Производительность вентилятора формула: Расчет производительности осевого и центробежного вентилятора

Содержание

Расчет производительности осевого и центробежного вентилятора

Эффективность каждой вентиляционной системы зависит не только от грамотности проектного решения. Вентилятор является «сердцем» таких инженерных коммуникаций. От выбора производительности данного оборудования полностью зависит, насколько эффективной будет вентсистема, сможет ли она обеспечивать необходимые приток и отведение воздуха.

Производительность – важная характеристика любого приточного или вытяжного вентилятора, которая свидетельствует о возможности оборудования за единицу времени перемещать определенное количество воздуха. Данная характеристика может быть в пределах 1-1000 м3/с. Рассчитывается производительность (Q) по следующей формуле:

Q = V/t,

в которой V – объем воздуха, t – интервал времени.

Наиболее популярными являются осевые и центробежные вентиляторы, которые еще называют радиальными. Особенностью осевых являются небольшие габариты и простота. Их корпус характеризуется цилиндрической формой. Рабочее колесо располагается внутри, оно свободно вращается. Радиальные вентиляторы – конструкция, сочетающая в себе рабочее колесо, спиральный корпус, привод и вал. Такое оборудование монтируется на специализированной раме, которая называется станиной.

Основные отличия вентиляционного оборудования

Радиальное и осевое вентоборудование отличается принципом функционирования. В осевом оборудовании происходит движение воздушного потока от входного к выходному патрубку параллельно оси вала. В радиальных – воздух сначала движется вдоль оси вала, а затем изменяет направление движения для выхода на перпендикулярное к оси.

Осевое оборудование характеризуется экономичностью, компактностью и способностью обеспечивать перемещение на небольшие расстояния больших объемов воздуха. Чаще всего в осевых вентиляторах привод находится внутри корпуса. Скорость вращения рабочего колеса выше в сравнении с радиальным вентоборудованием, что обуславливает и более высокий уровень шумов.

Радиальные вентиляторы характеризуются наличием значительного количества модификаций и чаще всего используются в промышленных производственных масштабах. Данное оборудование способно бесперебойно функционировать в обширном температурном диапазоне, выдерживать значительные нагрузки. Конструкция радиальных вентиляторов характеризуется громоздкостью, поэтому их монтаж предполагает наличие соответствующей площадки.

ГОСТ 10616-90 (СТ СЭВ 4483-84) Вентиляторы радиальные и осевые. Размеры и параметры — Что такое ГОСТ 10616-90 (СТ СЭВ 4483-84) Вентиляторы радиальные и осевые. Размеры и параметры?


ГОСТ 10616-90


(СТ СЭВ 4483-84)


Группа Г82


ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР


ВЕНТИЛЯТОРЫ РАДИАЛЬНЫЕ И ОСЕВЫЕ


Размерыипараметры


Radial and axial fans.


Dimensions and parameters


ОКП 48 6150


Срок действия с 01. 01.91


до 01.01.2001


ИНФОРМАЦИОННЫЕ ДАННЫЕ


1. РАЗРАБОТАН И ВНЕСЕН Министерством строительного, дорожного и коммунального машиностроения СССР


РАЗРАБОТЧИКИ


Г.С. Куликов, В.Б. Горелик, В.М. Литовка, А.Т. Пихота, А.М. Роженко, Н.И. Василенко, Т.Ю. Найденова, А.А. Пискунов, И.С. Бережная, Е.М. Жмулин, Л.А. Маслов, Т.С. Соломахова, Т.С. Фенько, А.Я. Шарипов, В.А. Спивак, М.С. Грановский, М.В. Фрадкин


2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.03.90 № 591


3. Срок первой проверки — 1995 г.


периодичность проверки — 5 лет


4. Стандарт полностью соответствует СТ СЭВ 4483-84.


5. ВЗАМЕН ГОСТ 10616-73


6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ






Обозначение НТД, на который дана ссылка


Номер пункта, приложения


ГОСТ 8032-84


1. 2


ГОСТ 10921


2.11; 2.14; приложение


ГОСТ 12.2.028-84


3.2


Настоящий стандарт распространяется на вентиляторы радиальные одно- и двусторонние и на осевые одно- и многоступенчатые, предназначенные для систем кондиционирования воздуха, вентиляции, а также других производственных целей, повышающие абсолютное полное давление потока не более чем в 1,2 раза и создающие полное давление до 12000 Па при плотности перемещаемой среды 1,2 кг/м.


Стандарт не распространяется на вентиляторы, встраиваемые в кондиционеры, а также в другое оборудование.


1. ОСНОВНЫЕ РАЗМЕРЫ


1.1. Размер вентилятора характеризуется его номером. За номер вентилятора принимается значение, соответствующее номинальному диаметру рабочего колеса , измеренному по внешним кромкам лопаток и выраженному в дециметрах. Например, вентилятор с =200 мм обозначается № 2, =630 мм — № 6,3 и т. д.


1.2. Номинальные диаметры рабочих колес, диаметры всасывающих отверстий радиальных (черт. 1а) и осевых (черт. 1б) вентиляторов, снабженных коллекторами, и диаметры нагнетательных отверстий осевых вентиляторов, снабженных диффузорами, следует выбирать из ряда значений, соответствующих ряду R20 ГОСТ 8032, указанных в табл. 1.


Черт. 1а


Черт. 1б


При необходимости допускается применение ряда R80.


Таблица 1


Размеры вентиляторов






























Номер вентилятора


, мм


1


100


1,12


112


1,25


125


1,4


140


1,6


160


1,8


180


2


200


2,24


224


2,5


250


2,8


280


3,15


315


3,55


355


4


400


4,5


450


5


500


5,6


560


6,3


630


7,1


710


8


800


9


900


10


1000


11,2


1120


12,5


1250


14


1400


16


1600


18


1800


20


2000


1. 3. Вентиляторы разных номеров и конструктивных исполнений, выполненные по одной аэродинамической схеме, относятся к одному типу.


2. АЭРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ


2.1. За производительность (объемный расход) вентилятора , (м/с) принимается объемное количество газа, поступающего в вентилятор в единицу времени, отнесенное к условиям входа в вентилятор (см. приложение).


2.2. За полное давление вентилятора (Па) принимается разность абсолютных полных давлений потока при выходе из вентилятора и перед входом в него при определенной плотности газа.


2.3. За динамическое давление вентилятора (Па) принимается динамическое давление потока при выходе из вентилятора, рассчитанное по средней скорости в выходном сечении вентилятора.


2.4. За статическое давление вентилятора (Па) принимается разность его полного и динамического давления.


2.5. За мощность (кВт), потребляемую вентилятором, принимается мощность на валу вентилятора без учета потерь в подшипниках и элементах привода.


2.6. За полный КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению полного давления вентилятора на его производительность , к мощности , потребляемой вентилятором.


2.7. За статический КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению статического давления вентилятора на его производительность , к потребляемой мощности .


2.8. Быстроходность [(м/с)Па] и габаритность [(м/с)Па] вентилятора являются критериями для оценки пригодности работы вентилятора в режиме, заданном величинами , , и частотой вращения , и служат для сравнения вентиляторов различных типов.


2.9. Безразмерными параметрами вентилятора являются коэффициенты производительности , полного и статического давления, а также потребляемой мощности .


2.10. Аэродинамические качества вентилятора должны оцениваться по аэродинамическим характеристикам, выраженным в виде графиков (черт. 2) зависимости полного и статического и (или) динамического давлений, развиваемых вентилятором, потребляемой мощности полного и статического КПД от производительности при определенной плотности газа перед входом в вентилятор и постоянной частоте вращения его рабочего колеса. На графиках должны быть указаны размерности аэродинамических параметров.


Черт. 2


Допускается построение аэродинамических характеристик при частоте вращения, изменяющейся в зависимости от производительности, с указанием этой зависимости () на графике. Вместо кривых и на графике может указываться кривая динамического давления вентилятора.


Допускается при построении аэродинамической характеристики кривые ; и не указывать.


2.11. Аэродинамические характеристики вентилятора должны строиться по данным аэродинамических испытаний, проведенных в соответствии с ГОСТ 10921, с указанием одного из четырех типов присоединения вентилятора к сети (А, В, С, D), принятого по табл. 2.


Типовой следует считать характеристику, полученную при испытаниях по типу присоединения вентилятора к сети А.


Таблица 2








Тип присоединения


Описание типа присоединения


вентилятора


Сторона всасывания вентилятора


Сторона нагнетания вентилятора


А


Свободно всасывающий


Свободно нагнетающий


В


Свободно всасывающий


Присоединение к сети


С


Присоединение к сети


Свободно нагнетающий


D


Присоединение к сети


Присоединение к сети


2. 12. Для вентиляторов общего назначения должны приводиться аэродинамические характеристики, соответствующие работе на воздухе при нормальных условиях (плотность 1,2 кг/м, барометрическое давление 101,34 кПа, температура плюс 20°С и относительная влажность 50%).


2.13. Для вентиляторов, перемещающих воздух и газ, который имеет плотность, отличающуюся от 1,2 кг/м, на графиках должны приводиться дополнительные шкалы для величин , , , соответствующие действительной плотности перемещаемой среды.


2.14. Для вентиляторов, создающих полное давление , превышающее 3% от абсолютного полного давления потока перед входом в вентилятор, при расчете аэродинамических характеристик должны вводиться поправки, учитывающие сжимаемость перемещаемого газа согласно ГОСТ 10921.


2.15. У вентиляторов общего назначения, предназначенных для работы с присоединяемой к ним сетью, за рабочий участок характеристики должна приниматься та ее часть, на которой значение полного КПД . Рабочий участок характеристики должен также удовлетворять условию обеспечения устойчивой работы вентилятора.


2.16. Для вентиляторов, работающих при различных частотах вращения, должны приводиться рабочие участки кривых , построенные в логарифмическом масштабе, на которых должны быть нанесены линии постоянных значений КПД , мощности , указаны окружная скорость рабочего колеса и его частота вращения (черт 3).


Черт. 3


2.17. Безразмерные аэродинамические характеристики, представляющие собой графики (черт. 4) зависимости коэффициентов полного и статического давлений, мощности , полного и статического КПД от коэффициента производительности , используются для расчета размерных параметров и для сравнения вентиляторов разных типов.


Черт. 4


На графиках должны указываться значения быстроходности вентилятора (черт. 4) или линии постоянных значений (черт. 5), а также диаметр рабочего колеса и частота вращения, при которых получена характеристика.


2.18. Для вентиляторов, имеющих поворотные лопатки рабочих колес или аппаратов, должен приводиться сводный график аэродинамических характеристик, соответствующих разным углам установки лопаток , с нанесенными на нем линиями постоянных значений КПД и быстроходности (черт. 5).


Черт. 5


3. АКУСТИЧЕСКИЕ ПАРАМЕТРЫ


3.1. Акустическими параметрами вентилятора являются уровни звуковой мощности , (дБ) в октавных полосах со среднегеометрическими частотами от 125 до 8000 Гц и корректированный уровень звуковой мощности , (дБА).


3.2. Акустические качества вентиляторов должны оцениваться по шумовым характеристикам в виде графика зависимости корректированного уровня звуковой мощности от производительности вентилятора на рабочем участке и в виде таблицы октавных уровней звуковой мощности на режиме максимального КПД при определенной плотности газа перед входом в вентилятор и постоянной частоте вращения рабочего колеса (черт. 2).


3.3. Шумовые характеристики должны определяться по данным акустических испытаний, проведенных одним из способов, указанных в ГОСТ 12.2.028, с указанием типа присоединения к сети, при котором получена характеристика.


При этом определяется отдельно шум на сторонах всасывания и нагнетания и вокруг вентилятора.


3.4. Для вентиляторов, имеющих поворотные лопатки рабочих колес или поворотные лопатки направляющих аппаратов, шумовые характеристики должны определяться при всех углах установки лопаток и приводиться в виде свободного графика и таблицы.


ПРИЛОЖЕНИЕ


Справочное


ФОРМУЛЫ ДЛЯ ВЫЧИСЛЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ


1. Полное давление вентилятора , Па, определяется по формуле


(1)


где — полное абсолютное давление при выходе из вентилятора, Па;


— полное абсолютное давление при входе в вентилятор, Па.


2. Динамическое давление вентилятора , Па, определяется по формуле


(2)


где — плотность газа, кг/м;


— среднерасходная скорость потока при выходе из вентилятора, м/с, определяется по формуле


(3)


где — производительность вентилятора, м/с;


— площадь выходного отверстия вентилятора, м.


При скорости более 50 м/с следует вводить поправки, учитывающие сжимаемость газа, согласно ГОСТ 10921.


3. Статическое давление вентилятора , Па, определяется по формуле


(4)


4. Окружная скорость рабочего колеса , м/с, определяется по формуле


(5)


где — диаметр колеса, м;


— частота вращения колеса, об/мин.


5. Коэффициент производительности вентилятора


(6)


где — площадь круга диаметром , м, определяется по формуле


(7)


6. Коэффициенты полного , статического и динамического давлений вентилятора без учета влияния сжимаемости определяется по формулам:


(8)


(9)


(10)


7. Коэффициент мощности, потребляемой вентилятором, определяется по формуле


(11)


где — мощность, потребляемая вентилятором, кВт.


8. Полный КПД вентилятора определяется по формуле


. (12)


9. Статический КПД вентилятора определяется по формуле


(13)


10. Быстроходность и габаритность определяют по размерным или безразмерным параметрам, по формулам:


(14)


(15)


(16)


(17)


где — соответствует плотности =1,2 кг/м.


11. Пересчет аэродинамических характеристик вентиляторов на другие частоты вращения , диаметры рабочих колес и плотности перемещаемого газа без поправок, учитывающих изменение числа Рейнольдса и влияние сжимаемости, проводят по формулам:


(18)


(19)


(20)


(21)


(22)


(23)


. (24)


12. При полных давлениях , превышающих 3% значения абсолютного полного давления потока перед входом в вентилятор, в формулы (6)-(13) и (18)-(20) вводятся поправки, учитывающие влияние сжимаемости согласно ГОСТ 10921.


13. Пересчет акустических характеристик без поправок, учитывающих изменение числа Рейнольдса и влияние сжимаемости, а для осевых вентиляторов и при равных условиях генерации дискретных составляющих, проводят по формулам:


(25)


(26)


(27)


Текст документа сверен по:


официальное издание


Госстандарт СССР -


М. : Издательство стандартов, 1990

Расчет производительности вытяжного вентилятора — минимально необходимая мощность, формула подсчета

Вентиляционные системы — неотъемлемая часть любого помещения. И, конечно, в них используется такой прибор, как вытяжной вентилятор. Без него просто не обойтись. Чтобы приобрести систему нужной мощности, обязательно надо сделать расчет производительности вытяжного вентилятора.

Содержание статьи

Нормы и требования к вентиляции помещений

По нормам, установленным СНиП, при расчете производительности вентиляторов, кратность воздухообмена должна быть не менее 0,5 м3 в час для бытовых помещений.

Также есть определенные нормы для каждого типа жилых помещений.

  • Ванная комната, совмещенная с туалетом — 50 м3/час.
  • Ванная комната без туалета — 25 м3/час.
  • Туалет — 25 м3/час.
  • Кухня — от 60 до 90 м3/час (в зависимости от типа и мощности плиты).
  • Другие помещения — 3 м3/час на 1 м3.

Учитывая указанную кратность воздухообмена и объем помещения, рассчитывается общий расход и производительность вытяжного вентилятора.

Расчет производительности вытяжного вентилятора в жилых помещениях

Чтобы узнать, какой должна быть производительность вашей вытяжной системы, необходимо предпринять следующее:

  1. Узнать объем помещения.
  2. Умножаем объем на необходимую норму воздухообмена.
  3. Получившаяся цифра и есть необходимая нам производительность.
  4. Еще необходимо учесть сечение воздуховодов, изгибы, сопротивление фильтров, если они есть в системе вентиляции.

Формула для расчетов будет выглядеть так:

L = n*V,

где

  • L — требующаяся производительность, м3/час,
  • n — необходимая норма воздухообмена, м3/час,
  • V — объем помещения.

Например, рассчитаем производительность вытяжного вентилятора для трехкомнатной квартиры общей площадью 59 м2, с ванной, туалетом, кухней и мебелью. 59 м2 умножим на 3м (это высота), найдем объем. Он будет равен 177 м3.

Необходимая норма смены воздуха в час по СНиП — 10-12 раз в час. Умножим 177 на 12, получим 354 м3. Это и есть необходимая производительность. Но сюда нужно еще прибавить такие же расчеты по кухне, ванной и туалету. Это будет соответственно 108 м3, 144 м3 и 72 м3. Сложив все цифры, получим мощность нашей вытяжной системы — 678 м3/час.

Нужно будет учитывать, что каждый изгиб воздуховода снижает мощность, также и сопротивление фильтров.

Диаметр воздуховода влияет на его пропускную способность. Существует три наиболее распространенных размера:

  • 100 мм — для вентилятора небольшой мощности, который постоянно работает;
  • 125 мм — для эпизодического проветривания помещения вентиляцией малой и средней мощности;
  • 150 мм — быстрое нерегулярное проветривание помещений с малым количеством людей.
Определение объема помещения

Объем помещения найти несложно. Для этого нужно перемножить длину комнаты на ширину и высоту.

V = a*b*c

Пример расчета производительности для ванной с площадью 9 кв.м

Рассчитаем мощность и осуществим подбор вентилятора по производительности для ванной комнаты. Площадь 9 м2 умножим на высоту потолка 2,5, получим 22,5 м3. Это объем помещения.

Полностью воздух должен меняться каждые 5 минут, это 1/12 часа. Пропускная способность вентилятора будет равна — 22,5*12 = 270 м3.

Подбор вентилятора по минимально необходимой производительности

Нормы, которые требуются по расчетам, обычно завышены, и на практике не реализуются. На кухне или в ванной комнате во время приготовления пищи или принятия душа есть функция усиленной вытяжки. А для обеспечения минимальной установленной нормы достаточно хорошего притока воздуха и тяги в вентиляционном канале.

Чтобы рассчитать мощность вытяжного вентилятора, необходимо знать объем комнаты и необходимую норму воздухообмена.

Производительность равна произведению объема на кратность воздухообмена. Узнав, чему она равна, сравниваем ее с нормой по требованиям СНиП, и берем максимальное значение.

Если же нужно подобрать вентилятор по минимальной производительности, то берем минимальное требуемое значение.

Снизить расходы и подобрать вентилятор меньшей производительности можно, используя современные VAV-системы. Это вентиляционные системы, в которых возможна экономия энергии и воздухообмена путем полного или частичного отключения вентиляции некоторых помещений. Например, ночью в гостиной никого нет, поэтому можно временно отключить там вентиляцию.

Что влияет на производительность устройства?

Если смотреть на формулу расчета производительности, то она выглядит довольно простой. Но только расчеты по формуле не дают полного представления о том, какой именно вытяжной вентилятор подойдет в каком-то конкретном случае.

Есть еще некоторые факторы, влияющие на производительность устройства.

  1. Принцип работы. Вентиляция может работать в режиме отвода воздуха и в режиме рециркуляции. Рециркуляционные вытяжки имеют меньшую производительность, им требуется больше мощности.
  2. Расположение. От места, где находится вентилятор, также зависит его производительность. Например, на кухне вытяжка должна располагаться прямо над плитой на определенном расстоянии, иначе ее производительность будет снижена.
  3. Потребляемая мощность. Чем меньше вентилятор потребляет мощности, тем меньше расход электроэнергии.

    Самыми выгодными с этой точки зрения являются осевые вентиляторы.

Расчет производительности вентилятора для особых промышленных условий

Чтобы рассчитать необходимую производительность вентилятора для промышленных условий, нужно разработать техническое задание и определиться с некоторыми важными моментами.

  1. Место расположения объекта.
  2. Назначение помещения.
  3. Планировка и расположение внутри здания.
  4. Материал, из которого построено помещение.
  5. Количество людей, работающих на производстве.
  6. Режим работы и технология процессов.

После этого производятся необходимые расчеты. Причем необходимо учесть еще такие факторы, как скорость потока воздуха, уровень шума, длину и диаметр воздуховодов и их изгибы, давление системы. Скорость потока воздуха считается стандартной, когда она равна 2,5 — 4 м/с.

Учет количества людей, находящихся в помещении

Рассчитать необходимую мощность вентилятора можно и по другой формуле:

L = N*LH.

Этот расчет производится, учитывая количество людей в помещении.

  • L — необходимая мощность,
  • N — количество людей в помещении,
  • LH — норма воздуха на одного человека.

Норма воздуха в состоянии покоя составляет 30 м3/час, при физической активности — 60 м3/час.

Для жилых помещений используется показатель 60 м3/час, там, где человек отдыхает, например, спальня, допускается принять за норму 30 м3/час, так как во сне необходимо меньше кислорода.

За количество людей принимаются те люди, которые находятся в помещении постоянно. Если к вам пришли гости, не нужно из-за этого увеличивать мощность вентилятора.

Повышенное количество влаги

Оборудование ванной комнаты может отличаться от других видов вентиляции, так как там всегда повышенная влажность. Чтобы избежать короткого замыкания, необходимо использовать специальный брызгозащищенный вариант вентилятора. Он не позволит влаге попадать в воздуховод.

Современный рынок предлагает множество вариантов вытяжных вентиляторов. Они отличаются по производительности, потребляемой мощности, уровню шума, размерам и назначению. Выбрав необходимую вам модель, вы сможете обеспечить себя и близких вам людей свежим воздухом.

ventsyst

Вентиляторы. Турбовентиляторы. Расчет и подбор вентиляторов

Задача №1. Расчет вентилятора

Условия:

В наличие есть вентилятор, развивающий давление Pmax не более 70 Па, который используется для вентиляции помещения. Забор воздуха из помещения осуществляется по трубопроводу постоянного диаметра, для которого можно принять, что его сопротивление возрастает на 7 Па на каждый метр. Вентилятор был подсоединен к всасывающему и нагнетающему трубопроводам неизвестной длины, после чего замеры показали, что во входе в вентилятор возникает разряжение Pвв, равное -32 Па, на выходе из вентилятора – избыточное давление Pнв, равное 24 Па. Замеренная скорость воздуха ω в трубопроводе оказалась равной 3 м/с. При расчетах плотность воздуха ρ принять равной 1,2 кг/м3.

Задача:

Необходимо рассчитать, на какую максимальную длину может быть увеличен нагнетательный трубопровод.

Решение:

Рассмотрим формулу расчета давления вентилятора:

P = (Pнв+(ωн2∙ρ)/2) – (Pвв+(ωв2∙ρ)/2)

где ωв и ωн – скорости воздуха во всасывающем и нагнетательном трубопроводах. Поскольку диаметр трубопровода не меняется, то ωв = ωн, отчего формулу можно представить в следующем виде:

P = Pнв — Pвв = 24 — (-32) = 56 Па

Отсюда следует, что имеющийся в наличии вентилятор при данных условиях работы имеет запас давления в 70-56 = 14 Па.

Увеличение длины нагнетательного трубопровода будет приводить к возрастанию сопротивления в нем, что повлечет за собой увеличение значения напора вентилятора. Следовательно, можно рассчитать, до каких пор можно увеличивать сопротивление нагнетающего трубопровода, пока вентилятор не достигнет своего предела по создаваемому напору:

14/7 = 2 м

Получим, что нагнетательный трубопровод может быть удлинен не более чем на 2 метра.

Задача №2 Расчет производительности и давления вентилятора

Условия:

Из помещения с атмосферным давлением P1 = 0,1 мПа через трубопровод постоянного диаметра d = 500 мм откачивается воздух и выбрасывается в атмосферу P2 = 0,1 мПа. Вентилятор работает с расходом Q = 2000 м3/час, потребляя при этом N = 1,1 кВт, а скорость вращения его вала n составляет 1000 об/мин. Замеры показали, что падение давления во всасывающем трубопроводе составляет Pпв = 60 Па, а в нагнетательном – Pпн = 80 Па. При расчетах плотность воздуха ρ принять равной 1,2 кг/м3.

Задача:

Рассчитать создаваемое вентилятором давление, а также вычислить, как изменится производительность вентилятора, если увеличить скорость вращения вала до nн = 1200 об/мин и как при этом изменится мощность.

Решение:

Площадь поперечного сечения трубы равно:

F = (π∙d2) / 4 = (3,14∙0,52) / 4 = 0,2 м2

Чтобы рассчитать давление вентилятора, предварительно необходимо найти скорость воздуха в трубопроводе, которая будет равна как для нагнетательной, так и для всасывающей части вследствие равенства их диаметров. Скорость воздуха можно найти из уравнения расхода:

Q = F∙ω

откуда:

ω = Q / F = 2000 / (3600∙0,2) = 2,8 м/с

После нахождения скорости становится возможным определение давления вентилятора:

P = (P2-P1) + (Pпв+Pпн) + (ω2∙ρ)/2 = (105-105) + (60+80) + (2,82∙1,2)/2 = 145 Па

Расход при увеличенном числе оборотов можно вычислить из следующего соотношения:

Qн/Q = nн/n

откуда:

Qн = Q∙nн/n = 2000∙1200/1000 = 2400 м³/час

Для нахождения мощности при новом числе оборотов воспользуется другим соотношением:

Nн/N = (nн/n)³

откуда:

Nн = N∙(nн/n)³ = 1,1∙(1200/1000)³ = 1,9 кВт

В итоге получим, что давление вентилятора составляет 145 Па, при увеличении числа оборотов до 1200 в минуту расход возрастет до 2400 м3/час, а мощность – до 1,9 кВт.

Задача №3. Расчет КПД вентилятора

Условия:

Из помещения через всасывающий трубопровод диаметром dв = 200 мм с помощью вентилятора откачивается воздух, выбрасываемый в атмосферу через нагнетательный трубопровод диаметром dн = 240 мм. В наличии имеются лишь показания, снятые с датчиков, установленных непосредственно на вентиляторе. Вакуумметр на входе в вентилятор показывает разрежение Pвв = 200 Па, а манометр на выходе вентилятора показывает избыточное давление Pнв = 320 Па. Расходометр откачиваемого воздуха показывает значение Q = 500 м3/час. Потребляемая вентилятором мощность N составляет 0,08 кВт, а скорость вращения его вала n равна 1000 об/мин. При расчетах плотность воздуха ρ принять равной 1,2 кг/м3.

Задача:

Необходимо рассчитать КПД вентилятора и создаваемое им давление.

Решение:

Предварительно найдем скорости движения воздуха во всасывательном и нагнетательном трубопроводах. Выразим и найдем величину скорости ω из уравнения для объемного расхода:

Q = f∙ω

где f = (π∙d2)/4 – площадь поперечного сечения трубопровода. Отсюда получим:

ω = Q/f = (Q∙4)/(π∙d2)

ωв = Q/f = (Q∙4)/(π∙dв2) = (500∙4)/(3600∙3,14∙0,22) = 4,4 м/с

ωн = Q/f = (Q∙4)/(π∙dн2) = (500∙4)/(3600∙3,14∙0,242) = 3,1 м/с

Зная скорости воздуха в нагнетательном и всасывающем трубопроводах, а также давления на входе и выходе вентилятора, становится возможным нахождение давления вентилятора P по следующей формуле:

P = (Pнв+(ωн2∙ρ)/2) – (Pвв+(ωв2∙ρ)/2) = (320+(3,12∙1,2)/2) – (-200+(4,42∙1,2)/2) = 514 Па

Выразим из формулы мощности и найдем величину КПД вентилятора η:

N = (Q∙P)/(1000∙η)

η = (Q∙P)/(1000∙N) = (500∙514)/(3600∙1000∙0.08) = 0,9

Получим, что вентилятор имеет КПД 0,9 и напор 514 Па.

Задача №4. Расчет давления вентилятора

Условия:

Имеется емкость для хранения азота при избыточном давлении P1 в 540 Па. Газ подается в аппарат под избыточным давлением P2 в 1000 Па при помощи вентилятора, соединенного с емкостью для хранения с помощью всасывающего трубопровода, и с аппаратом с помощью нагнетательного трубопровода, при этом потери давления в них составляют Pпв = 120 Па и Pпн = 270 Па соответственно. В нагнетательном трубопроводе поток газа развивает скорость ω равную 10 м/с. При расчетах плотность азота принять ρ равной 1,17 кг/м3.

Задача:

Необходимо рассчитать создаваемое вентилятором давление.

Решение:

Перепад давлений в точках всасывания и нагнетания ΔP будет составлять:

∆P = P2-P1 = 1000-540 = 460 Па

Общие потери Pпоб во всасывающем и нагнетающем трубопроводе будут равны:

Pпоб = Pпв+Pпн = 120+270 = 390 Па

Скоростное давление Pc может быть найдено по следующей формуле:

Pс = (ω2∙ρ)/2 = (102∙1,17)/2 = 59 Па

Зная найденные выше величины можно рассчитать создаваемое вентилятором давление P по следующей формуле:

P = ∆P + Pпоб + Pc = 460 + 390 + 59 = 909 Па

Давление вентилятора составляет 909 Па

✎ расчет для ванной, туалета, кухни – Ventbazar.

UA

Содержание:

 

 
  Вытяжной бытовой вентилятор – самый продающийся агрегат среди вентиляционного рынка. Но много ли покупателей выбрали это изделие правильно для своего помещения? Много ли вентиляторов работают с недостаточной мощностью в данный момент? Чтобы купить правильный агрегат для своей ванной или кухни, достаточно задать один из самых важных вопросов: как выбрать бытовой вентилятор для установки в определенном месте? Мы расскажем Вам все уловки и правила, чтобы Вы точно не прогадали.

В каких случаях наиболее часто требуется установка вытяжного вентилятора? 

  Главное отличие принудительной вентиляции от естественной в том, что в вытяжном отверстии для ускорения вытяжки отработанного воздуха из помещения устанавливается вытяжной вентилятор.

