Самый нетеплопроводный металл: Теплопроводность металлов и сплавов: от чего зависит коэффициент, указываемый в таблицах

Содержание

Какой металл самый теплопроводный

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

  • Теплофизические свойства и температура замерзания водных растворов NaCl и CaCl2
  • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Читайте также

Добавить комментарий Отменить ответ

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства h3O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна. Теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Плотность азота, свойства жидкого и газообразного N2

Плотность азота N2 и его теплофизические свойства В таблице указана плотность азота и его теплофизические…

Таблица плотности веществ

Представлена таблица плотности веществ при комнатной температуре: плотность более 500 веществ и материалов (пластик, металлы, минералы, пищевые продукты…

Свойства маргарина

Свойства маргарина распространенных сортов Плотность, теплоемкость, теплопроводность и температуропроводность представлены для животного, безмолочного и сливочного…

Теплопроводность, теплоемкость, вязкость, свойства масла АМТ-300

В таблице представлены теплофизические свойства масла АМТ-300 такие, как давление паров, плотность масла, теплопроводность, удельная…

Теплоизоляционные материалы: виды, свойства, теплопроводность

Представлены виды, свойства и теплопроводность теплоизоляционных материалов, их состав, и плотность. Теплопроводность теплоизоляции изменяется в…

Теплопроводность и плотность теплоизоляции. Максимальная рабочая температура

Плотность и теплопроводность теплоизоляции в виде плит и сегментов В таблице даны значения плотности и…

Плотность жидкостей

Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения…

Теплопроводность пенобетона различной плотности

Таблицы значений коэффициента теплопроводности и плотности пенобетона и других ячеистых материалов при комнатной температуре…

Удельная теплота сгорания топлива и горючих материалов

Таблицы удельной теплоты сгорания топлива и горючих материалов (уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ, метан, водород и т. д.)

Источник: thermalinfo.ru

Какой металл самый теплопроводный

Именно серебро лидирует в этом негласном конкурсе, имея теплопроводность в 408 Ватт на метр помноженный на Кельвин, опережая по этому показателю такие элементы с высоким коэффициентом удельной теплопроводности, как медь (384 Вт/(м*К), золото (312 Вт/(м*К) и алюминий (203 Вт/(м*К).

Будучи обладателем пальмы первенства, самый теплопроводный металл имеет наиболее широкое применение в различных сферах производства, причем, список того, где можно использовать серебро, можно продолжать до чуть ли не до бесконечности. Примечательно, что благодаря своим уникальным качествам, наиболее теплопроводный металл в мире использовался с самых давних времен, ведь согласно сохранившихся исторических очерков, еще воины древнего Египта широко использовали серебро для максимального ускорения процесса заживления ран и увечий, полученных в жестоких боях. Так, изготавливая тоненькие пластинки из чистого серебра и прикладывая их к ранам различны типов, они с удивлением отмечали целебные свойства, которыми обладал этот благородный металл.

Нельзя не уделить внимание той огромной роли серебра, которую оно играло для православия, ведь в большинстве русских церквей все сосуды и атрибутику старались изготавливать именно из него и ни для кого не секрет, что посеребренная вода, именуемая святой, способна сохранятся годами в закрытых емкостях, не меняя при этом свой цвет и запах. А все потому, что серебро способно выступать, как своеобразное средство для дезинфекции, применимое не только для воды. Однако, на этом полезные свойства данного металла отнюдь не заканчиваются, ведь помимо высокой теплопроводности, он обладает отличной электропроводностью, а также совершенно не подвержен процессам окисления даже при длительном контакте с влажной средой. Благодаря своим многочисленным уникальным свойствам, серебро широко используется для изготовления мелких комплектующих для различного рода электроприборов, и именно поэтому техника с деталями из этого благородного металла пользуется таким большим спросом.

Рассуждая на тему о сферах применения серебра, невозможно упустить из внимания тот вклад, который продолжает вносить этот металл в ювелирное искусство, ведь оно пользуется не меньшей популярностью, чем золото. Причем, помимо всевозможных колец, сережек и браслетов, серебро используется для изготовления изысканных столовых приборов и различного рода декоративных элементов, в том числе интерьерных. И речь идет не только о красоте, но и о функциональности. В качестве примера можно привести зеркала, которые вместо традиционного алюминия покрывают тончайшим слоем серебра, чтобы улучшить их отражающую способность. Кроме того, серебро прекрасно подходит для изготовления целого ряда вспомогательных инструментов и довольно сложно придумать лучший материал, с помощью которого можно будет выполнять чеканку монет и орденов. При этом использовать его можно не только в чистом виде, но и во всевозможных сплавах и соединениях.

Так, определенные химические соединения, в которых принимает непосредственное участие аргентум, активно используются для изготовления зарядных батарей аккумуляторов, которые славятся своей способностью при относительно малом внутреннем сопротивлении генерировать большой ток.

Источник: samogoo.net

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

Источник: prompriem.ru

Редактировать статью Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.

Тепло — это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта — тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала — например, большинство металлов хорошо проводят тепло, а дерево и пластик — гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой — при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом — таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее — мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Материал

Теплопроводность, Вт/(м·K)
Алмаз1001—2600
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Оксид алюминия40
Кварц8
Гранит2,4
Бетон сплошной1,75
Базальт1,3
Стекло1-1,15
Термопаста КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Стекловата0,032-0,041
Каменная вата0,034-0,039
Воздух (300 K, 100 кПа)0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата — нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и «всплывает» наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи — это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (

600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая — порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (

1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме — именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

  • Данные по теплопроводности взяты из Wikipedia, а туда они попали из справочников, таких, как:
  • «Физические величины» под ред. И. С. Григорьева
  • CRC Handbook of Chemistry and Physics
  • Более строгое описание теплопроводности можно найти в учебнике по физике, например в «Общей физике» Д.В.Сивухина (Том 2). В 4 томе есть глава, посвящённая тепловому излучению (в т.ч. закону Стефана-Больцмана)

Источник: chemiday.com

Теплопроводность металлов и сплавов

Теплопроводность изменяется в диапазоне: . Самая большая теплопроводность у серебра, а наименьшая у висмута. С увеличение температуры теплопроводность металлов и сплавов уменьшается.

Общая зависимость значений коэффициентов теплопроводности веществ, приведена на Рис. 9.2.

Рис. 9.2 Значения коэффициентов теплопроводности веществ

Уравнение Фурье-Кирхгофа устанавливает связь между временными и пространственными изменениями температуры в любой точке тела. Схема площади поверхности тела, воспринимаемая тепловой поток и принятая система координат приведены на Рис. 9.3.

Рис. 9.3 Тело и принятая система координат

При постоянной теплопроводности уравнение упрощается:

,

где — коэффициент температуропроводности, м2/с.

Физический смысл этого коэффициента означает что тела, имеющие большую температуропроводность, нагреваются (охлаждаются) более быстрее по сравнению с телами, имеющими меньшую температуропроводность.

Дифференциальное уравнение описывает множество явлений теплопроводности. Чтобы из бесчисленного количества этих явлений выделить одно и дать его полное математическое описание, к дифференциальному уравнению теплопроводности необходимо добавить условия однозначности, которые содержат геометрические, физические, временные и граничные условия.

Геометрические условия определяют форму и размеры тела, в котором протекает изучаемый процесс.

Физические условия задаются теплофизическим параметрами λ, сv, и распределением внутренних источников теплоты.

Временные (начальные) условия содержат распределение температуры тела и его параметров в начальный момент времени.

Граничные условия определяют особенности протекания процесса на поверхности тела. Граничные условия могут быть заданы несколькими способами.

Граничные условия I рода.В этом случае задается распределение температуры на поверхности тела для каждого момента времени: .

— температура поверхности тела; координаты поверхности тела; — время.

Граничные условия II рода. В этом случае заданной является величина плотности теплового потока для каждой точки поверхности тела в любой момент времени: .

Граничные условия III рода. В этом случае задается температура среды и условия теплообмена этой среды с поверхностью тела.

Для описания интенсивности теплообмена между поверхностью тела и средой используется гипотеза Ньютона — Рихмана, согласно которой:

. Здесь — коэффициент теплоотдачи Вт/(м 2 К).

Количественно коэффициент теплоотдачи — количество теплоты, отдаваемая (или воспринимаемая) единицей поверхности при разности температур между поверхностью тела и окружающей средой в один градус.

С учетом этого Граничные условия III рода запишется в виде:

Граничные условия IV рода формируются на основании равенства тепловых потоков, проходящих через поверхность соприкосновения тел:

При совершенном тепловом контакте оба тела на поверхности соприкосновения имеют одинаковую температуру.

Дифференциальное уравнение теплопроводности совместно с условиями однозначности дает полную математическую формулировку конкретной задачи теплопроводности, решение которой, может быть выполнено аналитически, численным или экспериментальным (подобий и аналогий) методами.

Стационарная теплопроводность через однослойную плоскую стенку при граничных условиях I рода

При стационарном режиме температурное поле не зависит от времени, соответственно дифференциальное уравнение теплопроводности примет вид:

Рис.9.4 Схема однослойной плоской стенки (теплопроводность)

Для случая неограниченной плоской стенки Рис.9.4, при граничных условиях 1-го рода, дифференциальное уравнение теплопроводности запишется в виде: . Считая, что внутренний источник теплоты , для конечных размеров стенки уравнение примет вид:

где q – плотность теплового потока, [Вт/м 2 ];

l — коэффициент теплопроводности вещества ; l/d — тепловая проводимость. d/l =R – термическое сопротивление (м·К)/Вт.

Стационарная теплопроводность через цилиндрическую стенку.

1). Однородная цилиндрическая стенка.

Рассмотрим однородный однослойный цилиндр длиной l, внутренним диаметром d1и внешним диаметром d2 Рис.9.5.

Рис.9.5 Схема однослойной цилиндрической стенки

Температуры поверхностей стенки –tст1 и tст2.

Уравнение теплопроводности по закону Фурье в цилиндрических координатах: Q = — λ·2·π·r ·l· ∂t / ∂r или Q = 2·π·λ·l·Δt/ln(d2/d1), где: Δt = tст1 – tст2 – температурный напор; λ – κоэффициент теплопроводности стенки.

Для цилиндрических поверхностей вводят понятия тепловой поток единицы длины l цилиндрической поверхности (линейная плотность теплового потока), для которой расчетные формулы будут: ql = Q/l =2·π·λ·Δt /ln(d2/d1), [Вт/м].

Температура тела внутри стенки с координатой dх:

tx = tст1 – (tст1 – tст2) ln(dx/d1) / ln(d2/d1).

Допустим, цилиндрическая стенка состоит из трех плотно прилегающих слоев Рис.9.6 —многослойная цилиндрическая стенка.

Рис.9.6 Схема многослойной цилиндрической стенки

Температура внутренней поверхности стенки – tст1, температура наружной поверхности стенки –tст2, коэффициенты теплопроводности слоев -λ1, λ2, λ3, диаметры слоев d1, d2, d3, d4. Тепловые потоки для слоев будут:

1-й слой Q = 2·π· λ1·l·(tст1 – tсл1)/ ln(d2/d1),

2-й слой Q = 2·π·λ2·l·(tсл1 – tсл2)/ ln(d3/d2),

3-й слой Q = 2·π·λ3·l·(tсл2 – tст2)/ ln(d4/d3),

Решая полученные уравнения, получаем для теплового потока через многослойную стенку:

Q = 2·π·l·(tст1 – tст2) / [ln(d2/d1)/λ1 + ln(d3/d2)/λ2 + ln(d4/d3)/λ3].

Для линейной плотности теплового потока имеем:

ql = Q/l = 2·π· (t1 – t2) / [ln(d2/d1)/λ1 + ln(d3/d2)/λ2 + ln(d4/d3)/λ3].

Температуру между слоями находим из следующих уравнений:

tсл1 = tст1 – ql·ln(d2/d1) / 2·π·λ1. tсл2 = tсл1 – ql·ln(d3/d2) / 2·π·λ2.

Однородный полый шар Рис.9.7.

Рис.9.7 Однородная шаровая стенки

Внутренний диаметр d1, внешний диаметр d2, температура внутренней поверхности стенки – tст1, температура наружной поверхности стенки –tст2, коэффициент теплопроводности стенки -λ. Уравнение теплопроводности по закону Фурье в сферических координатах: Q = — λ·4·π·r 2 ∂t / ∂r или

Q =4·π·λ·Δt/(1/r2 — 1/r1) =2·π·λ·Δt/(1/d1 — 1/d2) =

= 2·π·λ·d1·d2·Δt /(d2 — d1) = π·λ·d1·d2·Δt / δ,

где: Δt = tст1 – tст2 – температурный напор; δ –толщина стенки.

Нестационарная теплопроводность характеризуется изменением температурного поля во времени и связана с изменением энтальпии тела при его нагреве или охлаждении. Безразмерная температура тела Θ определяется с помощью числа Био и Фурье и безразмерной координаты, обозначаемой для пластины , а для цилиндра .

Для дальнейшего рассмотрения вопроса примем, что охлаждение (нагревание) тел происходит в среде с постоянной температурой , при постоянном коэффициенте теплоотдачи . — теплопроводность и температуропроводность материала тела, — характерный размер тела, для пластины , для цилиндра , — соответственно текущие координаты.Рассмотрим тела с одномерным температурным полем на примере пластины толщиной 2δ. Безразмерная температура пластины:

.

Здесь T – температура в пластине для момента времени t в точке с координатой x; T0 – температура пластины в начальный момент времени.

Если , то температура на поверхности пластины (X=1):

температура в середине толщины пластины (X=0):

температура внутри пластины на расстоянии х от ее средней плоскости:

.

Соответствующие значения P, N, μ1 μ12 – определяются как f(Bi) по справочным таблицам и графикам. Аналогичные операции выполняются и для цилиндра. Схема нестационарной теплопроводности тел конечных размеров Рис. 9.8.

Рис.9.8 Схема нестационарной теплопроводности тел конечных размеров

Температура в телах конечных размеров определяется на основе теоремы о перемножении решений: безразмерная температура тела конечных размеров при нагревании (охлаждении) равна произведению безразмерных температур тел с бесконечным размером, при пересечении которых образовано данное конечное тело. Соответственно для параллелепипеда, образованного пересечением плоских пластин безразмерная температура определится как: .

Значения средних температур входящих в выражения определяются по вышеизложенной методике для каждой стороны, образованной бесконечной пластины с учетом места расположения интересующей нас точки в параллелепипеде.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9746 — | 7647 — или читать все.

188.64.173.93 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Источник: studopedia.ru

Металлы с самыми низким температурами плавления: топ-10

Привычным стереотипом является, что металл – это обязательно нечто тяжёлое, прочное, блестящее. Из металлов делают инструменты и механизмы, оружие и украшения. Металлы используют для защиты от непогоды и хранения пищи. Даже в язык проник стереотип — фраза «возьми какую-нибудь железяку» имеет вполне конкретный и ёмкий смысл.

Однако, твёрдые, прочные и жаростойкие далеко не все металлы. И вещества, такие как натрий, галлий, ртуть — находят необычные применения.

Сегодня, поговорим о десяти металлах с самыми низкими температурами плавления.

10. Олово (231°C)


Химический элемент, занимающий в периодической таблице юбилейное, пятидесятое место известен человечеству с древнейших времён. Первые капли олова (латинское наименование Stannum) первобытные люди заметили в своих кострах ещё за 4 тысячи лет до нашей эры. Немудрено — ведь олово плавится при температуре всего при 231°C. При этом дерево ещё только-только начинает обугливаться и робко гореть.

После застывания «слёзы», которыми плакал в огне красивый тяжёлый камень кассидерит, сохраняли форму, в которой им довелось застыть. Так появились первые металлические предметы кухонного быта.

Когда же удалось вытопить из зелёного малахита рыжую медь, оказалось, что смесь меди с оловом гораздо прочнее любого из металлов по отдельности. Тут-то цивилизация и начала бурно развиваться. Оружие, доспехи, посуда, инструменты — всё делали из прочной и красивой бронзы.

9. Литий (180°C)


Этот удивительный металл, открыли только в начале XIX века. Литий (Lithium, элемент №3) довольно легкоплавкий — жидкий метал температуры всего 180°C можно помешивать даже деревянной ложечкой.

Литий отличается очень малой плотностью — вдвое легче воды! Металл относится к группе щелочных и довольно активен химически (поэтому его так долго не могли открыть).

В современном мире литий широко используется для создания удивительных сплавов — твёрдых, лёгких и жаропрочных.
Без лития не обходится ни одна современная электронная штучка. Ведь литий является ключевым компонентом компактных и ёмких аккумуляторов. А ещё, именно литий придаёт замечательный алый цвет фейерверкам.

8. Индий (157°C)


В конце XIX века химикам удалось открыть и выделить в чистом виде элемент, занявший в периодической таблице клетку №49. Индий (Indium) — довольно тяжёлый (почти как железо) металл, плавящийся при 157°C.

Этот материал поразительно мягок и пластичен. Мягче этого металла только тальк! Невероятное свойство сделало индий незаменимым в радиоэлектронике. Тонкие индиевые полоски, нанесённые на стекло, хорошо проводят электрический ток — но при этом совершенно прозрачны. Так делают уже привычные нам плоские экраны на основе «жидких кристаллов» (LCD).

7. Натрий (97,8°C)


Натрий (Natrium, 11-й элемент) может расплавиться даже в кипятке — 97,8°C. Но мы бы не советовали позволить даже маленькому кусочку натрия упасть в воду (хотя бы и ледяную). Щелочной металл натрий очень активен химически и немедленно реагирует, отделяя от молекул воды водород и превращаясь в сильнейшую щелочь.

При этом выделяется много тепла, которое тут же поджигает освободившийся водород. Взрыв и пожар! Такие материалы как натрий хранят в керосине, что исключает их контакт с водой и влагой воздуха.

Как очень активный элемент, натрий в том или ином виде присутствует вокруг нас в огромных количествах. Взять хотя бы хлорид натрия — обычная поваренная соль.

6. Калий (63,5°C)


Близкий родственник натрия — калий. Элемент №19 (Kalium) также бурно реагирует с водой, образуя щёлочь, и также легкоплавок — 63,5°C. А вот съедобных соединений калия почти нет, и в этом он полная противоположность натрию. Хотя в ограниченно малых количествах организму всё-таки необходим (микроэлемент).

В чистом виде калий практического применения не имеет. Но его многочисленные соединения с древних времён известны как удобрения, моющие средства, важные компоненты многих химических процессов.

5. Рубидий (39,31°C)


37-й элемент таблицы — рубидий (Rubidium) плавится всего при 39,31°C. Кусочек рубидия может растаять на блюдце как сливочное масло. Это лёгкий металл, его плотность лишь немного превышает плотность воды. Но реагирует с водой рубидий не менее бурно, чем его близкие родственники калий и натрий.

Рубидий удивителен своими химическими свойствами. Сам по себе щелочной металл очень легко вступает в разнообразные химические реакции. Но при этом соли рубидия и его сплавы с другими металлами являются хорошими катализаторами реакций. То есть, значительно ускоряют процесс, при этом совершенно не расходуясь сами по себе. Это делает рубидий ценным материалом для химической промышленности и радиоэлектроники.

4. Цезий (28,5°C)


Очень мягкий серебристый металл буквально плавится в руках. При температуре 28,5°C цезий (Caesium) становится жидкостью и буквально утекает между пальцев. Но не вздумайте провести такой опыт! Из всех щелочных металлов элемент №55 самый химически активный (уступая лишь францию).

На открытом воздухе цезий моментально окисляется, образуя яркое пламя. А при попадании в воду просто взрывается. Цезий ухитряется поджечь даже лёд! Более того, образовавшийся при реакции с водой гидроксид цезия разъедает стекло — и потихоньку грызёт сосуды из золота и даже платины.

А вот в электронике такая активность цезия позволяет делать очень чувствительные фотоэлементы и часы поистине космической точности.

3. Франций (27°C)


Элемент, занимающий 89-ю ячейку периодической таблицы — франций (Francium) — очень похож на цезий. Франций плавится при 27°C, но до этого неимоверно активный щелочной металл ещё требуется сберечь.

Мало того, что франций бурно реагирует буквально со всем подряд — он ещё и очень радиоактивен! Буквально через полчаса от килограмма франция останется — хорошо если горстка — разнообразных сильно излучающих продуктов деления.

Впрочем, в таких количествах его никто никогда и не видел. Неудивительно, что в природе этот элемент один из самых редко встречающихся. Да и практического применения ему так и не нашлось.

2. Галлий (26,79°C)


А вот серебристый металл галлий (Gallium — ещё до открытия элемента Д.И. Менделеев заранее оставил ему в таблице клеточку № 31) встречается гораздо чаще и нередко применяется просто для забав. Плавится он почти как цезий, при 26,79°C, но в остальном разительно отличается от своего «нервного» братца.

Внешне и по механическим свойствам галлий очень похож на алюминий. Лёгок, теплопроводен, в чистом виде довольно хрупок. Мгновенно образующаяся на воздухе плотная плёнка окислов так же хорошо защищает его от разрушения.

В чистом виде галлий практически не находит применения. А вот его соли и, особенно, легкоплавкие сплавы нашли широчайшее применение в ядерной физике, радиоэлектронике, измерительной технике.

1. Ртуть (-38,87°C)


Все мы хорошо знакомы со ртутью — даже сегодня, в век электроники, вряд ли найдётся хоть один человек, которому не измеряли бы температуру тела ртутным термометром. Но мало кто задумывается, что очень текучая тяжёлая серебристая жидкость — самый настоящий металл!

Да-да, элемент №80, Hydrargyrum, плавится на самом лютом морозе — температура кристаллизации ртути почти минус сорок градусов (-38,87°C).

Человечество знакомо со ртутью с древнейших времён. Ртуть находит широчайшее применение в технике, химии, металлургии. Этот элемент достоин отдельного, немаленького рассказа — а сегодня он гордо венчает наш рейтинг.

Теплопроводность металлов и ее применение

Металлы –  это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель –  удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов –  это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов –  золото, медь, серебро. Более низкая теплопроводность –   у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование –  ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение –  при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы –  кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

Металл с самой высокой теплопроводностью

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Металл с самой высокой теплопроводностьюОна является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Металл с самой высокой теплопроводностьюПротивоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Перенос тепла на молекулярном уровне

Металл с самой высокой теплопроводностьюКогда материя нагревается, увеличивается средняя кинетическая энергия составляющих ее частиц, то есть увеличивается уровень беспорядка, атомы и молекулы начинают более интенсивно и с большей амплитудой колебаться около своих равновесных положений в материале. Перенос тепла, который на макроскопическом уровне можно описать законом Фурье, на молекулярном уровне представляет собой обмен кинетической энергией между частицами (атомами и молекулами) вещества, без переноса последнего.

Это объяснение механизма теплопроводности на молекулярном уровне отличает его от механизма термической конвекции, при котором имеет место перенос тепла за счет переноса вещества. Все твердые тела обладают способностью к теплопроводности, в то время как тепловая конвекция возможна только в жидкостях и газах. Действительно, твердые вещества переносят тепло в основном за счет теплопроводности, а жидкости и газы, если есть температурные градиенты в них, переносят тепло в основном за счет процессов конвекции.

Теплопроводность материалов

Металл с самой высокой теплопроводностьюЯрко выраженной способностью проводить тепло обладают металлы. Для полимеров свойственна невысокая теплопроводность, а некоторые из них практически не проводят тепло, например, стекловолокно, такие материалы называются теплоизоляторами. Чтобы существовал тот или иной поток тепла через пространство, необходимо наличие некоторой субстанции в этом пространстве, поэтому в открытом космосе (пустое пространство) теплопроводность равна нулю.

Металл с самой высокой теплопроводностьюКаждый гомогенный (однородный) материал характеризуется коэффициентом теплопроводности (обозначается греческой буквой лямбда), то есть величиной, которая определяет, сколько тепла нужно передать через площадь 1 м², чтобы за одну секунду, пройдя через толщу материала в один метр, температура на его концах изменилась на 1 К. Это свойство присуще каждому материалу и изменяется в зависимости от его температуры, поэтому этот коэффициент измеряют, как правило, при комнатной температуре (300 К) для сравнения характеристики разных веществ.

Если материал является неоднородным, например, железобетон, тогда вводят понятие полезного коэффициента теплопроводности, который измеряется согласно коэффициентам однородных веществ, составляющих этот материал.

В таблице ниже приведены коэффициенты теплопроводности некоторых металлов и сплавов во Вт/(м*К) для температуры 300 К (27 °C):

  • сталь 47—58;
  • алюминий 237;
  • медь 372,1—385,2;
  • бронза 116—186;
  • цинк 106—140;
  • титан 21,9;
  • олово 64,0;
  • свинец 35,0;
  • железо 80,2;
  • латунь 81—116;
  • золото 308,2;
  • серебро 406,1—418,7.

В следующей таблице приведены данные для неметаллических твердых веществ:

  • стекловолокно 0,03—0,07;
  • стекло 0,6—1,0;
  • асбест 0,04;
  • дерево 0,13;
  • парафин 0,21;
  • кирпич 0,80;
  • алмаз 2300.

Металл с самой высокой теплопроводностьюИз рассматриваемых данных видно, что теплопроводность металлов намного превышает таковую для неметаллов. Исключение составляет алмаз, который обладает коэффициентом теплопередачи в пять раз больше, чем медь. Это свойство алмаза связано с сильными ковалентными связями между атомами углерода, которые образуют его кристаллическую решетку. Именно благодаря этому свойству человек чувствует холод при прикосновении к алмазу губами. Свойство алмаза хорошо переносить тепловую энергию используется в микроэлектронике для отвода тепла из микросхем. А также это свойство используется в специальных приборах, позволяющих отличить настоящий алмаз от подделки.

В некоторых индустриальных процессах стараются увеличить способность передачи тепла, чего достигают либо за счет хороших проводников, либо за счет увеличения площади контакта между составляющими конструкции. Примерами таких конструкций являются теплообменники и рассеиватели тепла. В других же случаях, наоборот, стараются уменьшить теплопроводность, чего достигают за счет использования теплоизоляторов, пустот в конструкциях и снижения площади контакта элементов.

Коэффициенты теплопередачи сталей

Способность передавать тепло для сталей зависит от двух главных факторов: состава и температуры.

Металл с самой высокой теплопроводностьюПростые углеродные стали при увеличении содержания углерода снижают свой удельный вес, в соответствии с которым также уменьшается и их способность переносить тепло от 54 до 36 Вт/(м*К) при изменении процента углерода в стали от 0,5 до 1,5%.

Нержавеющие стали содержат в своем составе хром (10% и больше), которые вместе с углеродом образует сложные карбиды, препятствующие окислению материала, а также повышает электродный потенциал металла. Теплопроводность нержавейки невелика в сравнении с другими сталями и колеблется от 15 до 30 Вт/(м*К) в зависимости от ее состава. Жаропрочные хромоникелевые стали обладают еще более низкими значениями этого коэффициента (11—19 Вт/(м*К).

Другим классом являются оцинкованные стали с удельным весом 7 850 кг/м3, которые получают путем нанесения покрытий на сталь, состоящих из железа и цинка. Так как цинк легче проводит тепло, чем железо, то и теплопроводность оцинкованной стали будет относительно высокой в сравнении с другими классами стали. Она колеблется от 47 до 58 Вт/(м*К).

Теплопроводность стали при различных температурах, как правило, не изменяется сильно. Например, коэффициент теплопроводности стали 20 при увеличении температуры от комнатной до 1200 °C снижается от 86 до 30 Вт/(м*К), а для марки стали 08Х13 увеличение температуры от 100 до 900 °C не изменяет ее коэффициент теплопроводности (27—28 Вт/(м*К).

Факторы, влияющие на физическую величину

Способность проводить тепло зависит от ряда факторов, включая температуру, структуру и электрические свойства вещества.

Какой металл проводит тепло хуже всех

Высокая степень секретности плутония не уменьшается с первого дня его открытия. В середине прошлого века группа ученых из США смогла облучить потоком нейтронов атом урана в одном из первых ускорителей частиц. В результате этого возник нептуний, которые далее был преобразован в плутоний-238. Однако этот изотоп не был подвержен спонтанному делению и не мог выступать в качестве основы для ядерного оружия, которое было очень нужно правительству Америки. Прошло полгода, и американцы все же смогли получить изотоп нового элемента под номером 239. В ходе дальнейших исследований выяснилось, что он гораздо больше подходил для создания ядерного оружия, чем даже уран-235.

Полученный элемент был назван плутонием в честь открытой планеты, которая относительно недавно была лишена этого статуса. Открытие хранилось в секрете, информация нигде не публиковалась, так как новый элемент был очень важен в военных планах страны.

Прошел всего лишь год после открытия этого элемента, и в США был запущен знаменитый Манхэттенский проект. Основной его задачей было создание большого количества оружейного плутония, а также первой в мире атомной бомбы. В результате в 1945 г. и произошло ее испытание.

Параллельно в СССР также велись исследования по плутонию в институте, расположенном в Ленинграде. В стенах заведения уран облучали потоком нейтронов. Прошло время, и советский плутоний начали получать на первом в мире промышленном ядерном реакторе, который находился в городе Челябинск-65. Получение первого советского плутония происходило в строжайшей секретности и бешеной спешке. И сегодня производство плутония хранится в строжайшем секрете.

Этот металл серого цвета хорошо окисляется на воздухе. По своему внешнему виду, а также химической активности элемент сильно напоминает редкоземельный металл церий, поэтому очень часто студентов-радиохимиков учат работать с плутонием с использованием безопасных реактивов на основе церия. Единственное отличие состоит в большей плотности металлического плутония.

После очистки металлический реакторный плутоний состоит в основном из 5-ти различных изотопов. Один из них — изотоп плутония-238 — является очень сильным альфа-излучателем, так как распадается на уран-234, испуская ядра гелия. Период полураспада составляет немного больше 87 лет.

Куски металлического плутония в закрытом пространстве способны сильно разогреваться, иногда даже докрасна. От этого может начать гореть и сам металл. Важную роль здесь играет еще то, что плутоний является худшим проводником тепла из всех металлов. Образующийся впоследствии диоксид плутония также будет саморазогреваться. Такое свойство этого элемента в термоэлектрических генераторах используют с середины прошлого столетия. От саморазогрева вещество выделяет огромное количество энергии, и все это тепло можно преобразовать в электричество. Такие генераторы установлены на некоторых космических аппаратах.

Изотоп плутония-239 разогревается меньше, но оптимальным образом подходит для изготовления ядерного оружия. Проблема кроется в хрупкости чистого плутония, поэтому его переплавляют с галлием. Сегодня, как и 70 лет назад, этот элемент используют для изготовления ядерного оружия. 

Самый электропроводный металл в мире

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), — серебро.

самый электропроводный металлНо высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, печатных плат и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

самый электропроводный металл в мире

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица электрической проводимости в системе СИ – сименс. Русское обозначение этой единицы – См, интернациональное – S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется удельной электропроводностью. Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. Удельная электропроводность цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр – См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора – микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие электрического тока как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

самый электропроводный металл это

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство — высокая теплопроводность.

Топ лучших проводников — металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро — 62 500 000.
  2. Медь – 59 500 000.
  3. Золото – 45 500 000.
  4. Алюминий — 38 000 000.

Видно, что самый электропроводный металл – серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина – высокая стоимость.

Зато медь и алюминий – самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

самый электропроводный металл серебро

Самый электропроводный металл — это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

У каких металлов высокая теплопроводность

Содержание

  • Теплопроводность металлов в зависимости от температуры
    • Добавить комментарий Отменить ответ
    • Теплопроводность строительных материалов, их плотность и теплоемкость
    • Плотность воды, теплопроводность и физические свойства h3O
    • Физические свойства воздуха: плотность, вязкость, удельная теплоемкость
    • Теплопроводность стали и чугуна. Теплофизические свойства стали
    • Оргстекло: тепловые и механические характеристики
    • Физические свойства технической соли
    • Характеристики теплоизоляционных плит Изорок (Isoroc)
    • Удельное электрическое сопротивление стали при различных температурах
    • Удельная теплоемкость воды h3O
    • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов
    • Теплопроводность, теплоемкость и плотность олова Sn
    • Удельное электрическое сопротивление стали при различных температурах
    • Характеристики масла АМГ-10: плотность, вязкость, теплоемкость, теплопроводность
    • Таблицы удельной теплоемкости веществ (газов, жидкостей и др.)
    • Плотность молока, его удельная теплоемкость и другие физические свойства
    • Свойства меди: плотность, теплоемкость, теплопроводность
    • Свойства карбида кремния SiC
  • От чего зависит показатель теплопроводности
  • Понятие коэффициента теплопроводности
  • Когда учитывается

Металлы – это вещества, имеющие кристаллическую структуру. При нагревании они способны плавиться, то есть переходить в текучее состояние. Одни из них имеют невысокую температуру плавления: их можно расплавить, поместив в обычную ложку и держа над пламенем свечи. Это свинец и олово. Другие возможно расплавить только в специальных печах. Высокой температурой плавления обладают медь и железо. Для ее понижения в металл вводят добавки. Полученные сплавы (сталь, бронза, чугун, латунь) имеют температуру плавления ниже, чем исходный металл.

От чего же зависит температура плавления металлов? Все они имеют определенные характеристики – теплоемкость и теплопроводность металлов. Теплоемкостью называют способность при нагревании поглощать теплоту. Ее численный показатель – удельная теплоемкость. Под ней подразумевается количество энергии, которое способна поглотить единица массы металла, нагреваемая на 1°С. От этого показателя зависит расход топлива на нагревание металлической заготовки до нужной температуры. Теплоемкость большинства металлов находится в пределах 300-400 Дж/(кг*К), металлических сплавов – 100-2000 Дж/(кг*К).

Теплопроводность металлов – это перенос тепла от более горячих частиц к более холодным по закону Фурье при их макроскопической неподвижности. Она зависит от структуры материала, его химического состава и типа межатомной связи. В металлах передача тепла производится электронами, в других твердых материалах – фононами. Теплопроводность металлов тем выше, чем более совершенную кристаллическую структуру они имеют. Чем больше металл имеет примесей, тем более искажена кристаллическая решетка, и тем ниже теплопроводность. Легирование вносит такие искажения в структуру металлов и понижает теплопроводность относительно основного металла.

У всех металлов хорошая теплопроводность, но у одних выше, чем у других. Пример таких металлов – золото, медь, серебро. Более низкая теплопроводность – у олова, алюминия, железа. Повышенная теплопроводность металлов является достоинством либо недостатком, в зависимости от сферы их использования. Например, она необходима металлической посуде для быстрого нагрева пищи. В то же время применение металлов с высокой теплопроводностью для изготовления ручек посуды затрудняет ее использование – ручки слишком быстро нагреваются, и до них невозможно дотронуться. Поэтому здесь используют теплоизолирующие материалы.

Еще одна характеристика металла, влияющая на его свойства – тепловое расширение. Оно выглядит как увеличение в объеме металла при его нагревании и уменьшение – при охлаждении. Это явление обязательно необходимо учитывать при изготовлении металлических изделий. Так, например, крышки кастрюль делают накладными, у чайников тоже предусмотрен зазор между крышкой и корпусом, чтобы при нагревании крышку не заклинило.

Для каждого металла вычислен коэффициент теплового расширения. Его определяют нагреванием на 1°С опытного образца, имеющего длину 1 м. Самый большой коэффициент имеют свинец, цинк, олово. Поменьше он у меди и серебра. Еще ниже – железа и золота.

По химическим свойствам металлы делятся на несколько групп. Существуют активные металлы (например, калий или натрий), способные мгновенно вступать в реакцию с воздухом или водой. Шесть самых активных металлов, составляющий первую группу периодической таблицы, называют щелочными. Они имеют маленькую температуру плавления и так мягки, что могут быть разрезаны ножом. Соединяясь с водой, они образуют щелочные растворы, отсюда и их название.

Вторую группу составляют щелочноземельные металлы – кальций, магний и пр. Они входят в состав многих минералов, более твердые и тугоплавкие. Примерами металлов следующих, третьей и четвертой групп, могут служить свинец и алюминий. Это довольно мягкие металлы и они часто используются в сплавах. Переходные металлы (железо, хром, никель, медь, золото, серебро) менее активны, более ковки и часто применяются в промышленности в виде сплавов.

Положение каждого металла в ряду активности характеризует его способность вступать в реакцию. Чем активнее металл, тем легче он забирает кислород. Их очень трудно выделить из соединений, в то время, как малоактивные виды металлов можно встретить в чистом виде. Самые активные из них – калий и натрий – хранят в керосине, вне его они сразу же окисляются. Из металлов, используемых в промышленности, наименее активным является медь. Из нее делают резервуары и трубы для горячей воды, а также электрические провода.

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

  • Теплофизические свойства и температура замерзания водных растворов NaCl и CaCl2
  • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Читайте также

Добавить комментарий Отменить ответ

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства h3O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна. Теплофизические свойства стали

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Оргстекло: тепловые и механические характеристики

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Удельная теплоемкость воды h3O

Приведены таблицы значений удельной теплоемкости воды h3O и водяного пара в зависимости от температуры и…

Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Теплофизические свойства алюминиевых сплавов АМц, АМг, Д16, АК и др. В таблице представлены состав и…

Теплопроводность, теплоемкость и плотность олова Sn

Теплопроводность, теплоемкость и плотность олова зависят от температуры и структуры этого металла. При атмосферном давлении…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Характеристики масла АМГ-10: плотность, вязкость, теплоемкость, теплопроводность

Характеристики масла АМГ-10 при температуре от 20 до 100°С: плотность, вязкость, теплоемкость, теплопроводность. Указаны также температуры кипения и замерзания…

Таблицы удельной теплоемкости веществ (газов, жидкостей и др.)

Представлены таблицы удельной теплоемкости веществ: газов, металлов, жидкостей, строительных и теплоизоляционных материалов, а также пищевых…

Плотность молока, его удельная теплоемкость и другие физические свойства

Плотность молока в зависимости от температуры Плотность цельного молока не зависит от месяца дойки коров…

Свойства меди: плотность, теплоемкость, теплопроводность

Свойства меди Cu: теплопроводность и плотность меди В таблице представлены теплофизические свойства меди в зависимости…

Свойства карбида кремния SiC

Теплофизические свойства спеченного мелкозернистого карбида кремния В таблице даны теплофизические свойства спеченного порошка карбида кремния…

Металлы обладают большим количеством характеристик, которые определяют их эксплуатационные качества и возможность применения при изготовлении определенных изделий. Важной характеристикой всех материалов можно назвать теплопроводность. Этот показатель определяет способность материального тела к переносу тепловой энергии. Таблица теплопроводности металлов встречается в различных справочниках, может зависеть от различных их особенностей. Примером можно назвать то, что механизм переноса тепловой энергии во многом зависит от агрегатного состояния вещества.

От чего зависит показатель теплопроводности

Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:

  1. Типа материала и его химического состава. Теплопроводность железа будет существенно отличаться от соответствующего показателя алюминия, что связано с особенностями кристаллической решетки материалов и их другими свойствами.
  2. Коэффициент может изменяться при нагреве или охлаждения металла. При этом изменения могут быть существенными, так как у каждого материала есть своя точка плавления, когда молекулы начинают перестраиваться.

В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.

Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.

Понятие коэффициента теплопроводности

Для обозначения рассматриваемого значения применяется символ λ – количество тепла, которое передается в единицу времени через единицу поверхности на момент повышения температуры. Это значение применяется при проведении различных расчетов.

Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:

  1. Температура, измеряемая в Кельвинах.
  2. Показатель электропроводности.

Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.

Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.

Когда учитывается

При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:

  1. Когда нужно отвести тепло от объекта. Тепловая энергия может возникать из-за трения. При этом нагрев становится причиной изменения основных свойств металлов и сплавов: прочности и твердости поверхности. Примером назовем конструкцию двигателя внутреннего сгорания. В процессе хода поршня в блоке цилиндров происходит нагрев основных элементов конструкции. Из-за слишком высокого нагрева даже металлы, устойчивые к воздействию высокой температуры, начинают терять прочность и становятся более пластичными. В результате происходит изменение геометрических размеров важных элементов конструкции, и она выходит из строя. Учитывается теплопроводность и при создании режущего инструмента, обшивки самолетов или высокоскоростных поездов.
  2. Когда нужно передать тепловую энергию. Центральная система отопления основана на нагреве рабочей среды, которая после подводится к потребителю и происходит передача энергии окружающей среде. Для того чтобы повысить эффективность создаваемой системы трубы, и отопительные радиаторы изготавливаются из металлов, которые способны быстро передавать тепло.
  3. Когда нужно изолировать поверхность. Встречается ситуация, когда нужно снизить вероятность нагрева поверхности. Для этого применяются специальные материалы, которые обладают высокими изоляционными качествами. Некоторые металлы и сплавы также обладают отражающими свойствами и не нагреваются, а также не передают тепло. Примером назовем фольгу, которая часто применяется в качестве отражающего экрана. Она также изготавливается из тонкого слоя металла, обладающего низким коэффициентом проводимости.

В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.

Гальваника на непроводящие материалы | SPC

Быстрые ссылки

Что такое непроводящие материалы? | Проблема нанесения покрытия на керамику и пластик

Преимущества химического нанесения покрытия | Электрохимическое покрытие | Использование гальваники для завершения процесса

Производители в самых разных отраслях промышленности полагаются на гальваническое покрытие как на завершающий штрих для своей продукции. Гальваника предлагает несколько преимуществ для конечной детали, включая усиленную поверхность, защиту от коррозии, устойчивость к износу и общее улучшение внешнего вида.

Если вы знакомы с гальваникой, вы, вероятно, знаете, что этот метод заключается в погружении подложки в химическую ванну, содержащую ионы металла, такого как золото, медь, никель или серебро. Непосредственно после этого процесса путем подачи постоянного тока на покрытие наносится электроосаждение.

В большинстве случаев процесс нанесения покрытия влечет за собой нанесение металлического покрытия на поверхность другого металлического объекта. Эти металлы могут проводить электричество, что необходимо для улучшения адгезии покрытия.Но что произойдет, если вам нужно наклеить металл на поверхность из непроводящего материала?

Что такое непроводящие материалы?

Непроводящие материалы, также известные как изоляторы, — это материалы, которые либо предотвращают, либо блокируют поток электронов. Эти материалы демонстрируют эту особенность, потому что атомы внутри этих изоляторов не содержат лишних электронов, необходимых для прохождения электрического заряда — это чрезвычайно затрудняет прохождение заряда через материал.

Некоторые примеры непроводящих материалов включают бумагу, стекло, резину, фарфор, керамику и пластик. Из этих материалов стекло, керамика и пластик являются стандартными во многих отраслях промышленности и часто покрываются металлом, чтобы изменить их внешний вид и физические свойства. Гальванические непроводящие материалы особенно популярны в следующих секторах.

  • Автомобильная промышленность: В автомобильной промышленности используется довольно много гальванических непроводящих материалов, в основном пластика.Пластиковые детали легко формуются практически в любую форму, а затем наклеиваются на пластину, что позволяет автомобильным инженерам более творчески подходить к дизайну, не рискуя увеличить вес своих автомобилей.
  • Домашняя арматура : Пластиковая и керамическая арматура широко используется в доме и вокруг него во всем, от сантехники и электрических установок до ручек и декоративных элементов. Хотя простой пластик или керамика не всегда являются наиболее привлекательным вариантом, гальванические непроводящие материалы обладают большей эстетической привлекательностью, а также обеспечивают такие преимущества, как повышенная износостойкость.Кроме того, эти продукты, как правило, дешевле, чем их цельнометаллические аналоги, а это означает, что они имеют более конкурентоспособные цены.
  • Электроника: Гальваника — это стандартная процедура в электронной промышленности, которая используется при создании различных электронных компонентов. Покрытие улучшает внешний вид пластиковых накладок на персональной электронике, а также часто применяется в качестве защитного элемента на печатных платах и ​​керамических деталях.

Вы также можете найти гальванические непроводящие материалы нескольких типов

.

Периодическая таблица элементов

Периодическая таблица элементов — неметаллы

Периодическая таблица элементов

ГРУППЫ Щелочные металлы Щелочноземельные металлы Блоки Газы (stp) Галогены Лантаноиды / Актиниды Жидкости (stp) Основная группаМеталлоидыМеталлы Благородные газыНеметаллыТвердые вещества (stp) Таблицы переходных металлов

Переходные группы металлов.

[ Щелочных металлов ]
[Щелочноземельные металлы]
[Блоки]
[Газы]
[Галогены]
[Лантаноиды / Актиниды]
[Жидкости (stp)]
[Основная группа]
[Металлоиды]
[Металлы]
[ Благородные газы ]
[Неметаллы]
[Твердые вещества (stp)]
[ Переходные металлы ]
[Периодические]

Неметаллы

Неметаллы или неметаллические элементы; водород (H), углерод (C), азот (N), кислород (O), фосфор (P), сера (sulfer) (S), селен (Se) (здесь может принадлежать Uuo) и благородные газы образуют относительно небольшая группа со ступенчатым рисунком в направлении левой части таблицы Менделеева (водород является нечетной группой в правой части таблицы).Неметаллы строго не определены, но имеют тенденцию проявлять характерные свойства, такие как плохая тепло- и электропроводность, образование кислых оксидов, тусклый блеск и хрупкость, низкая плотность, низкие температуры плавления и высокая электроотрицательность.

Водород может стать металлическим при воздействии чрезвычайно высокого давления. Некоторые аллотропы элементов демонстрируют более выраженное поведение металлов, металлоидов или неметаллов, чем другие. Элемент углерод; его алмазный аллотроп неметаллический, однако графитовый аллотроп является электропроводным, показывая характеристики, больше похожие на металлоид.Фосфор и селен также имеют аллотропы, которые демонстрируют пограничное поведение.

Наведите указатель мыши на элемент или щелкните его, чтобы получить дополнительную информацию:

1
H
1.008


4.003

2
6.941

14
Si
28.09

178,5 6

Непроводящие металлы — покупайте непроводящие металлы, непроводящие металлы, непроводящие металлы продукт на Alibaba.com

Наша фабрика хороша в обработке алюминия с резьбой и литье, образцы или чертежи будут приветствоваться.

Мы всегда стараемся снизить затраты, чтобы повысить ценность для клиента.

Klikkon Industrial — ваш выбор, когда вам нужно хорошо выполнить работу!

Наши клиенты действительно на первом месте в Klikkon®.Не верьте нам на слово — прочтите эти комментарии наших клиентов, и вы сами убедитесь в результатах и ​​отзывах.

Klikkon Industrial предлагает своим клиентам инновационные продукты и решения, квалифицированную поддержку и профессиональное обслуживание, не имеющее аналогов.

Продукция Klikkon гарантирует неизменно высокое качество и непревзойденные характеристики, которые требуются нашим клиентам, а наш ассортимент продукции производится с использованием комплексных инженерных знаний и опыта в области обеспечения качества, накопленных за многолетний опыт работы на рынке латунных фитингов.

Что предлагает Klikkon?

Klikkon относится к каждому клиенту одинаково, независимо от того, из небольшой он компании или из большой. Когда клиенты довольны, мы счастливы.

Если у вас есть проблема с дизайном, мы готовы. У нас есть опыт и возможность принять на проект задаче, будь то дизайн-прототип готов или все еще в стадии концепции. Для проектов на ранней стадии, наши инженеры тесно работать с вами, чтобы превратить эти идеи в конечные чертежи.Для проектов дальнейшего развития, мы обеспечиваем часть конструкция оптимизирована для полномасштабного производства.

Мы гордимся своим инженерным персоналом. Их полное понимание процесса разработки продукта, наряду с их творчеством, позволяет им часто более эффективные ответы, чем наши клиенты изначально предвидения.

Гибкость? Мы получили его. Мы размещаем чертежи в различных форматах, включая 3D-модели, печатные копии схем или чертежи, созданные в Pro / E, SolidWorks и AutoCAD

ХОТИТЕ УЗНАТЬ БОЛЬШЕ?

ЗАПРОСИТЕ НАМ

Все любят хорошие истории.Приходите проверить наши.

Здесь начинается ваш хороший рассказ.

Латунный фитинг Применения: детали автомобилей, горных машин, инженерных машин, гидравлических машин, литьевых машин.

Характеристики латунного фитинга: воздухонепроницаемость с высокой точностью, подходит для механизма высокого стандарта.

Мы очень рады предоставить образцы для вашего полного теста, и наши образцы будут бесплатными для надежных покупателей с действительной контактной информацией, включая проверенный адрес электронной почты и адрес компании.

,

Экструдированные проводящие металлические частицы и непроводящий силикон, проводящий силиконовый профиль, U-образный профиль

проводящие металлические частицы и непроводящий силикон, экструдированный, проводящий силиконовый профиль, U-образный профиль

U-образный профиль канала

Характеристики:

  • Прокладки из проводящего эластомера для обороны и Hi- Tech Applications
  • Превосходные механические и электрические свойства.
  • Превосходная эффективность защиты от электромагнитных помех.
  • Возможна поставка точных форм и размеров в соответствии с требованиями заказчика.

Области применения:

  • Электронное и электрическое оборудование
  • Шкафы, защитные убежища
  • Дисплей и высокотехнологичное оборудование
  • Экологическое и EMI-экранирование

Подробная информация о продукте

Группа ***

Период

1
IA
1A
2
IIA
2A
3
IIIB
3B
4
IVB
4B
5
VB
5B
6
VIB
6B
7
VIIB
7B
80009 7B 80009
8
9
VIII
8
10
VIII
8
11
IB
1B
12
IIB
9002B

13
IIIA
3A
14
IVA
4A
15 9002 2
VA
5A
16
VIA
6A
17
VIIA
7A
18
VIIIA
8A
6 2
He
4.003
4
Be
9.012
922

0 81

6
C
12.01
7
N
14.01
8
3 O
16.0023

9
F
19,00

10
Ne
20,18
3 11
Na 22.99
12
Мг
24,31
13 15
P
30.97
16
S
32.07
17
Класс
35,45
18
Ar
39.95
4 199
39,10
20
Ca
40.08
21
Sc
44.96
22
Ti
47,88
23
V
50,94

24
Cr
23 900,00

25
Mn
54,94

26
Fe
55,85
27
Co
58.47
28
Ni
58,69

29
Cu
63,55

30
9003 900 9000.3 9009
31
Ga
69,72
32
Ge
72,59
33
As
74.92
34
Se
78.96
35
Br
79.90
36
Kr
83.80

5 37
Rb
85,47
38
Sr
87.62
39
Y
88.91
40
Zr
91.22
41
Nb
42
Мо
95.94
43
Tc
(98)
44
Ru
101.1
45
Rh
102,9
46
Pd
106,4
47
Ag

Ag
900 48
Cd
112,4
49
In
114,8
50
Sn
118.7
51
Sb
121,8
52
Te
127,6
53
I
126.921

54
Xe
131,3

6 55
CS
132.9
56
Ba
137,3

*
72
Hf
Наименование продукта Электропроводящие эластомеры / проводящая резина / EMI, ЭМС-экранирование
Базовый Силикон, FKM
Наполнитель Никелевый графит, серебристая медь, серебристый алюминий, серебро стекло, композитные материалы и др.
Твердость (Шор А) 70 ± 5
Плотность (г / см3) 1,8-2,0 ± 0,25 ASTM792 1,96
Предел прочности (МПа)> 1,03-1,5 ASTM412 1,9
Удлинение при разрыве (%)> 75-300 ASTM412 120-240
Рабочая температура (℃) -65 ~ 160
Объемное сопротивление (Ом · см) 0.008-0,1
Удельное объемное сопротивление после испытания на старение (Ом · см) 0,01-0,1
Эффективность экранирования / дБ> 90

Проводящий эластомерный каучук, широко используемый в высокотехнологичном электронном оборудовании, особенно в аэрокосмической отрасли, на судах и т. д.
, может обеспечить не только основное резиновое уплотнение, но также экранирование EMI ​​/ EMC

и экологические уплотнения одновременно.

Преимущество другого силиконового каучука для справки.

9006 4 -53-93 ℃

Имя Темп. Свойство
Нитрил (Buna-N) -40-120 ℃ Маслостойкость
FKM (FPM) -26-204 ℃

Устойчивость к высоким температурам коррозия

антистатическая

AFLAS -28-204 ℃

Высокая температура Устойчивость к коррозии

антистатическая

EPDM -30-150 ℃

температура Устойчивость к коррозии

Силикон -43-280 ℃

Высокая термостойкость

антистатическая

Хлоропрен (неопрен) -62-232 ℃ термостойкость Износостойкий
HSN, HNBR -40-162 ℃ Маслостойкость Температурная стойкость
Уретан (полиуретан)

Масло стойкость к температуре Сопротивление

Нетоксичный

Фторсиликон (FVMQ) -62-204 ℃

температура Устойчивость к коррозии

……. ……. …….

Применение продукции

1. Военный электронный компьютер среднего и малого размера корпус и микроволновая волноводная система
2. Авиация, космические полеты, корабли и другое военное укрытие и военное электронное оборудование;
3. Электронные продукты (например, компьютерные шасси, мобильные телефоны), телекоммуникации,

высокочастотное контрольное оборудование;
4.Электроэнергия, железные дороги и другие жесткие условия эксплуатации электронного оборудования.

Информация о компании и сертификация

Основанная в 2006 году, с богатыми ресурсами в области исследований и разработок и производственным опытом. Каучук Brilliance был

основным производителем и поставщиком, производящим проводящий эластомерный каучук, FKM, HNBR и другой каучук.
компаунд в листах прокладки, уплотнительные кольца, полоски, трубки и т. Д. для повышения надежности электронного оборудования,

защиты от электромагнитных помех и защиты от воздействия окружающей среды.
Каучук Brilliance, занимающий площадь в 40 акров, штаб-квартира которого расположена в Чжунгуаньцунь Science

и Технологическом парке, является новым национальным высокотехнологичным предприятием. Годовой объем продаж
составляет почти 100 миллионов. Благодаря профессиональным и опытным командам исследований и разработок,

Brilliance Rubber теперь насчитывает около 15 научных сотрудников.
, в том числе 4 высокопрофессиональных, 5 магистрантов.
научно-исследовательский центр эластомеров Пекинского университета химической технологии принимает активное участие в НИОКР

и расширяет сотрудничество с каучуком Brilliance для исследования и разработки проекта.

Этот исследовательский центр является важной частью Пекинской ключевой лаборатории проектирования процессов и оборудования для высокополимерных материалов

и ключевой лаборатории Министерства образования по проектированию процессов и оборудования для материалов нанометрового размера.
с главными исследователями, которые были удостоены звания стипендиата Чанцзян »Министерством образования и науки

.

Фонд образования и науки для выдающихся молодых ученых. В компании brilliance Rubber есть опытные и профессиональные команды, перечисленные как 10 из профессоров, 6 из докторантов, 30 из докторантов,

150 аспирантов, что гарантирует техническую поддержку при проектировании и разработке продукта.
Мы готовы предоставить клиентам наиболее эффективные и действенные решения для обеспечения надежности

Упаковка и доставка

62

Условия и детали

1.T / T, western union, paypa и т. Д.

время выполнения 2.Samples: 7 дней после spec. подтверждено.

3. Время выполнения заказа массового производства: 20-25 рабочих дней после заказа.

4. Заплатите 30% депозита, оплатите остаток 70% до отгрузки.

Почему выбирают нас?

1 . Наша ценность массажа — «Качество — это наша культура»

2. Наша основная сфера деятельности — силиконовые, графитовые и тепловые изделия

3.Продукты с конкурентным преимуществом

5. Соглашение о конфиденциальности Контракт о коммерческой безопасности

6. Бесплатные образцы и небольшой заказ приветствуются

7. Контракт на обеспечение качества

8. Мы являемся непосредственным производителем, что означает ценовое преимущество.

9. Доступны услуги OEM / ODM . Может проектировать и производить различные нестандартные резиновые детали

в соответствии с вашими требованиями.

Сопутствующие товары

,

Отправить ответ

avatar
  Подписаться  
Уведомление о