивной турбине силы, приводящие в движение ротор, достигаются за счет реакции ускоряющегося потока воды в рабочем колесе при падении давления. Принцип реакции можно наблюдать в роторном оросителе для газонов, где выходящая струя вращает ротор в противоположном направлении.Из-за большого разнообразия возможных конструкций рабочего колеса реактивные турбины могут использоваться в гораздо большем диапазоне напоров и расходов, чем импульсные турбины. Реакционные турбины обычно имеют спиральный впускной кожух, который включает регулирующие заслонки для регулирования расхода воды. На входе часть потенциальной энергии воды может быть преобразована в кинетическую энергию по мере ускорения потока. Впоследствии энергия воды отбирается в роторе.
Как отмечалось выше, широко используются четыре основных типа реактивных турбин: турбины Каплана, Фрэнсиса, Дериаза и пропеллерные.В турбинах Каплана с неподвижными лопастями и турбинами с регулируемыми лопастями (названными в честь австрийского изобретателя Виктора Каплана), по существу, существует осевой поток через машину. Турбины типа Фрэнсиса и Дериаза (в честь американского изобретателя британского происхождения Джеймса Б. Фрэнсиса и швейцарского инженера Поля Дериаза, соответственно) используют «смешанный поток», когда вода входит радиально внутрь и выпускается в осевом направлении. Рабочие лопасти на турбинах Фрэнсиса и пропеллера состоят из неподвижных лопастей, в то время как в турбинах Каплана и Дериаза лопасти могут вращаться вокруг своей оси, которая находится под прямым углом к главному валу.
,
ГИДРАВЛИЧЕСКИЕ ТУРБИНЫ И ЕЕ КЛАССИФИКАЦИЯ
Презентация на тему: «ГИДРАВЛИЧЕСКИЕ ТУРБИНЫ И ЕЕ КЛАССИФИКАЦИЯ» — стенограмма презентации:
1
ГИДРАВЛИЧЕСКИЕ ТУРБИНЫ И ЕЕ КЛАССИФИКАЦИЯ
2
Определение Гидравлическая турбина — это первичный двигатель, который использует энергию проточной воды и преобразует ее в механическую энергию в виде вращения рабочего колеса.Также называется «водяные турбины».
3
Технологическая карта ГЭС
4
Классификация На основе гидравлического воздействия воды
На основе направления потока На основе напора воды и количества потока На основе удельной скорости На основе расположения вала турбины На основе названия производителя (обычно используемые турбины)
5
На основе гидравлического действия воды
Импульсная турбина: Турбина, в которой вся энергия воды преобразуется в кинетическую энергию до того, как вода ударяется о лопасти рабочего колеса.Это делается путем пропускания потока через сопло или некоторых инструкций. Бегунок вращается под действием силы воды, и вода проходит по колесу при атмосферном давлении. Ex- Pelton Wheel
7
Реакционная турбина: здесь вода, попадающая в рабочее колесо турбины, имеет как кинетическую энергию, так и энергию давления, которая представляет собой общий напор воды, ударяющийся о рабочее колесо, частично состоящий из напора.Например, турбина Фрэнсиса, турбина пропеллера, турбина Каплана.
9
В зависимости от направления потока
Турбина с радиальным потоком: Турбина с радиальным потоком — это турбина, в которой вода, движущаяся вдоль лопасти, течет к оси вращения или от нее. Турбина с радиальным потоком бывает двух типов: Турбина с внутренним потоком: если поток воды направлен к оси вращения, это называется турбиной с внутренним потоком. Турбина с выходящим потоком: если поток воды направлен от оси вращения, это называется турбиной с выходным потоком.
11
Турбина с осевым потоком: это турбина, в которой вода поступает в рабочее колесо параллельно направлению оси вращения рабочего колеса. Бывшая турбина Каплана, пропеллерная турбина Турбина с тангенциальным потоком: это турбина, в которой вода ударяется о рабочее колесо по касательной к траектории вращения. Ex- турбина Пелтона
.