  Для начала давайте разберемся, где мы наиболее часто сталкиваемся с проблемами загрязненного, переувлажненного или задымленного воздуха. Чаще всего ищут:

  • вытяжной вентилятор для ванной комнаты;
  • вытяжной вентилятор для прачечной;
  • вентилятор для туалета;

  • вентилятор для вытяжки на кухне;
  • бесшумный вентилятор для жилой комнаты, где нет качественного воздухообмена.

  Наиболее часто в бытовые помещения устанавливаются вытяжные вентиляторы, а приток воздуха организовывается в вентилируемые помещения из других комнат либо с помощью естественной вентиляции, либо через стеновые или оконные проветриватели.

  Если Вы устанавливаете вытяжной вентилятор в туалете или в ванной комнате, обязательно побеспокойтесь о переточных решетках или отверстиях внизу двери, чтобы воздух из основных помещений замещал удаляемый загрязненный воздух. Если такого перетока не будет, Ваши расходы на вытяжной вентилятор будут лишними, потому что в комнате все равно не будет достаточно свежего воздуха, но влажность все же уйдет.

  Для любой вентиляции необходимо наличии двух каналов — приточного и вытяжного. Если работа одного из них будет нарушена, циркуляция воздуха тут же остановится.

 

Краткая инструкция по выбору прибора

  1. Сначала измеряем диаметр подключения (вент. канал в комнате).
  2. Определяем производительность прибора, подходящую под Ваше помещение (делаем расчеты).
  3. Измеряем диаметр подключения (вент. канал в комнате).
  4. Выбираем функционал для удобства и требований комнаты.
  5. Определяемся с брендом, и выбираем подходящую по требованиям и дизайну модель.
  6. Монтажные работы (не трудный процесс, поэтому можно самостоятельно реализовать).

 

Разнообразие бытовых вентиляторов

  Вентиляторы для бытового применения отличаются:

  • присоединительным диаметром к воздуховоду, воздушному каналу или стояку: от 75 до 150 мм. Чем больше диаметр подключения, тем мощнее вентилятор;
  • принципом работы: осевые, центробежные, комбинированные;
  • типом присоединения к воздушному каналу: поскольку производительность бытовых вентиляторов не так уж и велика, они обычно присоединяются к круглым воздуховодам, или устанавливаются непосредственно в канал;
  • расходом воздуха или производительностью в м3 в час: чем больше помещение, чем длиннее воздуховод, чем выше вентиляционный стояк, тем больший напор должен обеспечить вентилятор;
  • вентилятор с обратным клапаном и без, который обеспечивает защиту от возврата вытяжного воздуха обратно, или попадания в вент. канал загрязнений — основной атребут для туалета и кухни. Кстати, в нашем Блоге есть статья про необходимость обратного клапана — прочтите обязательно;
  • способом регулирования скорости вентилятора: двухскоростные, со ступенчатым или плавным электронным регулированием внешним блоком;
  • режимом работы: для непрерывной работы или периодического включения; 
  • напряжением питания: обычно вентиляторы бытового применения питаются от сети 220 В, иногда 127 В или 12 В;
  • возможностями управления: имеется масса исполнений вентиляторов с управлением по датчику влажности, движения, освещенности, с таймерами и другими возможностями;
  • способом установки: встраиваемый в стену или потолок или накладной монтаж, с выбросом в канал или через воздуховод на улицу.

 

  Разнообразие моделей и исполнений поражает. В нем легко заблудится. Но мы расскажем, с чего стоит начать, и как выбрать вентилятор для конкретного применения, чтобы не ошибиться.  

 

Как рассчитать производительность вентилятора: формула

  Начнем с того, что задачей вытяжного вентилятора для помещения определенного объема является эффективное удаление загрязненного воздуха с нормативной кратностью, т.е. за единицу времени весь объем воздуха должен несколько раз обновиться. Этим суммарным объемом определяется расход воздуха в м3/ч — основная характеристика вентилятора. Обычно при расчетах учитывают не только нормы воздухообмена, но и запас по производительности, учитывающий местные сопротивления (изгибы воздуховодов, длину стояка, переднюю декоративную панель, фильтры, и т. д.). Для справки можно воспользоваться такой таблицей.

Далее действует формула:

L=S*h*k, где

 

L – производительность вентилятора, м3/час;

S – площадь помещения, м2;

h – высота потолков;

k – кратность воздухообмена.


  Например, для помещения ванной комнаты с площадью 2х2 м2 выйдет такой расчет: 4*2,5*10= 100 м3/час. То есть, для такой ванной необходим вытяжной вентилятор с производительностью  100 м3/ч. Так как мы берем ванную для примера, влажность воздуха в ней повышена, поэтому потребуется больше давление для вытяжки – инженеры советуют брать для ванных завышенный коэффициент  – 10 крат.

 

  Еще необходимо учесть запас по производительности 15-20% для всех изгибов вентиляционных каналов внутри конструкции здания и прочих элементов, которые создают давление на воздух и уменьшают проходимость – получим значение около 110м3/ч. Таким образом, нам нужен вытяжной вентилятор с расходом не ниже этого значения. Это грубый расчет, но учтите: слишком мощный вентилятор может создавать сквозняки и много шума. Если воспользоваться этой таблицей, то вопрос как выбрать вентилятор для ванной с правильной мощностью решиться сразу же.
 

  Подбор вытяжного вентилятора — не такое уж простое дело, и профессиональная консультация никак не повредит в таких случаях. В технических расчетах по специальным формулам, которыми пользуются инженеры, для ванной или душевой учитываются излишки влаги, находящиеся в воздухе, плотность воздуха и другие параметры.

 

Как подобрать вентилятор в ванную и санузел?

  В таком помещении важно учитывать необходимость удаления и влаги, и загрязненного воздуха. Поэтому рассматривая варианты для ванной, важно воспользоваться правильными формулами для расчета мощности. Бывает такое, что расчет производится без учета повышенной плотности воздуха, и в итоге, вентилятор попросту не справляется с работой, поэтому всегда лучше следовать вышеуказанной таблице и проводить правильный расчет.
 

  Для ванной нужно выбрать модель с дополнительными опциями, которые обязательны для ванной: датчик влажности, повышенная защита от влажности и брызг воды, изоляция. Неплохо будет так же включить в список требований к модели таймер или таймер задержки выключения. Предусмотрев такие опции, вентилятор будет включаться, как только влажность превысит норму, а выключиться через 25 минут после Вашего ухода (таймер задержки), либо же будет работать по указанному Вами времени (таймер). Защита априори должна быть встроена в модель, иначе вентилятор не проработает и года, как и любая другая техника при контакте с водой. Поэтому следует смотреть на коэффициент защиты в технических характеристиках – он должен составлять IP 44 и выше.


  Немаловажно предусмотреть наличие обратного клапана или жалюзи, перекрывающих воздушный вытяжной канал после выключения вентилятора. Это избавит от угрозы проникания запахов и влаги из соседних квартир, а также снизит потери тепла в комнатах квартиры. 

Пример модели.

Премиум решение. Вытяжной вентилятор Maico ECA 100 ipro H из серии ECA ipro — идеальный вариант для ванной. Этот надежный прибор считается лучшим на рынке, вернее бренд Maico. Модель характеризуется высокими показателями защиты IP X5, встроенным обратным клапаном, автоматическим датчиком влажности, с функцией настройки времени задержки включения.

Оптимальное решение. Soler&Palau SILENT-100 CHZ SILVER DESIGN — 3C из серии Soler&Palau SILENT DESIGN – у него есть все необходимые функции: обратный клапан, датчик влажности, и защита от влаги в IP45. Правда, он без таймера, но это уже функция для удобства, а не из списка необходимостей.

 

 Отличный вариант для ванной в серебряном цвете — модель Soler&Palau SILENT-100 CHZ SILVER из серии SILENT CHZ. Этот вентилятор располагает не только красивым дизайном, но имеет все нужные функции: регулируемый таймер, датчик влажности, обратный клапан, регулируемый гигростат для измерения влажности (Вы сможете настроить порог допустимой влажности, например 50% RH), а так же световой индикатор.

 

Подбираем вентилятор в туалет

  Тут не нужно выдумывать велосипед, и искать что-то навороченное. Туалет – это маленькое помещение, где и пыль то практически не скапливается. А вот микробов и неприятных запахов – очень много. Тут нужно выбирать самый простой вентилятор, но не забываем про расчеты – уклон делаем на производительность, иначе либо в туалете будет холодно при увеличенной мощности прибора, либо от него не будет толку. Вспоминаем про плохие запахи – распространенная проблема в том, что запах часто возвращается с вент. каналов, поэтому ищите модель с обратным клапаном или жалюзи.

 

  Что можно посоветовать по функционалу. Чтобы при походе в уборную не думать про включение вентилятора, подберите модель с электроприводом и выведите шнур к выключателю. Тогда прибор будет включаться вместе со светом. Вы можете вывести и отдельную клавишу для него. А для тех, кто забывает выключать свет в туалете – присмотрите вентилятор с таймером задержки. Он будет работать еще 15-20 минут после Вашего ухода, устранит все загрязнения и запахи, и выключиться. И не надо переживать про электроэнергию.

 

Пример модели.

 
  Премиум решение. Вентилятор немецкого производства Helios MiniVent M1/100 N/C, или же Helios MiniVent M1/100 P из серии MiniVent. Обе модели обладают высокой стойкостью к различным видам микроклимата (с повышенной влажностью или запыленностью), а так же прослужат довольно длительный период. Серия MiniVent характеризируется отличной степенью защиты в IP X5 и плотным обратным клапаном, двумя скоростями, низким уровнем шума 25-30 Дб(А) на расстояниии 3м. Сами же модели обладают полезным для пользователя функционалом: вентилятор MiniVent M1/100 N/C оснащен программированной задержкой выключения, а модель MiniVent M1/100 P имеет датчик присутствия.

  Оптимальный вариант. Модель Вентс 100 ЛД Авто ВТ из серии Вентс ЛД Авто – идеальный прибор, потому что в нем собрано все, а стоимость у него низкая. У этого вентилятора за передней панелью встроены жалюзи, которые не пропускают воздух обратно, а так же реле влажности для автоматического запуска работы при влажности 60-90%, и таймер задержки на 2-30 минут. Из недостатков – защита влажности всего IP 24, но для туалета это и не важно.

  Если же нужна модель еще бюджетней, то неплохим вариантом станет модель Вентс Флип (230/60) ВТ из серии Вентс ФЛИП. Он очень доступный в цене, но при этом в нем встроен обратный клапан, и есть тот самый шнурковый выключатель, с помощью которого можно вывести управление к клавише освещения, а так же есть таймер задержки выключения. То есть, вентилятор отлично подходит для всех требований в туалете.

Как подобрать вентилятор для кухни? 

  Часто вытяжки над плитой не хватает, в таком помещении все равно появляются застойные зоны и духота. Ведь вытяжка собирает испарения непосредственно над плитой (местно), но все остальные остатки пара, влажности, воздух с высокой температурой и запахами собираются под потолком, откуда потом распространяются повсюду в квартире. Поэтому нам важно собрать все загрязнения и запахи не только местно, но и во всем помещении. Вытяжной вентилятор отлично с этим справится.

 

  При выборе вытяжного вентилятора для кухни, кроме учета в расчетах нормативного воздухообмена, учитываются потребности удаления излишков тепла от всех приборов, находящихся в кухне, количества людей и излишков переувлажненного и загрязненного воздуха. При подборе обязательно учитывается частичное удаление воздуха через вытяжку над плитой и приток воздуха из основных помещений квартиры или дома.

 

 

  Что не менее важно, отработанный воздух имеет свойство не удаляться сразу, но и путешествовать по каналам, которые находятся в других комнатах, а потом возвращаться обратно при выключенном вентиляторе. Поэтому для кухни нужен вентилятор с обратным клапаном. Встроенная в нем заслонка герметично закрывает патрубок прибора, и не пропускает тягу с другой стороны, то есть воздух может двигаться только в одну сторону – из помещения.


  При выборе вентилятора в кухню обратите внимание на модели с хорошим фильтром. При готовке в воздухе растворяется жир, частицы масла, эфира, и они оседают на всех поверхностях и приборах. Вентилятор вытягивает их вместе с загрязнённым воздухом, но жир не проходит просто так в шахту – он остается внутри агрегата, скапливается там, и потом мешает его работе, или ломает его. Хороший плотный фильтр скапливает все на себе, защищая и вентилятор, и вент. шахты от засорения маслом и жиром. Поэтому обязательно обращайте внимание на наличие фильтра у прибора. Но помните – фильтр нужно регулярно чистить, примерно раз в полгода: можно просто промыть водой, высушить и положить его обратно.

Мы хотим проконсультировать Вас

 Пример модели.
 
Премиум решение. Отличным вентилятором для кухни является Maico ER 100 из серии Maico ER – у него хороший плотный фильтр, который скрывается прямо за декоративной панелью, и надежный обратный клапан, производится в Германии. Бонусом станет тихая работа двигателя на шариковых подшипниках, корпус, поглощающий шум. Дополнительный монтажный корпус, который чаще всего докупается к прибору, имеет стойкую защиту от горячих температур и влажности, что идеально для кухни. Долговечность и стойкость этой модели при тяжелых условиях кухни удивит Вас. Не забывайте, что у этой модели есть различные модификации с дополнительными функциями.

Оптимальное решение. Осевой вентилятор Vortice Evo ME 100/4′ LL из серии Evo. Прекрасный вариант для кухни — модель с повышенной тягой, забирает воздух с 5-ти сторон. Также имеет обратный клапан и двигатель на шариковых подшипниках, что на 100% предотвращает возращение загрязненного воздуха. В дополнение, вентилятор имеет высокую степень защиты IP 45 и второй класс изоляции, а еще работает очень тихо (21-24 дБ(А)), 2 скорости работы и повышенная эффективность, работа в беспрерывном режиме до 30 000 часов без перегревания. Надежный хороший вариант.

 

Вентиляция в гардеробной – нюансы

  Вся фишка гардеробной в том, что люди здесь бывают только несколько раз в день. Поэтому такое помещение плохо вентилируется естественным путем, и появляется спертость воздуха. При спертом воздухе одежда начинает портиться, приобретать неприятный запах, будто она залежалась в коморке. Даже если Вы используете самые стойкие и пахучие кондиционеры при стирке – одежда все равно будет плохо пахнуть. И не будем упоминать про скопление пыли и вещах, или бактерий после невымытых рук – это и так известно. Поэтому в гардеробную нужен вентилятор.

 

  При выборе бытового вентилятора для гардероба смотрим на 3 параметра – тип вентилятора, производительность, таймер.

 

  Производительность. За счет того, что помещение отличается от ванной и кухни, воздух в нем не плотен и не загрязнен. Тут нужно подобрать не сильно производительный вентилятор, чтобы Вам было не холодно переодеваться, но и не слабый, потому что комната обычно имеет площадь несколько больше ванной.

 

 

  Тип прибора. Чаще всего для гардеробной комнаты выбирают осевой или центробежный тип бытового вентилятора – они показывают очень высокие результаты и имеют хорошую эффективность, но можете выбрать и обычный вытяжной тип.


  Таймер нужен для того, чтобы вентилятор выключался без Вашего вмешательства после Вашего ухода, чтобы проветрить все остатки углекислого газа и прочего. Вы можете задать параметр, чтобы он выключался через 30 минут – этого будет достаточно для нужного эффекта.

 

  Пример модели.
  Премиум решение. Осевой вентилятор Maico AWB 100 TC из серии AWB немецкого производства с относительно недорогой ценой, но безупречным качеством. Модель предназначена для помещений до 30 м2, присутствует обратный клапан, прибор с термической защитой от перегрева двигателя и деталей, сделан из прочного долговечного пластика. Дополнительно модель имеет хороший воздушный фильтр, регулируемый таймер, низкое энергопотребление.

  Оптимальный вариант. Вытяжной вентилятор Blauberg Quatro 100 Т станет отличным решением. Во-первых, это вентилятор осевого типа, во-вторых, он обладает хорошей производительностью, и в третьих, у него есть таймер выключения. Так же стоит обратить внимание, что у этой модели есть разные красивые расцветки: золотой, серебрянный, платина, и другие.
  

Дополнительные моменты, которые важно учесть

  • дизайн модели  – с декоративной отделкой или стандартная;
  • возможность монтажа – на стену или потолок, встроенный или накладной, в вытяжной канал, с выбросом в вертикальный общий стояк, за подвесным потолком; 
  • уровень шума – малошумные или стандартные исполнения;
  • разнообразные возможности управления ручного или автоматического управления, описанные выше;
  • возможность присоединения одного или двух помещений к одному вентилятору;

  • энергопотребление вентилятора;
  • возможности обслуживания и сервиса, — для качественных вытяжных вентиляторов не стоит беспокоиться о безотказности в работе или гарантии.


  Стоит особо отметить современные возможности управления бытовыми вентиляторами для более комфортного пользования. Вы можете выставить задержку по таймеру и вентилятор еще будет удалять загрязненный воздух какое-то время, он может работать постоянно или с определенными интервалами, работать с повышенной мощностью или в обычном режиме, может быть совсем бесшумным, включаться шнурковым выключателем, работать с контролем уровня влажности или по датчику движения, включаться вместе с освещением и выключаться с задержкой после выключения света и т.д.

 

Итоги

  Проблема с циркуляцией воздуха может возникать по двум причинам – или нарушен приток свежего воздуха, или нарушена вытяжка отработанного. Чтобы определить, какая причина нарушения циркуляции воздуха в вашей квартире, вам понадобится лист бумаги и спичка. К вытяжному отверстию подносится зажженная спичка или лист бумаги. Если вытяжка нормально работает, то спичка погаснет, а лист бумаги слегка прилипнет к вытяжному отверстию. В таком случае рекомендуем задуматься от установке вытяжного вентилятора.

 

  Выбор бытового вытяжного вентилятора — дело ответственное и интересное. Надеемся, эта статья немного помогла Вам и расширила горизонты для поиска нужной модели с оптимальными характеристиками. Среди преимуществ вытяжных вентиляторов:

 

  1. высокая эффективность, которая не зависит от погоды за окном;
  2. в отличии от естественной вытяжки в туалете, отличаются хорошей производительностью в любое время года;
  3. наличие возможности контролировать вытяжку отработанного воздуха из помещения благодаря наличию различных режимов вентилирования помещения.


  Если необходима профессиональная консультация в подборе вентиляционного оборудования для квартиры, офиса, дома – обращайтесь к нашим консультантам.

 

 

Похожие статьи на тему:

Пример подбора вентиляторов для вентиляции

  Сопротивление прохождению воздуха в вентиляционной системе, в основном, определяется скоростью движения воздуха в этой системе. С увеличением скорости возрастает и сопротивление. Это явление называется потерей давления. Статическое давление, создаваемое вентилятором, обуславливает движение воздуха в вентиляционной системе, имеющей определенное сопротивление. Чем выше сопротивление такой системы, тем меньше расход воздуха, перемещаемый вентилятором. Расчет потерь на трение для воздуха в воздуховодах, а также сопротивление сетевого оборудования (фильтр, шумоглушитель, нагреватель, клапан и др.) может быть произведен с помощью соответствующих таблиц и диаграмм, указанных в каталоге. Общее падение давления можно рассчитать, просуммировав показатели сопротивления всех элементов вентиляционной системы.

 

Рекомендуемая скорость движения воздуха в воздуховодах:

 

 Тип Скорость воздуха, м/с
 Магистральные воздуховоды 6,0-8,0
 Боковые ответвления 4,0-5,0
 Распределительные воздуховоды 1,5-2,0
 Приточные решетки у потолка 1,0-3,0
 Вытяжные решетки 1,5-3,0

Определение скорости движения воздуха в воздуховодах:

V= L / 3600*F (м/сек)

 

где L – расход воздуха, м3/ч; F – площадь сечения канала, м2.

Рекомендация 1.

Потеря давления в системе воздуховодов может быть снижена за счет увеличения сечения воздуховодов, обеспечивающих относительно одинаковую скорость воздуха во всей системе. На изображении мы видим, как можно обеспечить относительно одинаковую скорость воздуха в сети воздуховодов при минимальной потере давления.

 

 

Рекомендация 2.

В системах с большой протяженностью воздуховодов и большим количеством вентиляционных решеток целесообразно размещать вентилятор в середине вентиляционной системы. Такое решение обладает несколькими преимуществами. С одной стороны, снижаются потери давления, а с другой стороны, можно использовать воздуховоды меньшего сечения.

 

 

Пример расчета вентиляционной системы:

Расчет необходимо начать с составления эскиза системы с указанием мест расположения воздуховодов, вентиляционных решеток, вентиляторов, а также длин участков воздуховодов между тройниками, затем определить расход воздуха на каждом участке сети.

 Выясним потери давления для участков 1-6, воспользовавшись графиком потери давления в круглых воздуховодах, определим необходимые диаметры воздуховодов и потерю давления в них при условии, что необходимо обеспечить допустимую скорость движения воздуха.

Участок 1: расход воздуха будет составлять 220 м3/ч. Принимаем диаметр воздуховода равным 200 мм, скорость – 1,95 м/с, потеря давления составит 0,2 Па/м х 15 м = 3 Па (см. диаграмму определение потерь давления в воздуховодах).

Участок 2: повторим те же расчеты, не забыв, что расход воздуха через этот участок уже будет составлять 220+350=570 м3/ч. Принимаем диаметр воздуховода равным 250 мм, скорость – 3,23 м/с. Потеря давления составит 0,9 Па/м х 20 м = 18 Па.

Участок 3: расход воздуха через этот участок будет составлять 1070 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 3,82 м/с. Потеря давления составит 1,1 Па/м х 20= 22 Па.

 

Участок 4: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость – 5,6 м/с. Потеря давления составит 2,3 Па х 20 = 46 Па.

Участок 5: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па/м х 1= 2,3 Па.

Участок 6: расход воздуха через этот участок будет составлять 1570 м3/ч. Принимаем диаметр воздуховода равным 315 мм, скорость 5,6 м/с. Потеря давления составит 2,3 Па х 10 = 23 Па. Суммарная потеря давления в воздуховодах будет составлять 114,3 Па.

 

Когда расчет последнего участка завершен, необходимо определить потери давления в сетевых элементах: в шумоглушителе СР 315/900 (16 Па) и в обратном клапане КОМ 315 (22 Па). Также определим потерю давления в отводах к решеткам (сопротивление 4-х отводов в сумме будут составлять 8 Па).

 

Определение потерь давления на изгибах воздуховодов

График позволяет определить потери давления в отводе, исходя из величины угла изгиба, диаметра и расхода воздуха.

Пример. Определим потерю давления для отвода 90° диаметром 250 мм при расходе воздуха 500 м3/ч. Для этого найдем пересечение вертикальной линии, соответствующей нашему расходу воздуха, с наклонной чертой, характеризующей диаметр 250 мм, и на вертикальной черте слева для отвода в 90° находим величину потери давления, которая составляет 2Па.

Принимаем к установке потолочные диффузоры серии ПФ, сопротивление которых, согласно графику, будет составлять 26 Па.

Теперь просуммируем все величины потери давления для прямых участков воздуховодов, сетевых элементов, отводов и решеток. Искомая величина 186,3 Па.

Мы рассчитали систему и определили, что нам нужен вентилятор, удаляющий 1570 м3/ч воздуха при сопротивлении сети 186,3 Па. Учитывая требуемые для работы системы характеристики нас устроит вентилятор требуемые для работы системы характеристики нас устроит вентилятор ВЕНТС ВКМС 315.

 

Определение потерь давления в воздуховодах.

 

 

 

Определение потерь давления в обратном клапане.

 

 

 

Подбор необходимого вентилятора.

 

 

 

Определение потерь давления в шумоглушителях.

 

 

 

Определение потерь давления на изгибах воздухуводов.

 

 

 

Определение потерь давления в диффузорах.

 

 

Измерение параметров вентилятора в сети | Инженеришка.Ру | enginerishka.ru

К вентилятору, поставляемому для вентиляционной системы, обычно при­лагается паспорт с аэродинамической характеристикой, из которой можно опре­делить) какие полное и статическое давления должен давать вентилятор при заданной производительности.

Как в реальных условиях (на месте эксплуатации) можно измерить производительность вентилятора в реальной сети?

Полное давление вентилятора: рV = р20— р10

р20— полное давление на вы­ходе из вентилятора;

р10 — полное давление на входе вентилятора.

Статическое давление вентилятора: рSV = р2— р10

р2— статическое давле­ние на выходе из вентилятора.

Эти формулы внешне очень простые, и в большинстве случаев в лаборатор­ных условиях не возникает проблем с измерением аэродинамических характери­стик вентиляторов, если имеется четкая договоренность о содержании этих тер­минов и методах измерения указанных величин. Для этого существуют отечественные, зарубежные и международные стандарты методов измерений аэродинамических характеристик вентиляторов. Они в некоторых деталях мнут отличаться друг от друга, поэтому при рассмотрении аэродинамических характеристик зарубежных вентиляторов необходимо выяснять из данных каталога условия и методику измерений, чтобы исключить возможные ошибки трактовки результатов. Так, например, в отечественных установках наиболее часто реализованы испытаний А или С, когда скоростной напор на выходе определяется пересчетом из производительности вентилятора. В зарубежных установках встречается также, например, схема В, когда производится непосредственное измерение полного давления за вентилятором. С учетом неравномерных полей скоростей на выходе из вентилятора метод схемы В может дать несколько отли­чающиеся результаты по полному давлению вентилятора. Еще один пример. При испытаниях осевых вентиляторов площадь выхода может определяться по диаметру рабочего колеса или по диаметру рабочего колеса за вычетом пло­шали втулки. При этом получаются разные площади выхода и, соответственно, разные полные давления вентилятора.

Если вентилятор уже установлен и присоединен к сети, то измерение его аэродинамических параметров (давления и производительности) может вызвать некоторые трудности. Рассмотрим ряд особенностей таких измерений.

Для определения давления вентилятора, во-первых, надо измерить полное дав­ление в воздуховоде перед вентилятором. Измерительное сечение формально должно находиться на расстоянии не менее 2D от входа вентилятора (D — диаметр или гидравлический диаметр воздуховода). Кроме того, перед измерительным се­чением должен быть отрезок прямого воздуховода с невозмущенным течением длиной не менее 4D). Как правило, такие условия входа встречаются редко. Если перед входом в вентилятор расположено поворотное колено или кап либо другое устройство, нарушающее однородную структуру течения в измери­тельном сечении, то необходимо перед измерительным сечением устанавливать выравнивающий поток решетку (хонейкомб). Если измерительное сечение удовлетворяет требованиям измерений, то их можно выполнять в соответствии с описанной выше процедурой. С помощью вводимого в воздуховод приемника полного давления измеряются полные давления в ряде точек поперечного сече­ния, определяется соответствующее среднее значение полного давления в сечении. Если одновременно измерять скоростной напор, то можно определить производительность вентилятора, проинтегрировав полученные локальные рас­ходные скорости по площади измерительного сечения. Если вентилятор имеет свободный вход, то полное давление на входе р10равно давлению окружающей среды (т. е. избыточное давление равно нулю).

Для измерения полного давления за вентилятором важно наиболее правильно выбрать положение измерительного сечения, поскольку структура потока на выходе из вентилятора неоднородна по сечению и зависит от типа вентилятора и режима его работы. Поле скоростей в поперечном сечении на выходе из вен­тилятора в ряде случаев может иметь зоны возвратных токов и, как правило, не­стационарно во времени. Если в воздуховоде нет спрямляющих поток решеток, то неоднородности течения могут распространяться довольно далеко вниз по по­току (до 7—10 калибров). Если за вентилятором есть диффузор с большим углом раскрытия (отрывной диффузор) или поворотное колено, то течение после них также может быть очень неоднородно по сечению. Поэтому можно предложить следующую методику измерений. Одно измерительное сечение выбрать непо­средственно за вентилятором и подробно просканировать его зондом, измеряя полное давление и скоростной напор, и определить среднее полное давление и производительность вентилятора. Производительность сравнить с соответ­ствующей величиной, полученной по измерениям во входном измерительном сечении вентилятора. Дополнительное измерительное сечение выбрать на бли­жайшем после выхода прямолинейном участке воздуховода на расстоянии 4—6 калибров от начала этого участка (на максимально возможном расстоянии от начала участка, если длина его меньше). С помощью зонда измерить распре­деления по сечению полного давления и скоростного напора и определить сред­нее полное давление и производительность вентилятора. Из полученного полно­го давления вычесть расчетную величину потерь на отрезке воздуховода от выхода из вентилятора до измерительного сечения, это и будет полное давле­ние на выходе из вентилятора. Сравнить производительность вентилятора со значениями, полученными для входа в вентилятор и непосредственно на вы­ходе. Обычно удовлетворительные для измерения производительности вентиля­тора условия проще обеспечить на входе, поэтому надо выбрать сечение на выходе, которое более соответствует по производительности входному сечению. В случае крышного вентилятора напорная сеть отсутствует, и измерения прово­дятся только на входе вентилятора. При этом скоростной напор на выходе из вен­тилятора полностью теряется, и для него измеряется характеристика только по статическому давлению.

Измерение аэродинамических параметров вентилятора сопряжено еще с одной трудностью — не стационарностью параметров потока. При пневмометрических измерениях для получения достоверных данных используют различ­ного рода демпферы — устройства, сглаживающие пульсации давления. На рынке измерительной техники существуют электронные манометры с математическим временным осреднением давления.

Отправить отзыв и предложения

послать

Закрывать

Спасибо за отзыв!

В нашу команду было отправлено письмо с вашим отзывом.

Произошла ошибка при обработке вашей информации.

Приносим извинения за неудобства и уведомили члена команды.

Закрывать

Rep Наши продукты

Вы заинтересованы в представлении CaptiveAire и продаже нашей продукции?
Заполните следующую форму, и мы свяжемся с вами в ближайшее время.

0/500

Какое у вас образование?

0/500

Какие территории продаж вас интересуют?

0/500

Какие продуктовые линейки вас интересуют?

0/1000

Есть ли у вас другие комментарии?

послать

Закрывать

Мы искали везде, но не смогли найти эту страницу.

Может быть, его поразил один из наших высокоэффективных вытяжных вентиляторов.

Возможно, вы хотите перейти на главную страницу?

Отправить отзыв и предложения

послать

Закрывать

Спасибо за отзыв!

В нашу команду было отправлено письмо с вашим отзывом.

Произошла ошибка при обработке вашей информации.

Приносим извинения за неудобства и уведомили члена команды.

Закрывать

Rep Наши продукты

Вы заинтересованы в представлении CaptiveAire и продаже нашей продукции?
Заполните следующую форму, и мы свяжемся с вами в ближайшее время.

0/500

Какое у вас образование?

0/500

Какие территории продаж вас интересуют?

0/500

Какие продуктовые линейки вас интересуют?

0/1000

Есть ли у вас другие комментарии?

послать

Закрывать

Мы искали везде, но не смогли найти эту страницу.

Может быть, его поразил один из наших высокоэффективных вытяжных вентиляторов.

Возможно, вы хотите перейти на главную страницу?

Отправить отзыв и предложения

послать

Закрывать

Спасибо за отзыв!

В нашу команду было отправлено письмо с вашим отзывом.

Произошла ошибка при обработке вашей информации.

Приносим извинения за неудобства и уведомили члена команды.

Закрывать

Rep Наши продукты

Вы заинтересованы в представлении CaptiveAire и продаже нашей продукции?
Заполните следующую форму, и мы свяжемся с вами в ближайшее время.

0/500

Какое у вас образование?

0/500

Какие территории продаж вас интересуют?

0/500

Какие продуктовые линейки вас интересуют?

0/1000

Есть ли у вас другие комментарии?

послать

Закрывать

Мы искали везде, но не смогли найти эту страницу.

Может быть, его поразил один из наших высокоэффективных вытяжных вентиляторов.

Возможно, вы хотите перейти на главную страницу?

% PDF-1.7
%
32 0 объект
>
эндобдж

xref
32 85
0000000016 00000 н.
0000002431 00000 н.
0000002615 00000 н.
0000003164 00000 п.
0000003566 00000 н.
0000004166 00000 н.
0000004836 00000 н.
0000005439 00000 н.
0000005858 00000 п.
0000008963 00000 н.
0000009206 00000 н.
0000009710 00000 н.
0000010124 00000 п.
0000010159 00000 п.
0000013320 00000 п.
0000013433 00000 п.
0000013544 00000 п.
0000013776 00000 п.
0000014421 00000 п.
0000015018 00000 п.
0000019553 00000 п.
0000020055 00000 п.
0000020979 00000 п.
0000021944 00000 п.
0000022859 00000 п.
0000022884 00000 п.
0000023185 00000 п.
0000023324 00000 п.
0000024305 00000 п.
0000024689 00000 п.
0000024850 00000 п.
0000026042 00000 п.
0000026413 00000 н.
0000026848 00000 н.
0000027951 00000 п.
0000028113 00000 п.
0000028267 00000 п.
0000029575 00000 п.
0000030587 00000 п.
0000030871 00000 п.
0000036222 00000 п.
0000036306 00000 п.
0000036375 00000 п.
0000039024 00000 н.
0000039194 00000 п.
0000041913 00000 п.
0000042535 00000 п.
0000042843 00000 п.
0000042930 00000 п.
0000043259 00000 п.
0000043538 00000 п.
0000045003 00000 п.
0000045342 00000 п.
0000045426 00000 п.
0000045764 00000 п.
0000046048 00000 п.
0000046676 00000 п.
0000046956 00000 п.
0000051760 00000 п.
0000051797 00000 п.
0000051870 00000 п.
0000051944 00000 п.
0000052039 00000 п.
0000052186 00000 п.
0000052499 00000 п.
0000052552 00000 п.
0000052666 00000 п.
0000053027 00000 п.
0000053168 00000 п.
0000054944 00000 п.
0000055291 00000 п.
0000055702 00000 п.
0000055966 00000 п.
0000056067 00000 п.
0000056810 00000 п.
0000057113 00000 п.
0000057457 00000 п.
0000057662 00000 п.
0000083669 00000 п.
0000083708 00000 п.
0000083782 00000 п.
0000083895 00000 п.
0000084203 00000 п.
0000085425 00000 п.
0000001996 00000 н.
трейлер
] / Назад 149585 >>
startxref
0
%% EOF

116 0 объект
> поток
hb«c`ha`g`Pad @

Законы для вентиляторов и характеристики вентиляторов Fluid Flow Engineering

В этом блоге дается общий план правил или законов, которые можно использовать для прогнозирования производительности вентиляторов в данной системе.Почему так важны законы о болельщиках? В качестве примера рассмотрим кривую вентилятора, обычно предоставляемую производителем. Эта кривая вентилятора обычно измеряется при «стандартных» или других заявленных условиях. В реальных системах маловероятно, что вентилятор проработает весь срок службы в этих идентичных условиях. Кроме того, часто встречаются колебания давления всасывания, изменения плотности, изменения состава и т. Д., Которые также могут повлиять на работу вентилятора в системе.

Законы вентилятора помогают нам оценить, как вентилятор будет работать в системе при различных скоростях, плотности жидкости, диаметре крыльчатки и т. Д.Как только мы получим базовое понимание этих законов, производительность вентилятора можно будет рассчитать для различных условий.

Производительность геометрически подобных вентиляторов различных размеров и скоростей может быть предсказана с разумной точностью для практических целей, используя законы вентилятора. Более высокий уровень точности потребует учета таких эффектов, как, например, вязкость газа, шероховатость поверхности вентилятора, эффект масштаба. Однако, в зависимости от требуемого уровня точности, для многих расчетов вентиляторов это может не потребоваться.

Следует отметить, что законы применяются к одной и той же точке работы на кривой вентилятора. Их нельзя использовать для предсказания других точек кривой веера. Основные законы вентилятора, регулирующие производительность вентилятора, обычно действительны только для стационарной системы без изменений характеристик воздушного потока в системе или изменений аэродинамики. Термин «система» относится к комбинации воздуховодов, фильтров, решеток, жалюзи заслонок, вытяжек и т. Д., Через которые распространяется воздух.

Как мы знаем, движение воздуха через систему вызывает трение / сопротивление между молекулами воздуха и их окружением и любыми другими молекулами воздуха.Следовательно, для преодоления этого сопротивления требуется энергия. Чем быстрее воздух движется через систему, тем больше сопротивление потоку и тем больше энергии требуется для доставки воздуха через систему. Эта энергия описывается как давление. Обычно давление, необходимое для преодоления сопротивления, называется статическим давлением. Давление, которое приводит к скорости воздуха / газа, описывается как скоростное давление, а комбинация этих двух значений часто называется общим давлением.

Вентиляторы или нагнетатели часто устанавливаются в системах вентиляции или промышленных технологических процессах для преодоления сопротивления. Характеристики вентилятора часто представляют в виде кривых вентилятора. Кривые основаны на определенном наборе условий, которые обычно включают скорость, объем, эффективность, статическое давление и мощность, необходимую для приведения в действие вентилятора при заданном наборе условий. На рисунке 1 представлена ​​типичная иллюстрация кривых вентилятора. Точка, где кривая статического давления пересекает кривую сопротивления системы, представляет рабочую точку вентилятора.

Рис. 1. Кривая производительности вентилятора производителя.

Как отмечалось ранее, по мере увеличения воздушного потока в любой системе вентилятора сопротивление системы также увеличивается. В фиксированной системе говорится, что необходимое давление / сопротивление системы зависит от квадрата объема воздуха, проходящего через систему. Кривая сопротивления системы может быть построена путем определения давления, необходимого для диапазона расходов системы. Затем эту кривую сопротивления можно нанести на кривую производительности вентилятора (также известную как кривая производительности вентилятора), чтобы определить фактическую рабочую точку.Это показано как точка «1» на рисунке 2, где кривая вентилятора N1 и кривая сопротивления системы SC1 пересекаются. Эта рабочая точка соответствует расходу воздуха Q1, который подается против давления P1.

Рисунок 2: Кривые сопротивления системы.

Вентиляторы работают в соответствии с кривой производительности, предоставленной производителем для данной скорости вращения вентилятора. Если мы хотим уменьшить поток воздуха в системе, мы могли бы, например, частично закрыть заслонку в системе или снизить скорость вентилятора. Частичное закрытие заслонки приведет к новой кривой сопротивления системы.Это показано как кривая сопротивления системы SC2, где необходимое давление увеличивается для любого заданного воздушного потока. Теперь вентилятор будет работать в рабочей точке 2, чтобы обеспечить уменьшенный воздушный поток Q2 против более высокого давления P2.

С другой стороны, мы можем снизить скорость вентилятора с N1 до N2, чтобы уменьшить воздушный поток в системе и удерживать заслонку в полностью открытом положении. В этих условиях вентилятор теперь будет работать в рабочей точке 3 для обеспечения того же расхода воздуха Q2, но при более низком давлении.

Таким образом, снижение скорости вращения вентилятора — это гораздо более энергоэффективный подход к уменьшению воздушного потока, поскольку потребуется меньшая мощность, что приведет к меньшему потреблению энергии.

Законы для вентиляторов

В общем, законы для вентиляторов обычно используются для расчета изменений скорости потока, давления и мощности вентилятора при изменении размера, скорости или плотности газа. В законах вентилятора, приведенных в Таблице 1 ниже, нижний индекс 1 представляет начальное существующее состояние, а нижний индекс 2 представляет желаемое расчетное состояние.

Иллюстрация на Рисунке 3 помогает проиллюстрировать влияние изменений скорости вентилятора.

Рис. 3: Влияние изменений скорости вращения вентилятора на поток, давление и мощность.

Законы вентилятора — это группа уравнений, используемых для определения влияния изменений рабочей скорости вентилятора, диаметра вентилятора или плотности воздуха в системе. Производительность центробежного вентилятора, осевого вентилятора или нагнетателя часто задается в виде ряда кривых характеристик давления, эффективности и мощности на валу, построенных в зависимости от расхода воздуха для заданных значений скорости, плотности воздуха и размеров вентилятора.Поэтому полезно определить рабочие характеристики вентилятора при других скоростях и плотности воздуха. Используя отношения закона вентилятора, можно разработать семейства кривых вентилятора для работы вентилятора на различных скоростях и т. Д.

Законы вентилятора можно также использовать для рассмотрения результатов испытаний, полученных от небольших прототипных вентиляторов, для прогнозирования производительности более крупных вентиляторов, которые конечно геометрически похожи.

Зная производительность данного вентилятора в заданных заданных условиях эксплуатации, можно спрогнозировать изменения производительности в соответствии с законами о вентиляторах.Однако следует отметить, что добавление или удаление компонентов фиксированной системы, таких как демпферы, или изменение плотности приведет к созданию совершенно другой кривой сопротивления системы. Также стоит отметить, что замена аксессуаров вентилятора, таких как впускные заслонки, впускные коробки, приведет к изменению кривой производительности вентилятора по сравнению со стандартной. Поэтому это следует учитывать, прежде чем рассматривать или применять законы о вентиляторах.

Как часть конструкции системы, законы вентилятора могут быть весьма полезны при определении альтернативных критериев производительности или при установлении минимального и максимального диапазона.В случае применения «факторов безопасности» к расчетам конструкции системы, стоит отметить, что, в соответствии с законами о вентиляторах, увеличение объема на 10% приведет к увеличению потребляемой мощности на 33%. Поэтому рекомендуется должное внимание при оценке любых применяемых «коэффициентов безопасности» с учетом фактических понесенных штрафных затрат.

В целом, используя эти правила или законы вентилятора, как только мы узнаем производительность данного вентилятора в заданных заданных условиях эксплуатации, изменения производительности могут быть предсказаны с разумным уровнем точности.Программное обеспечение FluidFlow учитывает эффекты сжимаемости, изменения давления всасывания и т. Д., А также решает законы вентилятора, обеспечивая высокий уровень точности.

Артикулы:

  1. Бюро энергоэффективности.

Как выбрать вентилятор или нагнетатель: Cincinnati Fan

Для выбора вентилятора требуемые данные включают расход (CFM), статическое давление (SP) и плотность воздуха / газа.

У вас есть 3 варианта выбора подходящего вентилятора или нагнетателя для вашего приложения:

1

Воспользуйтесь нашим быстрым селектором, чтобы сузить выбор и отсортировать по цене или эффективности.

3

Выполните действия, указанные ниже , чтобы выбрать вентилятор с использованием данных каталога.

Скорость потока (CFM)
SCFM означает стандартные кубические футы в минуту. Это CFM при стандартной плотности, определяемой как 0,075 фунта / куб. Фут.

ACFM означает фактические кубические футы в минуту. Это CFM с установленной плотностью, отличной от 0,075 фунта / фут 3 . Это также требуемый массовый расход, деленный на плотность обрабатываемого газа. Поскольку вентиляторы и нагнетатели обрабатывают один и тот же объем воздуха независимо от плотности, значение ACFM (и соответствующая плотность) является предпочтительным значением для использования при выборе вентилятора или нагнетателя.Обратите внимание, что ACFM и SCFM не являются взаимозаменяемыми, за исключением плотности 0,075 фунт / фут 3 .

Расход воздуха измеряется в кубических футах в минуту (CFM) или в метрическом эквиваленте, кубических метрах в час (M 3 / час).

1 куб. Фут / мин = 1,6990 x M 3 / час.

Если вы будете транспортировать материал, убедитесь, что у вас достаточно CFM для размера воздуховода, трубы или шланга, чтобы материал сохранял требуемую скорость для полного прохождения через систему и не оседал в воздуховоде, трубе или шланге.См. Каталог технических данных для получения информации о скоростях транспортировки материала.

Статическое давление (SP)
Статическое давление — это сопротивление воздушному потоку (трение), вызванное движением воздуха по трубе, воздуховоду, шлангу, фильтру, прорезям кожуха, воздушным заслонкам или жалюзи. Статическое давление измеряется в дюймах водяного столба (inWG) или в метрическом эквиваленте, миллиметрах водяного столба (mmWG). 1 дюйм вод. Ст. = 25,4 x мм вод. Ст.

Стандартный воздух имеет плотность 0,075 фунта / фут 3 и основывается на температуре 70 ° F и 29 ° C.Атмосферное давление 92 дюйма рт. или воздуходувки в соответствии со стандартными рабочими характеристиками. Метрический эквивалент выражен в килограммах на кубический метр (кг / м 3 ). фунт / фут 3 = 16,018 x кг / м 3 .

Температура воздуха, проходящего через вентилятор или нагнетатель, влияет на плотность и производительность вентилятора или нагнетателя.Температура должна отображаться в градусах Фаренгейта (° F). Метрический эквивалент — градусы Цельсия (° C).

° F = 1,8 x ° C + 32

Если температура воздуха будет меняться, каковы минимальная и максимальная температура?

Высота, на которой будет работать вентилятор или нагнетатель, также влияет на плотность и производительность вентилятора или нагнетателя. Высота должна быть указана в футах над уровнем моря. Метрический эквивалент — метры (м). 1 фут = 0,30480 x

м

Поправка на высоту температуры воздуха

Таблица на странице 5 инструкции по правильному выбору вентилятора или нагнетателя

Пример:

Выберите воздуходувку на 1500 кубических футов в минуту при 7-дюймовом рабочем газе при 250 ° F.и на высоте 6500 футов.

  • ШАГ 1. Из приведенной выше таблицы коэффициент преобразования для высоты 250 ° и 6500 футов составляет 1,71.
  • ШАГ 2. Скорректированное статическое давление составляет: 7 дюймов вод. Ст. X 1,71 = 11,97 дюймов вод. Ст. При стандартных условиях. Округлить до ширины 12 дюймов.
  • ШАГ 3. Выберите вентилятор, используя таблицы производительности вентиляторов, для 1500 куб. Фут / мин при ширине рабочей трубы 12 дюймов.

ПРИМЕЧАНИЕ. Если давление всасывания на всасывающей стороне нагнетателя превышает 15 дюймов вод. Ст., Необходимо внести поправку на давление всасывания (так называемое разрежение).См. Таблицу ниже.

Таблица на странице 4 инструкции по правильному выбору вентилятора или нагнетателя

ПРИМЕРЫ:

  1. При давлении всасывания 45 дюймов на входе нагнетателя и отсутствии давления нагнетания на выходе нагнетателя общее статическое давление = 50,3 дюйма вод. Ст.
  2. При давлении всасывания 45 дюймов на входе и давлении нагнетания 12 дюймов на выпуске общее статическое давление = 50,3 «+12» = 62,3 дюйма вод. Ст.
  3. При давлении всасывания 0 дюймов на входе и давлении нагнетания 12 дюймов общее статическое давление = 12 дюймов вод. Ст.Поправка на давление нагнетания не требуется.

Центробежные вентиляторы или нагнетатели используют один из семи типов колес, заключенных в спиральный корпус. Воздух поступает в крыльчатку вентилятора через входное отверстие в корпусе, поворачивается на 90 градусов, ускоряется в радиальном направлении и выходит из корпуса вентилятора. Центробежные вентиляторы обычно используются для более низких потоков и более высоких давлений.

Осевые вентиляторы используют пропеллер с двумя или более лопастями для перемещения воздуха в осевом направлении через цилиндрический корпус или формованную панель с отверстиями.Осевые вентиляторы обычно используются для более высоких потоков и более низких давлений. Не используйте осевой вентилятор для транспортировки материала.

Вентиляторы — КПД и энергопотребление

Энергопотребление вентилятора

Идеальное энергопотребление вентилятора (без потерь) можно выразить как

P i = dp q (1)

где

P i = идеальная потребляемая мощность (Вт)

dp = общее повышение давления в вентиляторе (Па, Н / м 2 )

q = воздух объемный расход, создаваемый вентилятором (м 3 / с)

Потребляемая мощность при различных объемах воздуха и увеличениях давления указаны ниже:

Примечание! Для детального проектирования — используйте спецификации производителей для реальных вентиляторов.

КПД вентилятора

КПД вентилятора — это соотношение между мощностью, передаваемой воздушному потоку, и мощностью, потребляемой вентилятором. Эффективность вентилятора в целом не зависит от плотности воздуха и может быть выражена как:

μ f = dp q / P (2)

, где

μ f = КПД вентилятора (значения от 0 до 1)

dp = общее давление (Па)

q = объем воздуха, подаваемый вентилятором (м 3 / с)

P = мощность, потребляемая вентилятором (Вт, Нм / с)

Мощность, потребляемая вентилятором, может быть выражена как:

P = dp q / μ f ( 3)

Мощность, потребляемая вентилятором, также может быть выражена как:

P = dp q / (μ f μ b μ m ) (4)

где

μ b = КПД ремня

μ м = КПД двигателя

9028 Типичное значение250 и

КПД двигателя

  • Двигатель 1кВт — 0.4
  • Двигатель 10 кВт — 0,87
  • Двигатель 100 кВт — 0,92
  • Ремень 1 кВт — 0,78
  • Ремень 10 кВт — 0,88
  • Ремень 100000 кВт — 0,93

    902 Потребляемая мощность — имперские единицы

    Энергопотребление вентилятора также можно выразить как

    P куб. Футов в минуту = 0,1175 q куб. Футов в минуту dp дюймов / f μ b μ м) (4b)

    , где

    P куб.футов в минуту = потребляемая мощность (Вт)

    q куб.футов в минуту = объемный расход (куб.футов в минуту)

    dp дюймов = увеличение давления дюймовWG)

    Потери вентилятора и установки (системные потери)

    Установка вентилятора повлияет на общую эффективность системы

    dp sy = x sy p d (5)

    , где

    dp sy = потери при установке (Па)

    x sy = коэффициент потерь при установке 9018 d0003 902 динамическое давление на номинальном входе и выходе вентилятора (Па)

    Вентилятор и повышение температуры

    Почти вся энергия, теряемая вентилятором, нагревает воздушный поток, и повышение температуры может быть выражено как

    dt = dp / 1000 (6)

    где

    d t = повышение температуры (K)

    dp = увеличенный напор (Па)

    Стандарты эффективности вентиляторов

    • ISO 12759 «Вентиляторы — классификация эффективности для вентиляторов»
    • AMCA 205 «Энергия Класс эффективности вентиляторов »

    .

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *