Расчет расхода тепла на отопление: Расчет отопления дома: онлайн калькулятор определения теплопотерь

Содержание

Калькулятор расхода тепловой энергии

ГлавнаяКалькулятор расхода тепловой энергии

Введите данные

Город

Абакан

Анадырь

Архангельск

Астрахань

Барнаул

Белгород

Биробиджан

Благовещенск

Брянск

Владивосток

Владикавказ

Владимир

Волгоград

Вологда

Воронеж

Грозный

Дмитров

Екатеринбург

Иваново

Ижевск

Иркутск

Йошкар-Ола

Казань

Калининград

Калуга

Кашира (Моск. обл.)

Кемерово

Киров (Вятка)

Комсомольск-на-Амуре

Кострома

Краснодар

Красноярск

Курган

Курск

Кызыл

Липецк

Магадан

Майкоп

Махачкала

Москва

Мурманск

Нальчик

Нижний Новгород

Новгород

Новосибирск

Омск

Орел

Оренбург

Пенза

Пермь

Петрозаводск

Петропавловск-Камчатский

Псков

Ростов-на-Дону

Рязань

Салехард

Самара

Санкт-Петербург

Саранск

Смоленск

Сочи

Старополь

Сургут

Сыктывкар

Тамбов

Тверь

Тихвин (Лен. обл.)

Томск

Тула

Тюмень

Улан-Удэ

Ульяновск

Уфа

Хабаровск

Ханты-Мансийск

Чебоксары

Челябинск

Черкесск

Чита

Элиста

Южно-Сахалинск

Ярославль

Тип здания

Многоквартирные дома (на этапах проектирования, строительства, сдачи в эксплуатации), гостиницы, общежития
Поликлиники и лечебные учреждения, дома-интернаты
Дошкольные учреждения, хосписы
Сервисного обслуживания, культурно-досуговой деятельности, технопарки, склады
Административного назначения (офисы)
Прочие общественные здания

Этажность

1
2
3
4
5
6
7
8
9
10
12

Расчетная температура внутреннего воздуха здания, C

Рассчитать

Расчет градусосуток отопительного периода:

Расчет базового значения удельного расхода энергии на отопление согласно Приказу Министерства строительства и жилищно-коммунального хозяйства Российской Федерации №1550/пр от 17.11.2017:

кВтч/м2

Цели по удельному потреблению тепловой энергии на отопление

Проектирование тепловой изоляции в проектно-расчетном центре ТехноНИКОЛЬ

Заказать проект

Расчёт отопления дома. Расчет расхода тепла на отопление разноэтажных жилых зданий.

КАТАЛОГ ТОВАРОВ

  • Бойлеры

    • Бойлеры

    • Буферные емкости
    • Косвенного нагрева
    • Электрические
  • Водонагреватели

    • Водонагреватели

    • Газовые
    • Электрические
    • Косвенного нагрева
  • Горелки

    • Горелки

    • Газовые
    • Дизельные
    • Комбинированные мультитопливные
    • Мазутные
    • На отработанном масле
    • Нефтяные
    • Пеллетные
    • Рампы и комплектующие
  • Инфракрасные обогреватели
  • Калориферы

    • Калориферы

    • Отопительные
    • Дестратификаторы
    • Канальные
  • Конвекторы

    • Конвекторы

    • Встраиваемые внутрипольные
    • Газовые
    • Напольные
    • Электрические
  • Кондиционеры

    • Кондиционеры

    • Настенные
    • Канальные
    • Кассетные
    • Колонные
    • Мобильные
    • Мульти-сплит
    • Напольные/ потолочные
    • Оконные
    • Внешние блоки
  • Котлы отопления

    • Котлы отопления

    • Газовые
    • Газовые/ дизельные под сменную горелку
    • Дизельные
    • На отработанном масле
    • Паровые
    • Пеллетные
    • Промышленные водогрейные
    • Твердотопливные
    • Термомасляные
    • Электрические
  • Насосы

    • Насосы

    • Дренажные
    • Насосные станции
    • Поверхностные
    • Погружные
    • Фекальные
    • Циркуляционные
    • Автоматика для систем водоснабжения
  • Тепловые завесы
  • Тепловые пушки

    • Тепловые пушки

    • Газовые
    • Дизельные
    • На горячей воде
    • Электрические
  • Теплогенераторы

    • Теплогенераторы

    • Газовые канальные воздухонагреватели
    • Газовые воздухонагреватели
  • Еще

    • Автоматика
    • Дымоходы

      • Дымоходы

      • Arderia
      • Baxi
      • Bosch
      • Buderus
      • Craft
      • Daewoo
      • Ferroli
      • Hydrosta
      • Kiturami
      • Navien
      • Protherm
      • Еще…
    • Запчасти и комплектующие

      • Запчасти и комплектующие

      • Запчасти
      • Насосы топливные
      • Блоки управления
      • Комплектующие для калориферов
      • Комплектующие для кондиционеров
      • Комплектующие для тепловых завес
      • Комплектующие к инфракрасным обогревателям
      • Комплектующие радиаторов
      • Форсунки
      • Комплектующие для конвекторов
    • Комплектующие отопительных систем

      • Комплектующие отопительных систем

      • Арматура
      • Антифриз
      • Гидроаккумуляторы
      • Группа безопасности
      • Для котельных на отработанном масле
      • Оборудование для подачи топлива
      • Теплообменники
    • Кондиционеры промышленные

      • Кондиционеры промышленные

      • Воздушные тепловые насосы
      • Компрессорно-конденсаторные и внутренние блоки (ККБ)
      • Мультизональные
      • Прецизионные
      • Руфтопы (Крышные кондиционеры)
      • Чиллеры
    • Осушители воздуха

      • Осушители воздуха

      • Адсорбционные
      • Бытовые
      • Для бассейна
      • Канальные
      • Промышленные
Как сделать расчет тепла на отопление – способы, формулы


Содержание:


Чтобы работа отопительной системы в жилых или производственных помещениях, магазинах и офисах отличалась стабильностью, надежностью и бесшумностью, необходимо грамотно выполнить расчет количества тепла на отопление. Кроме того это поможет сократить энергозатраты и соответствующую статью расходов.


расчет отопления по объему помещения

Последовательность выполнения расчетов


 Расчет отопления по объему помещения выполняется в следующем порядке:

  • Определение утечек тепла строения. Это нужно для определения мощности котла и установленных батарей. Тепловые потери следует рассчитывать для каждой комнаты, имеющей хотя бы одну внешнюю стену. Для проверки расчета нужно выполнить следующее: полученное значение разделить на площадь помещения. В результате должно получиться число, равное 50-150 Вт/м2. Это стандартные значения, к которым следует стремиться при расчетах. Большое отклонение от этих параметров приведет к увеличению стоимости всей отопительной системы.
  • Выбор температурного режима. Европейские нормы отопления EN 442 устанавливают следующий режим температур: 750С в котле, 650С в батареях или радиаторах, 200С в помещении. Поэтому во избежание неприятных ситуаций необходимо принимать именно эти параметры.
  • Расчет мощности батарей или радиаторов. Здесь за основу берутся данные по потерям тепла в отдельном помещении.
  • Гидравлические расчеты. Это необходимо для создания эффективного отопления. Согласно гидравлическим расчетам определяется диаметр труб и параметры циркуляционного насоса.
  • Следующим этапом расчета тепла на отопление является выбор типа котла. Он может быть промышленным или бытовым в зависимости от назначения отапливаемого помещения.
  • Вычисление объема системы отопления. Это необходимо для определения объема расширительного бака или встроенного водяного бачка.

Тепловые расчеты


При составлении проекта отопительной системы большое значение имеет теплотехнический этап, для осуществления которого потребуются исходные данные, включая вопрос, как рассчитать объем помещения для отопления.

Начало работы


Во-первых, перед тем как посчитать расход тепла на отопление здания следует изучить проектную документацию, где имеются данные обо всех размерах каждого отдельного помещения, размеры окон и дверей.


Во-вторых, необходимо получить сведения о расположении дома относительно сторон света и климате местности.


В-третьих, нужно собрать данные о высоте стен и свойствах материала, который использовался для их изготовления.


В-четвертых, следует изучить параметры материалов пола и потолочного перекрытия.


расчет тепла для обогрева помещения


После обработки всей информации можно начинать расчеты нагрузки отопления по площади. Кроме того, полученная информация пригодится при выполнении гидравлических расчетов. Выполняя расчет тепловой нагрузки на отопление здания, необходимо учитывать важные факторы.


Расчет отопления и нагрузки на отопление дома рассчитывают для того, чтобы узнать, какое количество тепла теряется в процессе эксплуатации дома, и определить основные параметры котла. В частности мощность агрегата отопления определяется по формуле:


Мк = Тп*1,2.


Здесь Мк – это мощность котла, Тп – количество уходящего тепла, а 1,2 — коэффициент запаса, в большинстве случаев — это 20%.


Коэффициент запаса необходим для компенсации непредвиденных потерь тепла, таких как плохая теплоизоляция окон и дверей, снижение температуры или давления в системе газоснабжения.


расчет расхода тепла на отопление


При выполнении расчета отопления производственного помещения по его объему следует понимать, что тепловые потери распределяются по зданию неравномерно. Удельная тепловая характеристика на отопление — важный параметр, который необходимо заранее учитывать при расчетах.


Средние значения каждого элемента строения следующие:

  • На внешние стены приходится около 40% общих тепловых потерь.
  • Через оконные проемы теряется до 20% тепла.
  • Пол и потолочные перекрытия проводят до 10% тепла.
  • Вентиляция и дверные проемы способствуют 20% теплопотерь.


Для определения количества теплопотерь применяется формула:


Тп = УДтп*Пл*К1*К2*К3*К4*К5*К6*К7.


Здесь каждый показатель определяется индивидуально.


УДтп – это удельное значение тепловых потерь, которое в большинстве случаев равно 100 Вт/м2.


Пл – это площадь помещения.


К1 – коэффициент, значение которого зависит от вида окон. При установленных традиционных окнах коэффициент равен 1,27. Для двухкамерных стеклопакетов в расчет берется значение 1, для трехкамерных аналогов – 0,85.


К2 – степень теплоизоляции стен. Следует принимать во внимание толщину и коэффициент теплопроводности материалов, из которых изготовлены стены, пол и потолок. Для блочных или панельных домов из бетона используется значение от 1,25 до 1,5. Для строений из бруса или бревен – 1,25. Для пенобетонных блоков берут коэффициент 1. Для кладки в 1,5 кирпича – 1,5, в 2,5 кирпича – 1,1.


К3 – соотношение площадей окон и пола. Это значение считается очень важным при расчете расхода тепла на отопление: чем больше объем окон относительно площади пола, тем больше теплопотери. Если отношение площадей окон и пола составляет 10-20%, то следует использовать для расчетов коэффициент 0,8-1. Для отношения 21-30% берут значение 1,1-1,2. При отношении площадей от 31 до 50% коэффициент равен 1,3-1,5.


К4 – минимальное температурное значение с внешней стороны дома. Всем понятно, что с понижением температуры воздуха снаружи строения теплопотери увеличиваются. Для температуры до -100С следует брать коэффициент 0,7, а при температуре от -10 до -15 градусов используется значение 0,8-0,9. При морозе до -250С берется коэффициент 1-1,1. Если снаружи очень холодно, до  -35 градусов, то при расчете используют значение 1,2-1,3.


К5 – количество внешних стен строения. Этот фактор оказывает существенное влияние на количество уходящего тепла. Если внешняя стена одна, то коэффициент равен 1, если стены две, то берется значение 1,2. Для трех внешних стен применяют значение 1,22, а для четырех – 1,33.


К6 – количество этажей здания. Этажность здания также имеет значение при расчетах тепловых потерь. Если здание имеет более двух этажей, то расчеты ведутся с учетом коэффициента 0,82. При наличии теплого чердака следует применять коэффициент 0,91, если чердачное помещение не утеплено, то цифру меняют на 1.


К7 – высота помещения. От высоты стен коэффициент зависит следующим образом: для 2,5 метров -1, для 3 метров – 1,05, для 3,5 метров – 1,1, для 4 метров – 1,15, для 4,5 метров – 1,2.


как рассчитать объем помещения для отопления


Чтобы понять применение коэффициентов, можно выполнить примерные расчеты для определенного строения с конкретными параметрами:

  1. Остекление выполнено тройными стеклопакетами, К1 равен 0,85.
  2. Дом из бруса, следовательно, К2 равен 1,25.
  3. Площадь оконных проемов и пола находятся в соотношении 30%, то есть К3 = 1,2.
  4. Самая низкая температура с внешней стороны дома – около -25 градусов, К4 = 1,1.
  5. Дом имеет три внешние стороны, К5 = 1,22.
  6. Строение одноэтажное с утепленным чердачным помещением, К6 равен 0,91
  7. Высота стен составляет 3 метра, К7 = 1,05.
  8. Площадь дома 100 м2.


Подставляя данные в формулу, получаем следующее:


Тп = 100*100*0,85*1,25*1,2*1,1*1,22*0,91*1,05 = 16349,0828.


Следовательно, тепловые потери составят примерно 16,5 КВт. Известное значение теплопотерь позволяет выполнить расчет мощности котла по приведенной формуле:


Мк = 17,5*1,2=21 КВт.

Гидравлические расчеты для системы отопления


Расчеты такого типа помогают правильно подобрать трубы для системы отопления, в частности определить их длину и сечение. Также от этого зависит эффективность работы системы, так как можно легко рассчитать основные параметры насосного оборудования.


Гидравлические расчеты необходимы для определения следующих параметров:


Расход воды в отопительной системе. Для этого применяют формулу:


М = Q/Cp*DPt,


 где Q – общая мощность отопительной системы, Ср – удельная теплоемкость воды, которая в большинстве случаев равна 4,19 КДж, DPt – разница между температурами на входе в котел и на выходе из него.


Чтобы определить расход воды на одном из участков трубопровода, можно воспользоваться аналогичным способом. При этом следует выбирать участки с одинаковой скоростью теплоносителя. Затем определяют общую мощность всех приборов отопления и подставляют в формулу. Важно выполнить расчет всех участков между радиаторами. Немаловажна и формула расчета тепловой энергии, которую тоже стоит использовать.


как посчитать расход тепла на отопление здания


Известная величина расхода теплоносителя в системе позволяет определить его скорость. Для этого используется такая формула:


V = M/P*F.


Здесь М – расход теплоносителя на определенном участке, Р – показатель его плотности, F – площадь поперечного сечения трубы. Для определения последнего параметра применяется формула: 3,14r/2, где буквой r обозначен внутренний диметр трубы.


Потери напора теплоносителя при трении в трубе. Вычислить этот параметр можно по формуле:


DPptp = R*L.


Здесь буквой R обозначены удельные потери при трении, L – длина участка трубы.


Кроме этого следует выполнить расчет снижения напора в местах, где теплоноситель встречает препятствие, в частности речь идет о различной запорной арматуре и фитингах. Для расчета также существует определенная формула, в которой необходимо перемножить плотность воды, ее скорость и общую сумму коэффициентов сопротивлений на определенном участке.


расчет отопления производственного помещения по объему помещения


Выполнив сложение значений на каждом участке между приборами отопления, важно сравнить полученный результат с контрольными параметрами. Для эффективной работы циркуляционного насоса утеря напора на длинных участках трубопровода не должна быть больше 20 КПа, а скорость перемещения воды должна составлять не более 1,5 метров в секунду. При повышенных значениях теплоноситель будет двигаться очень шумно. Кроме того согласно Санитарным Нормам указанная скорость теплоносителя предотвращает появление воздуха в системе.

Определение параметров труб


Сечение трубы и материал, из которого они изготовлены, также имеют значение при расчете тепла для обогрева помещения. Они зависят от суммарной мощности радиаторов:

  • Если мощность не превышает 4,5 КВт, то можно для системы отопления использовать металлопластиковые трубы диаметром 16 мм.
  • Аналогичные трубы диаметром 20 мм могут применяться в системах, мощность которых лежит в пределах 5-8 КВт.
  • Металлопластик диаметром 32 мм подходит для отопления, мощность радиаторов которого составляет 13-21 КВт.
  • Трубы из полипропилена диаметром 25 мм будут безупречно справляться со своими функциями, если мощность батарей составляет от 6 до 11 КВт.


Если минимальное значение мощности равно 16 КВт, а максимальное – 28 КВт, то следует приобретать полипропиленовые трубы, диаметр которых составляет 40 мм.


Тепловой расчет системы отопления — определяем нагрузку на систему и расход тепла

Тепловой расчет системы отопления: формулы, справочные данные и конкретный пример

Тепловой расчёт системы отопления большинству представляется легким и не требующим особого внимания занятием. Огромное количество людей считают, что те же радиаторы нужно выбирать исходя из только площади помещения: 100 Вт на 1 м.кв. Всё просто. Но это и есть самое большое заблуждение. Нельзя ограничиваться такой формулой. Значение имеет толщина стен, их высота, материал и многое другое. Конечно, нужно выделить час-другой, чтобы получить нужные цифры, но это по силам каждому желающему.

Исходные данные для проектирования системы отопления

Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.

План дома для расчёта можно начертить приблизительно на листе

План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему

Он должен содержать внутренние и наружные размеры каждого помещения, окон, наружных дверных проёмов. Внутренние двери остаются без внимания, поскольку на тепловые потери они не оказывают никакого влияния.

Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.

В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).

После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.

Специальное программное обеспечение позволяет быстро рассчитать все показатели и для маленького коттеджа, и для промышленного предприятия

Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика

Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп, где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Тепло уходит из дома не только через окна, но и через плохо утеплённые стены, пол и потолок

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления. При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах.  В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Соотношение площади окон к площади полаЗначение коэффициента
10%0,8
10-19%0,9
20%1,0
21-29%1,1
30%1,2
31-39%1,3
40%1,4
50%1,5

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C — 0,90;
  • -20C — 1,00;
  • -25C — 1,10;
  • -30C — 1,20;
  • -35C — 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё.  А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7.

Коэффициент УДтп равен 100 Ватт/м2.

Разбор расчетов на конкретном примере

Дом, для которого будем определять нагрузку на систему отопления, имеет двойные стеклопакеты (К1 =1), пенобетонные стены с повышенной теплоизоляцией (К2= 1), три из которых выходят наружу (К5=1,22). Площадь окон составляет 23% от площади пола (К3=1,1), на улице около 15С мороза (К4=0,9). Чердак дома холодный (К6=1), высота помещений 3 метра (К7=1,05). Общая площадь составляет 135м2.

Исходные данные известны, значит дальше всё как в школе: подставляет в формулу цифры и получаем ответ:

Пт = 135*100*1*1*1,1*0,9*1,22*1*1,05=17120,565 (Ватт) или Пт=17,1206 кВт

Теперь можно рассчитать мощность отопительной системы:

Мк=1,2*17,1206=20,54472 (кВт).

Расчёт нагрузки и теплопотерь можно выполнить самостоятельно и достаточно быстро. Нужно всего потратить пару часов на приведение в порядок исходных данных, а потом просто подставить значения в формулы. Цифры, которые вы в результате получите помогут определиться с выбором котла и радиаторов.

Оцените статью:

Поделитесь с друзьями!

Расчет годового расхода тепловой энергии на отопление и вентиляцию

Годовой расход тепловой энергии на отопление и вентиляцию.

Введите свои значения (значения десятых отделяются точкой, а не запятой ! ) в поля окрашенных строк и нажмите кнопку Вычислить, под таблицей.


Для пересчета — измените введенные цифры и нажмите Вычислить.


Для сброса всех введенных цифр нажмите на клавиатуре одновременно Ctrl и F5.



Пояснения к калькулятору годового расхода тепловой энергии на отопление и вентиляцию.

Исходные данные для расчета:

  • Основные характеристики климата, где расположен дом:

    • Средняя температура наружного воздуха отопительного периода to.п;
    • Продолжительность отопительного периода: это период года со
      средней суточной температурой наружного воздуха не более +8°C -
      zo.п.

  • Основная характеристика климата внутри дома: расчетная температура внутреннего воздуха tв.р, °С
  • Основная тепловая характеристики дома: удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к
    градусо-суткам отопительного периода, Вт·ч/(м2•°C•сут).
Характеристики климата.

Параметры климата для расчета отопления в холодный период для разных городов России можно посмотреть здесь: (Карта климатологии) или в СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»

Например, параметры для расчета отопления для Москвы (Параметры Б) такие:

  • Средняя температура наружного воздуха отопительного периода: -2,2 °C
  • Продолжительность отопительного периода: 205 сут. (для периода со
    средней суточной температурой наружного воздуха не более +8°C).
Температура внутреннего воздуха.

Расчетную температуру внутреннего воздуха вы можете установит свою, а можете взять из нормативов (смотрите таблицу на рисунке 2 или во вкладке Таблица 1).

В расчетах применяется величина Dd — градусо-сутки отопительного периода (ГСОП), °С×сут. В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП)
to.п и расчетной температуры внутреннего воздуха в здании tв.р на длительность ОП в сутках: Dd = (to.пtв.р)•zo.п.

Удельный годовой расход тепловой энергии на отопление и вентиляцию

Нормированные величины.

Удельный расход тепловой энергии на отопление жилых и общественных зданий за отопительный период не должен превышает приведенных в таблице величин по СНиП 23-02-2003 . Данные можно взять из таблицы на картинке 3 или подсчитать на вкладке Таблица 2 ( переработанный вариант из [Л.1]). По ней выберите для своего дома (площадь / этажность ) значение удельного годового расхода и вставьте в калькулятор. Это характеристика тепловых качеств дома. Все строящиеся жилые дома для постоянного проживания должны отвечать этому требованию.
Базовый и нормируемый по годам строительства удельный годовой расход тепловой энергии на отопление и вентиляцию
основаны на проекте приказа Министерства Регионального развития РФ «Об утверждении требований энергетической эффективности зданий, строений, сооружений», где указаны требования к базовым характеристикам (проект от 2009 года), к характеристикам нормируемым с момента утверждения приказа (условно обозначил Н.2015) и с 2016 года (Н.2016).

Расчетная величина.

Эта величина удельного расхода тепловой энергии может быть указана в проекте дома, её можно подсчитать на основании проекта дома, можно оценить ее размер на основе реальных тепловых измерений или размеров потребленной за год энергии на отопление. Если эта величина указана в Вт·ч/м2, то её надо разделить на ГСОП в °C•сут., получившуюся величину сравнить с нормированной для дома с подобной этажностью и площадью. Если она меньше нормированной, то дом удовлетворяет требованиям по теплозащите, если нет, то дом следует утеплить.

Свои цифры.

Значения исходных данных для расчета даны для примера. Вы можете вставить свои значения в поля на желтом фоне. В поля на розовом фоне вставляете справочные или расчетные данные.

О чем могут сказать результаты расчета.

Удельный годовой расход тепловой энергии, кВт·ч/м2 — можно использовать, чтобы оценить стоимость топлива, расходуемого на отопление и вентиляцию дома в течении отопительного периода, необходимое количество топлива на год для отопления и вентиляции. По количеству топлива можно выбрать емкость резервуара (склада) для топлива, периодичность его пополнения.

Годовой расход тепловой энергии, кВт·ч — абсолютная величина потребляемой за год энергии на отопление и вентиляцию. Изменяя значения внутренней температуры можно увидеть, как изменяется эта величина, оценить экономию или перерасход энергии от изменения поддерживаемой внутри дома температуры, увидеть как влияет неточность термостата на потребление энергии. Особенно наглядно это будет выглядеть в пересчете на рубли.

Градусо-сутки отопительного периода, °С·сут. — характеризуют климатические условия внешние и внутренние. Поделив на это число удельный годовой расход тепловой энергии в кВт·ч/м2, вы получите нормированную характеристику тепловых свойств дома, отвязанную от климатических условий (это может помочь в выборе проекта дома, теплоизолирующих материалов).

О точности расчетов.

На территории Российской Федерации происходят определенные изменения климата. Исследование эволюции климата показало, что в настоящее время наблюдается период глобального потепления. Согласно оценочному докладу Росгидромета, климат России изменился сильнее (на 0,76 °C), чем климат Земли в целом, причем самые значительные изменения произошли на европейской территории нашей страны. На рис. 4 видно, что повышение температуры воздуха в Москве за период 1950–2010 годов происходило во все сезоны. Наиболее существенным оно было в холодный период (0,67 °C за 10 лет).[Л.2]

Основными характеристиками отопительного периода являются средняя температура отопительного сезона, °С, и продолжительность этого периода. Естественно, что ежегодно их реальное значение меняется и, поэтому, расчеты годового расхода тепловой энергии на отопление и вентиляцию домов являются лишь оценкой реального годового расхода тепловой энергии. Результаты этого расчета позволяют сравнить стоимость топлива, расходуемого на отопление и вентиляцию дома в течении отопительного периода.

Приложение:

Литература:

Как рассчитать оплату за отопление по своей квартире?

Вопрос о расчете размера платы за отопление является очень важным, так как суммы по данной коммунальной услуге потребители получают зачастую довольно внушительные, в то же время не имея никакого понятия, каким образом производился расчет.

Расчет платы за отопление в многоквартирном доме

С 2012 года, когда вступило в силу Постановление Правительства РФ от 06 мая 2011 №354 «О предоставлении коммунальных услуг собственникам и пользователям помещений в многоквартирных домах и жилых домов» порядок расчета размера платы за отопление претерпел ряд изменений.

Несколько раз менялись методики расчета, появлялось отопление, предоставленное на общедомовые нужды, которое рассчитывалось отдельно от отопления, предоставленного в жилых помещениях (квартирах) и нежилых помещениях, но затем, в 2013 году отопление вновь стали рассчитывать как единую коммунальную услугу без разделения платы.

Расчет размера платы за отопление менялся с 2017 года, и в 2019 году порядок расчета вновь изменился, появились новые формулы расчета размера платы за отопление, в которых разобраться обычному потребителю не так уж и просто.

Для того чтобы рассчитать размер платы за отопление по своей квартире и выбрать нужную формулу расчета необходимо, в первую очередь знать:

1. Имеется ли на Вашем доме централизованная система теплоснабжения?

Это означает поступает ли тепловая энергия на нужды отопления в Ваш многоквартирный дом уже в готовом виде с использованием централизованных систем или тепловая энергия для Вашего дома производится самостоятельно с использованием оборудования, входящего в состав общего имущества собственников помещений в многоквартирном доме.

Калькулятор расчета отопления

2. Оборудован ли Ваш многоквартирный дом общедомовым (коллективным) прибором учета, и имеются ли индивидуальные приборы учета тепловой энергии в жилых и нежилых помещениях Вашего дома?

Наличие или отсутствие общедомового (коллективного) прибора учета на доме и индивидуальных приборов учета в помещениях Вашего дома существенно влияет на способ расчета размера платы за отопление.

3. Каким способом Вам производится начисление платы за отопление – в течение отопительного периода либо равномерно в течение календарного года?

Способ оплаты за коммунальную услугу по отоплению принимается органами государственной власти субъектов Российской Федерации. То есть, в различных регионах нашей страны плата за отопление может начисляться по разному — в течение всего года или только в отопительный период, когда услуга фактически предоставляется.

4. Имеются ли в Вашем доме помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), или которые имеют собственные источники тепловой энергии?

Именно с 2019 года в связи с судебными решениями, процессы по которым проходили в 2018 году, в расчете стали участвовать помещения, в которых отсутствуют приборы отопления (радиаторы, батареи), что предусмотрено технической документацией на дом, или жилые и нежилые помещения, переустройство которых, предусматривающее установку индивидуальных источников тепловой энергии, осуществлено в соответствии с требованиями к переустройству, установленными действующим на момент проведения такого переустройства законодательством Российской Федерации. Напомним, что ранее методики расчета размера платы за отопление не предусматривали для таких помещений отдельного расчета, поэтому начисление платы осуществлялось на общих основаниях.

Для того чтобы информация по расчету размера платы за отопление была более понятна, мы рассмотрим каждый способ начисления платы отдельно, с применением той или иной формулы расчета на конкретном примере.

При выборе варианта расчета необходимо обращать внимание на все составляющие, которые определяют методику расчета.

Ниже представлены различные варианты расчета с учетом отдельных факторов, которые и определяют выбор расчета размера платы за отопление:

Расчет №1 Размер платы за отопление в жилом/нежилом помещении, ОДПУ на многоквартирном доме отсутствует, расчет размера платы осуществляется в течение отопительного периода. Ознакомиться с порядком и примером расчета →

Расчет №2 Размер платы за отопление в жилом/нежилом помещении, ОДПУ на многоквартирном доме отсутствует, расчет размера платы осуществляется в течение календарного года (12 месяцев). Ознакомиться с порядком и примером расчета →

Расчет №3 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют, плата за отопление производится в течение отопительного периода. Ознакомиться с порядком и примером расчета →

Расчет №3-1 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета во всех жилых/нежилых помещениях отсутствуют, плата за отопление производится равномерно в течение календарного года. Ознакомиться с порядком и примером расчета →

Расчет №4 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены не во всех помещениях многоквартирного дома, плата за отопление производится в течение отопительного периода. Ознакомиться с порядком и примером расчета →

Расчет №4-1Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены не во всех помещениях многоквартирного дома, плата за отопление производится в течение календарного года. Ознакомиться с порядком и примером расчета →

Расчет №5 Размер платы за отопление в жилом/нежилом помещении, на многоквартирном доме установлен ОДПУ, индивидуальные приборы учета установлены всех жилых/нежилых помещениях многоквартирного дома. Ознакомиться с порядком и примером расчета →

Читайте также:

Проектирование газоснабжения — Предварительный расчет годовой потребности в топливе для котельной согласно МДК 4-05.2004

1. Исходные данные

2. Годовые расходы тепла на отопление

2.1 Годовой расход тепла на отопление

2.2 Годовой расход тепла на вентиляцию

2.3 Годовой расход тепла на горячее водоснабжение

2.4 Расход тепла на технологические нужды

2.5 Суммарный годовой расход тепла по котельной

2.6 Годовое количество тепла, отпущенное в наружную тепловую сеть

3. Годовой расход топлива

3.1 Годовой расход газа

3.2 Потребность в условном топливе

3.3 Удельный расход условного топлива на 1 Гкал/ч

3.4 Часовой расход топлива на котельную

Методы оценки потребления пара

Компоненты для разогрева и потери тепла

В любом процессе нагревания прогревающий компонент будет уменьшаться при повышении температуры продукта, а дифференциальная температура по нагревательной спирали уменьшается. Однако компонент потери тепла будет увеличиваться при повышении температуры продукта и емкости, и больше тепла теряется в окружающей среде из емкости или трубопровода. Общая потребность в тепле в любое время является суммой этих двух компонентов.

Если поверхность нагрева имеет размеры только с учетом прогревающего компонента, возможно, что для процесса не будет достаточно тепла, чтобы достичь его ожидаемой температуры. Нагревательный элемент, рассчитанный по сумме средних значений обоих этих компонентов, должен, как правило, быть в состоянии удовлетворить общую потребность в тепле приложения.

Иногда, например, при очень больших резервуарах для хранения сыпучего масла может иметь смысл поддерживать температуру выдерживания ниже требуемой температуры перекачки, поскольку это уменьшит потери тепла с поверхности поверхности резервуара.Можно использовать другой метод нагрева, например, вытяжной нагреватель, как показано на рисунке 2.6.4.

Нагревательные элементы заключены в металлический кожух, выступающий в бак, и сконструированы таким образом, что только масло в непосредственной близости всасывается и нагревается до температуры перекачки. Следовательно, тепло требуется только тогда, когда масло откачивается, а поскольку температура в баке снижается, отставание часто можно обойти. Размер выходного нагревателя будет зависеть от температуры наливного масла, температуры откачки и скорости откачки.

Добавление материалов в технологические резервуары с открытым верхом также можно рассматривать как компонент потери тепла, который увеличивает потребность в тепле. Эти материалы будут служить теплоотводом при погружении, и их необходимо учитывать при определении площади поверхности нагрева.

Независимо от области применения, когда поверхность теплопередачи нуждается в расчете, сначала необходимо оценить общую среднюю скорость теплопередачи. Исходя из этого, потребность в тепле и нагрузке пара могут быть определены для полной нагрузки и запуска.Это позволит определять размер регулирующего клапана в зависимости от любого из этих двух условий при условии выбора.

,

Теплообменники расчет и выбор

Задача 1

Поток горячего продукта, выходящий из реактора, должен быть охлажден от начальной температуры t 1 н = 95 ° C до конечной температуры t 1 к = 50 ° C; для этого он направляется в холодильник, куда подается вода с начальной температурой t 2 н = 20 ° C. Пожалуйста, рассчитайте ∆t ср для условий прямого потока и противотока в холодильнике.

Решение

: 1) Поскольку конечная температура охлаждающей воды t 2 к для прямого потока теплоносителя не может превышать значение конечной температуры горячей теплоносителя (t 1 к = 50 ° C), поэтому предположим, что t 2 к = 40 ° C.

Давайте посчитаем средние температуры на входе и выходе холодильника:

∆t н ср = 95 — 20 = 75;

∆t к ср = 50 — 40 = 10

∆t ср. = 75 — 10 / ln (75/10) = 32.3 ° C

2) Для условий противотока предположим, что конечная температура воды такая же, как и для прямого потока теплоносителя, т. Е. 2 к = 40 ° C.

∆t н ср = 95 — 40 = 55;

∆t к ср = 50 — 20 = 30

∆t ср = 55-30 / ln (55/30) = 41,3 ° C

Задача 2

Используя условия задачи 1, определите требуемую поверхность теплообмена (F) и расход охлаждающей воды (G).Поток горячего продукта G = 15000 кг / час и его теплоемкость C = 3430 Дж / кг · град (0,8 ккал · кг · град). Параметры охлаждающей воды: теплоемкость с = 4080 Дж / кг · град (1 ккал · кг · град), коэффициент теплопередачи k = 290 Вт / м 2 · град (250 ккал / м 2 * град ).

Решение

: Используя уравнение теплового баланса, мы получим выражение для определения теплового потока при нагревании холодной теплоносителя:

Q = Q гт = Q хт

Откуда: Q = Q гт = GC (т 1 н — т 1 к ) = (15000/3600) · 3430 · (95-50) = 643125 W

Предполагая, что t 2 к = 40 ° C, мы найдем скорость потока холодной теплоносителя:

G = Q / c (т 2 к — т 2 н ) = 643125/4080 (40 — 20) = 7.9 кг / с = 28 500 кг / ч

Требуемая поверхность теплообмена

В случае прямого потока:

F = Q / k · ∆t ср. = 643125/290 · 32,3 = 69 м 2

В случае встречного потока:

F = Q / k · ∆t ср. = 643125/290 · 41,3 = 54 м 2

Задача 3

На заводе газ транспортируется по стальному трубопроводу с наружным диаметром d 2 = 1500 мм, толщиной стенки δ 2 = 15 мм, теплопроводностью λ 2 = 55 Вт / м · град.С внутренней стороны трубопровод облицован огнеупорным кирпичом, толщина которого δ 1 = 85 мм, теплопроводность λ 1 = 0,91 Вт / м · град. Коэффициент теплопередачи от газа к стене составляет α 1 = 12,7 Вт / м 2 · град; от наружной поверхности стены до воздуха составляет α 2 = 17,3 Вт / м 2 · град. Пожалуйста, найдите коэффициент теплопередачи от газа к воздуху.

Решение

: 1) Определим внутренний диаметр трубопровода:

d 1 = d 2 — 2 · (δ 2 + δ 1 ) = 1500-2 (15 + 85) = 1300 мм = 1.3 м

Средний диаметр подкладки:

d 1 ср. = 1300 + 85 = 1385 мм = 1,385 м

Средний диаметр стенки трубопровода:

d 2 ср. = 1500 — 15 = 1485 мм = 1,485 м

Рассчитаем коэффициент теплопередачи по формуле:

k = [(1 / α 1 ) · (1 / d 1 ) + (δ 1 / λ 1 ) · (1 / d 1 ср ) + (δ 2 / λ 2 ) · (1 / д 2 ср. ) + (1 / α 2 )] -1 = [(1/12.7) · (1 / 1,3) + (0,085 / 0,91) · (1 / 1,385) + (0,015 / 55) · (1 / 1,485) + (1/17,3)] -1 = 5,4 Вт / м 2 · град

Задача 4

Однопроходной кожухотрубный теплообменник нагревает метанол с водой от начальной температуры от 20 до 45 ° C. Поток воды охлаждается от 100 до 45 ° С. Трубный пучок теплообменника содержит 111 трубок, диаметр одной трубки составляет 25х2,5 мм. Скорость потока метанола через трубки составляет 0,8 м / с (мас.). Коэффициент теплопередачи составляет 400 Вт / м 2 · град.Пожалуйста, определите общую длину трубного пучка.

Решение:

Давайте определим среднюю разницу температур теплоносителя как среднее логарифмическое значение.

∆t н ср = 95 — 45 = 50;

∆t к ср = 45 — 20 = 25

∆t ср = 50 + 25/2 = 37,5 ° C

Затем, давайте определим среднюю температуру теплоносителя, протекающего через боковое пространство трубки.

∆t ср = 45 + 20/2 = 32.5 ° C

Давайте определим массовый расход метанола.

G сп = n · 0,785 · д вн 2 · ш сп · ρ сп = 111 · 0,785 · 0,02 2 · 0,8 · = 21,8

ρ сп = 785 кг / м 3 — плотность метанола при 32,5 ° С, значение взято из справочной литературы.

Тогда давайте определим тепловой поток.

Q = G сп с сп к сп — т н сп ) = 21.8 · 2520 (45 — 20) = 1,337 · 10 6 W

с сп = 2520 кг / м 3 — теплоемкость метанола при 32,5 ° С, значение взято справочной литературой.

Давайте определим необходимую поверхность теплообмена.

F = Q / K∆t ср. = 1,337 · 10 6 / (400 · 37,5) = 91,7 м 3

Давайте вычислим общую длину пучка труб по среднему диаметру труб.

L = F / nπd ср. = 91.7/111 · 3,14 · 0,0225 = 11,7 м.

В соответствии с рекомендациями, общая длина пучка труб должна быть разделена на несколько секций предлагаемого стандартного размера с требуемым запасом поверхности теплообмена, которая должна быть предоставлена.

Задача 5

Пластинчатый теплообменник используется для нагрева потока 10% раствора NaOH от 40 до 75 ° C. Расход гидроксида натрия составляет 19000 кг / час. Конденсат водяного пара с расходом 16000 кг / час и начальной температурой 95 ° C используется в качестве теплоносителя.Предположим, что коэффициент теплопередачи составляет 1400 Вт / м 2 · град. Пожалуйста, рассчитайте основные параметры пластинчатого теплообменника.

Решение

: Найдем количество передаваемого тепла.

Q = G р с р к р — т н р ) = 19000/3600 · 3860 (75 — 40) = 713 028 W

Из уравнения теплового баланса, давайте определим конечную температуру конденсата.

т к х = (Q · 3600 / G к с к ) — 95 = (713028 · 3600) / (16000 · 4190) — 95 = 56.7 ° C

с р , к — теплоемкость раствора и конденсата, значения приведены в справочных материалах.

. Определим средние температуры теплоносителя.

∆t н ср = 95 — 75 = 20;

∆t к ср = 56,7 — 40 = 16,7

∆t ср = 20 + 16,7 / 2 = 18,4 ° C

Давайте определим поперечное сечение каналов; для расчета примем массовую скорость конденсата Wk = 1500 кг / м 2 · сек.

S = G / W = 16000/3600 · 1500 = 0,003 м 2

Предполагая ширину канала b = 6 мм, мы найдем ширину спирали.

B = S / b = 0,003 / 0,006 = 0,5 м

На основании рекомендаций предположим, что ширина спирали соответствует ближайшему большему табличному значению B = 0,58 м.

Давайте уточним сечение канала

S = B · b = 0,58 · 0,006 = 0,0035 м 2

и массовая скорость потоков

W р = G р / S = 19000/3600 · 0.0035 = 1508 кг / м 3 · сек

W к = G к / S = 16000/3600 · 0,0035 = 1270 кг / м 3 · сек

Поверхность теплопередачи спирального теплообменника определяется следующим образом.

F = Q / K∆t ср. = 713028 / (1400 · 18,4) = 27,7 м 2

Давайте определим рабочую длину спирали

L = F / 2B = 27,7 / (2 · 0,58) = 23,8 м

Далее, давайте определим шаг спирали, задав толщину листа δ = 5 мм.

т = b + δ = 6 + 5 = 11 мм

o Для расчета числа витков каждой спирали начальный диаметр спирали должен приниматься, исходя из рекомендаций, как d = 200 мм.

N = (√ (2L / πt) + x 2 ) — x = (√ (2 · 23,8 / 3,14 · 0,011) +8,6 2 ) — 8,6 = 29,5

, где х = 0,5 (д / т — 1) = 0,5 (200/11 — 1) = 8,6

Необходимый диаметр спирали определяется следующим образом.

D = d + 2Nt + δ = 200 + 2 · 29,5 · 11 + 5 = 860 мм.

Задача 6

Определите гидравлическое сопротивление теплоносителя, созданного в четырехходовом пластинчатом теплообменнике с длиной канала 0,9 м и эквивалентным диаметром 7,5 × 10 -3 , когда бутиловый спирт охлаждают водой. Свойства бутилового спирта следующие: скорость потока G = 2,5 кг / с, скорость W = 0,240 м / с и плотность ρ = 776 кг / м 3 (критерий Рейнольдса Re = 1573> 50). Свойства охлаждающей воды следующие: скорость потока G = 5 кг / с, скорость W = 0.175 м / с и плотность ρ = 995 кг / м 3 (критерий Рейнольдса Re = 3101> 50).

Решение

: Определим коэффициент местного гидравлического сопротивления.

ζ бс = 15 / Re 0,25 = 15/1573 0,25 = 2,38

ζ в = 15 / Re 0,25 = 15/3101 0,25 = 2,01

Уточним скорость спирта и воды в фитингах (при условии, что d шт = 0,3 м)

W шт = G бс / ρ бс 0.785d шт. 2 = 2,5 / 776 · 0,785 · 0,3 2 = 0,05 м / с меньше 2 м / с, поэтому его можно игнорировать.

W шт = G в / ρ в 0,785d шт 2 = 5/995 · 0,785 · 0,3 2 = 0,07 м / с меньше 2 м / с, поэтому может быть проигнорированным

Давайте определим гидравлическое сопротивление для бутилового спирта и охлаждающей воды.

∆Р бс = хζ · (л / д) · (ρ бс w 2 /2) = (4 · 2.38 · 0,9 / 0,0075) · (776 · 0,240 2 /2) = 25532 Па

∆Р в = хζ · (л / д) · (ρ в в 2 /2) = (4 · 2,01 · 0,9 / 0,0075) · (995 · 0,175 2 /2) = 14699 Па.

,

PDH Курсы онлайн. PDH для профессиональных инженеров. PDH Engineering.

«Мне нравится широта ваших курсов HVAC; не только экология или экономия энергии

курсов. «

Рассел Бейли, П.Е.

Нью-Йорк

«Это укрепило мои текущие знания и дополнительно научило меня нескольким новым вещам

, чтобы выставить меня на новые источники

информации.»

Стивен Дедук, П.Е.

Нью-Джерси

«Материал был очень информативным и организованным. Я многому научился, и они были

очень быстро отвечают на вопросы.

Это было на высшем уровне. Будет использовать

снова. Спасибо. «

Блэр Хейворд, П.Е.

Альберта, Канада

«Простой в использовании сайт.Хорошо организовано. Я действительно буду использовать ваши услуги снова.

Я передам вашу компанию

имя другим на работе. «

Рой Пфлайдерер, П.Е.

Нью-Йорк

«Справочный материал был превосходным, и курс был очень интересным, особенно, поскольку я думал, что я уже был знаком

с подробной информацией о Канзасе

Городская авария Хаятт.»

Майкл Морган, П.Е.

Техас

«Мне очень нравится ваша бизнес-модель. Мне нравится возможность просматривать текст перед покупкой. Я нашел класс

информативно и полезно

в моей работе. «

Уильям Сенкевич, П.Е.

Флорида

«У вас есть большой выбор курсов, и статьи очень информативны.Вы

— лучшее, что я нашел «.

Рассел Смит, П.Е.

Пенсильвания

«Я считаю, что такой подход позволяет работающему инженеру легко заработать PDH, предоставив время для обзора

материал. «

Jesus Sierra, P.E.

Калифорния

«Спасибо, что разрешили мне просмотреть неправильные ответы.На самом деле,

человек учится больше

от сбоев. «

John Scondras, P.E.

Пенсильвания

«Курс был хорошо составлен, и использование конкретных примеров эффективно

способ обучения. «

Джек Лундберг, П.Е.

Висконсин

«Я очень впечатлен тем, как вы представляете курсы; i.э., разрешив

студент пересмотреть курс

материал до оплаты и

получает викторину. «

Арвин Свангер, П.Е.

Вирджиния

«Спасибо за предложение всех этих замечательных курсов. Я, конечно, выучил и

очень понравилось. «

Мехди Рахими, П.Е.

Нью-Йорк

«Я очень рад предложениям курса, качеству материала и простоте поиска и

принимает ваш он-лайн

курсов.»

Уильям Валериоти, П.Е.

Техас

«Этот материал в значительной степени оправдал мои ожидания. Курс был прост в использовании. Фотографии в основном обеспечивали хорошее визуальное отображение

обсуждаемых тем. «

Майкл Райан, П.Е.

Пенсильвания

«Именно то, что я искал. Нужен 1 кредит по этике и нашел его здесь.»

Gerald Notte, P.E.

Нью-Джерси

«Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это было

информативно, выгодно и экономично.

Я очень рекомендую его

для всех инженеров. «

Джеймс Шурелл, П.Е.

Огайо

«Я ценю вопросы» реального мира «и имеют отношение к моей практике, и

не основано на некоторых неясных раздел

законов, которые не применяются

«нормальная» практика.»

Марк Каноник, П.Е.

Нью-Йорк

«Большой опыт! Я многому научился возвращаться к своему медицинскому устройству.

организации. «

Иван Харлан, П.Е.

Теннесси

«Материал курса имел хорошее содержание, не слишком математическое, с хорошим акцентом на практическое применение технологий».

Евгений Бойл, П.E.

Калифорния

«Это был очень приятный опыт. Тема была интересной и хорошо представленной,

и онлайн формат был очень

доступны и легко

использовать. Большое спасибо. «

Патриция Адамс, П.Е.

Канзас

«Отличный способ достичь соответствия требованиям PE Continuation Education в течение срока действия лицензии.»

Джозеф Фриссора, П.Е.

Нью-Джерси

«Должен признаться, я действительно многому научился. Это помогает провести печатную викторину в течение

Обзор текстового материала. Я

также оценили просмотр

фактических случаев. «

Жаклин Брукс, П.Е.

Флорида

«Документ Общие ошибки ADA при проектировании объектов очень полезен.

Тест

требовал исследования в

документ , но ответы были

легко доступны. «

Гарольд Катлер, П.Е.

Массачусетс

«Это было эффективное использование моего времени. Спасибо за то, что у вас есть выбор

в транспортной инженерии, которая мне нужна

для выполнения требований

PTOE сертификация.»

Джозеф Гилрой, П.Е.

Иллинойс

«Очень удобный и доступный способ заработать CEU для моих требований Delaware PG».

Ричард Роудс, П.Е.

Мэриленд

«Многому научился с защитным заземлением. До сих пор все курсы, которые я выбрал, были великолепны.

Надеюсь увидеть больше 40%

дисконтных курсов.»

Кристина Николас, П.Е.

Нью-Йорк

«Только что закончили экзамен по радиологическим стандартам и с нетерпением ждем дополнительных

курсов. Процесс прост и

намного эффективнее, чем

приходится путешествовать. «

Деннис Мейер, П.Е.

Айдахо

«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов

Инженеры, чтобы получить единицы PDH

в любое время.Очень удобно. «

Пол Абелла, П.Е.

Аризона

«Пока это было здорово! Будучи полной матерью двоих детей, у меня не так много

время для исследования, где

получить мои кредиты от. «

Кристен Фаррелл, П.Е.

Висконсин

«Это было очень познавательно и познавательно.Легко , чтобы понять с иллюстрациями

и графики; определенно делает это

легче поглотить все

теории. «

Виктор Окампо, P.Eng.

Альберта, Канада

«Хороший обзор принципов полупроводника. Мне понравилось проходить курс в

мой собственный темп во время моего утра

метро добираться

на работу.»

Clifford Greenblatt, P.E.

Мэриленд

«Просто найти интересные курсы, скачать документы и взять

викторина.

.

БТЕ Калькулятор

AC BTU Калькулятор

Используйте этот калькулятор для оценки потребностей в охлаждении типичной комнаты или дома, например, для определения мощности оконного кондиционера, необходимого для жилой комнаты или центрального кондиционера для всего дома.

Калькулятор общего назначения переменного или нагрева BTU

Это калькулятор общего назначения, который помогает оценить BTU, необходимые для обогрева или охлаждения области. Требуемое изменение температуры — это необходимое увеличение / уменьшение температуры наружного воздуха для достижения желаемой температуры в помещении.Например, в Бостоне без отопления зимой температура может достигать -5 ° F. Для достижения температуры 75 ° F требуется повышение температуры на 80 ° F. Этот калькулятор может только оценить приблизительные оценки.

Что такое BTU?

Британская тепловая единица, или BTU, является энергетической единицей. Это примерно энергия, необходимая для нагрева одного фунта воды на 1 градус Фаренгейта. 1 БТЕ = 1 055 Дж, 252 калории, 0,293 Ватт-час или энергии, выделяемой при сжигании одной спички.1 ватт — это примерно 3,412 БТЕ в час.

БТЕ часто используется в качестве ориентира для сравнения различных видов топлива. Несмотря на то, что они являются физическими товарами и соответственно количественно определены, например, по объему или в бочках, они могут быть преобразованы в БТЕ в зависимости от энергии или теплосодержания, присущего каждой величине. BTU как единица измерения более полезна, чем физическая величина, поскольку внутренняя стоимость топлива является источником энергии. Это позволяет сравнивать и сопоставлять множество различных товаров с собственными энергетическими свойствами; например, одним из самых популярных является природный газ для нефти.

BTU также может использоваться прагматично в качестве ориентира для количества тепла, которое генерирует прибор; чем выше показатель BTU прибора, тем больше теплопроизводительность. Что касается кондиционирования воздуха в домах, даже если кондиционеры предназначены для охлаждения домов, BTU на техническом ярлыке указывают, сколько тепла может отвести кондиционер из соответствующего окружающего воздуха.

Размер и высота потолка

Очевидно, что помещение или дом меньшей площади с более короткой длиной и шириной требует меньше БТЕ для охлаждения / нагрева.Тем не менее, объем является более точным измерением, чем площадь для определения использования BTU, потому что высота потолка учитывается в уравнении; Для каждого трехмерного кубического квадратного фута пространства потребуется определенное количество BTU для соответствующего охлаждения / нагрева. Чем меньше объем, тем меньше BTU требуется для охлаждения или нагрева.

Ниже приведена приблизительная оценка охлаждающей способности, которая необходима системе охлаждения для эффективного охлаждения комнаты / дома, на основе только квадратных метров комнаты / дома, предоставленных EnergyStar.гов.

Охлаждаемая площадь (квадратные футы) Необходимая мощность (БТЕ в час)
100-150 5000
150 до 250 6000
250 до 300 7 000
от 300 до 350 8 000
от 350 до 400 9 000
400 до 450 10000
450 до 550 12 000
550 до 700 14 000
700 до 1000 18 000
от 1000 до 1200 21 000
1200 до 1 400 23 000
1400 до 1500 24 000
1500 до 2000 30 000
от 2000 до 2500 34 000

Состояние изоляции

Теплоизоляция определяется как уменьшение теплообмена между объектами, находящимися в тепловом контакте или в диапазоне радиационного воздействия.Важность изоляции заключается в ее способности снизить использование BTU путем максимально возможного управления его неэффективной тратой из-за энтропийной природы тепла — он имеет тенденцию течь от теплого к холодному, пока не исчезнут перепады температур.

Как правило, новые дома имеют лучшую изоляционную способность, чем старые дома, благодаря технологическим достижениям и более строгим строительным нормам. Владельцы старых домов с устаревшей изоляцией, которые решат провести модернизацию, не только улучшат способность дома к изоляции (что приведет к более дружественным счетам за коммунальные услуги и более теплой зиме), но также оценят стоимость своих домов.

Значение R — это обычно используемая мера теплового сопротивления или способности тепла переноситься от горячего к холодному через материалы и их сборку. Чем выше значение R определенного материала, тем больше он устойчив к теплопередаче. Другими словами, при покупке домашней теплоизоляции продукты с более высокой R-стоимостью лучше изолируют, хотя обычно они дороже.

При выборе правильного ввода условия изоляции в калькулятор, используйте обобщенные предположения.Бунгало на пляже, построенное в 1800-х годах без каких-либо ремонтных работ, вероятно, следует отнести к категории бедных. 3-летний дом в недавно развитом сообществе, скорее всего, заслуживает хорошего рейтинга. Окна обычно имеют меньшее тепловое сопротивление, чем стены. Поэтому комната с большим количеством окон обычно означает плохую изоляцию. По возможности старайтесь устанавливать стеклопакеты для улучшения изоляции.

Желаемое увеличение или уменьшение температуры

Чтобы найти требуемое изменение температуры для ввода в калькулятор, найдите разницу между неизменной температурой наружного воздуха и требуемой температурой.Как правило, температура между 70 и 80 ° F является комфортной температурой для большинства людей.

Например, дом в Атланте может захотеть определить использование BTU в зимний период. Зима в Атланте, как правило, колеблется около 45 ° F с вероятностью иногда достичь 30 ° F. Желаемая температура обитателей составляет 75 ° F. Следовательно, желаемое повышение температуры будет 75 ° F — 30 ° F = 45 ° F.

Дома в более экстремальных климатических условиях, очевидно, потребуют более радикальных изменений температуры, что приведет к большему использованию BTU.Например, отопление дома на Аляске зимой или охлаждение дома летом в Хьюстоне потребует больше БТЕ, чем отопление или охлаждение дома в Гонолулу, где температура обычно держится около 80 ° F в течение всего года.

Другие факторы

Очевидно, что размер и площадь дома или комнаты, высота потолка и условия изоляции очень важны при определении количества BTU, необходимых для отопления или охлаждения дома, но есть и другие факторы, которые следует иметь в виду:

  • Количество жителей, проживающих в жилых помещениях.Тело человека рассеивает тепло в окружающую атмосферу, что требует большего количества BTU для охлаждения и меньшего количества BTU для обогрева помещения.
  • Попробуйте установить конденсатор кондиционера на самой тенистой стороне дома, которая обычно находится к северу или востоку от него. Чем больше конденсатор подвергается воздействию прямых солнечных лучей, тем тяжелее он должен работать из-за более высокой температуры окружающего воздуха, которая потребляет больше БТЕ. Мало того, что размещение его в более темном месте приведет к большей эффективности, но это продлит срок службы оборудования.Можно попытаться разместить тенистые деревья вокруг конденсатора, но имейте в виду, что конденсаторы также требуют хорошего окружающего воздушного потока для лучшей эффективности. Убедитесь, что соседняя растительность не мешает работе конденсатора, блокируя приток воздуха в блок и заглушая его.
  • Размер конденсатора кондиционера. Единицы слишком большие, крутые дома слишком быстро. Таким образом, они не проходят запланированные циклы, которые были специально разработаны для завода. Это может сократить срок службы кондиционера.С другой стороны, если устройство слишком маленькое, оно будет работать слишком часто в течение дня, также перегружая себя до изнеможения, потому что оно не используется эффективно по назначению.
  • Потолочные вентиляторы

  • могут помочь снизить использование BTU за счет улучшения циркуляции воздуха. Любой дом или комната может стать жертвой мертвых зон или определенных областей неправильного воздушного потока. Это может быть задний угол гостиной за диваном, ванная комната без вентиляции и большого окна или прачечная. Термостаты, помещенные в мертвые зоны, могут неточно управлять температурой домов.Работающие вентиляторы могут помочь равномерно распределить температуру по всей комнате или дому.
  • Цвет крыш может влиять на использование BTU. Более темная поверхность поглощает больше лучистой энергии, чем более светлая. Даже грязно-белые крыши (с заметно более темными оттенками) по сравнению с более новыми, более чистыми поверхностями привели к заметным различиям.
  • Снижение эффективности обогревателя или кондиционера со временем. Как и у большинства приборов, эффективность обогревателя или кондиционера уменьшается с ростом использования.Обычно кондиционер теряет 50% и более своей эффективности при работе с недостаточным количеством жидкого хладагента.
  • Форма дома. Длинный узкий дом имеет больше стен, чем квадратный дом с такими же квадратными метрами, что означает потерю тепла.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *