Сервомотор принцип работы: Принципы работы и виды сервоприводов

Содержание

Принципы работы и виды сервоприводов


Отличительной особенностью сервопривода является возможность управления через отрицательную обратную связь с использованием заданных параметров. Все оборудование данного типа можно разделить на две группы – сервоприводы постоянного тока и трехфазные сервоприводы переменного тока.

Устройство сервоприводов постоянного тока


Как правило, сервоприводы постоянного тока используются в маломощных устройствах позиционирования. Классическая область их применения – робототехника.


Конструкция современных сервоприводов довольно проста, но при этом весьма эффективна, так как позволяет обеспечить максимально точное управление движением. Сервопривод состоит из:

  • двигателя постоянного тока
  • шестерни редуктора
  • выходного вала
  • потенциометра
  • платы управления, на которую подается управляющий сигнал


Двигатель и редуктор образуют привод. Редуктор используется для снижения скорости вращения двигателя, которую необходимо адаптировать для практического применения. К выходному валу редуктора крепится необходимая нагрузка. Это может быть качалка, вращающийся вал, тянущие или толкающие механизмы.


Для того, чтобы угол поворота превратить в электрический сигнал, необходим датчик. Его функции в сервоприводе постоянного тока с успехом выполняет потенциометр. Он выдает аналоговый сигнал (как правило, от 0 до 10 В) с дискретностью, ограниченной АЦП (аналогово-цифровым преобразователем), на который поступает этот сигнал.


Самой важной деталью сервопривода, пожалуй, является электронная плата сервоусилителя, которая принимает и анализирует управляющие импульсы, соотносит их с данными потенциометра, отвечает за запуск и выключение двигателя.

Принцип работы


Принцип действия устройств основан на использовании импульсного сигнала, который имеет три важные характеристики – частоту повторения, минимальную и максимальную продолжительность. Именно продолжительность импульса определяет угол поворота двигателя.


Импульсные сигналы, получаемые сервоприводом, имеют стандартную частоту, а вот их продолжительность в зависимости от модели может составлять от 0,8 до 2,2 мс. Параллельно с поступлением управляющего импульса активируется работа генератора опорного импульса, который связан с потенциометром. Тот, в свою очередь, механически сопряжен с выходным валом и отвечает за корректирование его положения.


Электронная схема анализирует импульсы с учетом длительности и на основе разностной величины определяет разницу между ожидаемым (заданным) положением вала и реальным (измеренным при помощи потенциометра). Затем производится корректировка путем подачи напряжения на питание двигателя.

Основные положения устройства


Если продолжительность опорного и управляющего импульсов совпадает, наступает так называемый нулевой момент. В это время двигатель сервопривода не работает, вал привода находится в исходном (неподвижном) положении.


При увеличении длительности управляющего импульса плата фиксирует разбежку показателей, двигатель получает напряжение и приходит в движение. В свою очередь, редуктор начинает воздействовать на выходной вал, который поворачивается таким образом, чтобы достигнуть увеличения продолжительности опорного импульса. Как только он сравняется с управляющим импульсом, двигатель прекратит свою работу.


При уменьшении длительности управляющего импульса происходит все то же самое, только с точностью до наоборот, так как двигатель начинает вращаться в обратную сторону. Как только импульсы сравнялись, двигатель останавливается.

Сервопривод переменного тока


В сервоприводах переменного тока используется синхронный двигатель с мощными постоянными магнитами. В таких двигателях частота вращения ротора совпадает с частотой вращения магнитного поля, наводимого в обмотке статора.


Принцип работы сервопривода на основе трехфазного синхронного электродвигателя состоит в следующем. На обмотки статора поступает трехфазное напряжение, которое создает внутри него вращающееся магнитное поле. Это поле взаимодействует с постоянными магнитами, расположенными в роторе. В результате ротор вращается с частотой магнитного поля.


На валу ротора закреплен энкодер с высокой разрешающей способностью. Сигнал от него поступает по отдельному кабелю на специальный вход сервоусилителя. В то же время на управляющий вход сервоусилителя подается сигнал управления. В результате сравнения этих двух сигналов выделяется сигнал рассогласования, величина которого прямо пропорциональна разнице между целевыми и актуальными показателями вращения двигателя. На основании данного сигнала формируется трехфазное напряжение с такими параметрами, которые обеспечивают максимально быстрое уменьшение рассогласования до нуля.

Режимы управления


Существуют три основных режима работы сервопривода переменного тока.


Режим управления положением. Главное в этом режиме – контроль за углом поворота вала ротора. Управление производится последовательностью импульсов, которые могут приходить, например, с контроллера. Этот режим используется для точного позиционирования различных узлов технологического оборудования.


Комбинация импульсов для управления положением может передавать информацию не только по положению, но также по скорости и направлению вращения двигателя. Для этого могут использоваться три типа сигналов: 1) квадратурные импульсы (со сдвигом фаз на 90 градусов), 2) импульсы вращения по или против часовой стрелки, действующие поочередно и 3) импульсы скорости и потенциал направления, подающиеся на два входа.


Как правило, во всех сервоусилителях входы управления именуются как PULSE, SIGN.


Режим управления скоростью. В данном случае управление производится аналоговым сигналом. Значения скорости также могут переключаться на фиксированные величины подачей сигналов на соответствующие дискретные входы. В случае использования разнополярного аналогового управляющего сигнала возможна смена направления вращения серводвигателя.


Режим управления скоростью схож с работой асинхронного двигателя, управляемого преобразователем частоты. Задаются такие параметры, как время разгона и замедления, максимальная и минимальная скорости и другие.


Режим управления моментом.


В этом режиме двигатель может вращаться либо стоять на месте, но при этом момент на валу будет заданным. Управление может производиться дискретным либо аналоговым двухполярным сигналом. Этот режим может использоваться для машин, где необходимо менять усилие прижима, давление и т. п.


Оценка текущего момента двигателя, необходимого для управления, производится за счет встроенного датчика тока.

Процесс рекуперации


Рекуперация происходит при изменении направления (знака) момента нагрузки по отношению к вращающему моменту серводвигателя. Если энергия рекуперации невелика, она накапливается на конденсаторах звена постоянного тока, повышая напряжение на них.


Если разница абсолютных значений моментов нагрузки и серводвигателя составляет значительную величину, напряжение на конденсаторах шины постоянного тока может превысить пороговый уровень. В этом случае энергия рекуперации сбрасывается в тормозной резистор.


Другие полезные материалы:
Выбор оптимального типоразмера электродвигателя
Сервопривод или шаговый двигатель?
Принципы программирования ПЛК

что это такое, принцип работы, виды, для чего используется

Принцип действия


Работа устройства происходит по принципу обратного взаимодействия с системными сигналами. Сервопривод в определенный момент времени получает входящие параметры регулирующего значения и поддерживает его на выходе производимого элемента.


Конструкция устройства


Механизм подобного типа обычно имеет следующие составляющие:

  1. Привод — электрический мотор с редуктором или похожие устройства. Необходим для уменьшения скорости движения, если она слишком большая.
  2. Датчик обратной связи или потенциометр, меняющий угол поворота вала.
  3. Блок, отвечающий за управление и питание.
  4. Вход или конвертер.


В принципе работы самого простого варианта лежит схема обрабатывания значений, исходящих от датчика обратной связи и настраиваемых входящих сигналов для подачи напряжения необходимой полярности на двигатель. Сложные устройства, работающие с использованием микросхем, учитывают инерцию, обеспечивая ровный период разгона или торможения, что помогает уменьшить уровень нагрузок и добиться точной синхронизации показателей.

Разновидности


Различают два вида сервоприводов:

  1. Синхронные – задают темп скорости вращения двигателя и другие параметры, быстрее достигая указанной скорости вращения.
  2. Асинхронные – способны сохранять работу двигателя даже при низких оборотах.


Также устройства разделяют на электромеханические и электрогидромеханические по особенностям конструкции и принципу работы.

Основные характеристики


Механизмы имеют ряд параметров, характеризующих их работу:

  1. Усиление на валу оказывает прямое влияние на крутящий момент. Это значение является одной из ключевых характеристик, в паспорте устройства может указываться несколько параметров для различных величин напряжения.
  2. Скорость поворота также имеет важное значение в работе механизма. Обычно указывается в параметре времени – необходимо, чтобы выходной вал изменил свое направление на 60 градусов.
  3. Указывается тип устройств — цифровой или аналоговый. Цифровые управляются при помощи кодовых команд, которые последовательно передаются через интерфейс. Аналоговые управляются через подачу разных частот, параметры которых задаются определенным образом.
  4. Питание может быть различным, но у большинства таких агрегатов оно находится в диапазоне 4,8-7,2 вольта.
  5. Угол поворота. Обычно это значение в 180 или 360 градусов.
  6. Сервопривод может быть переменного или постоянного вращения.


Имеет значение материал изготовления. Детали могут быть металлическими, пластиковыми, либо в комбинированном составе.

Управление серводвигателем


К устройству по присоединенному к нему проводу подается управляющий сигнал, представляющий собой импульсы постоянной частоты и переменной ширины. При подаче сигнала в проводимую схему генератор производит свой импульс, размер которого устанавливается с помощью потенциометра. Другая часть схемы проводит анализ всех поступаемых сигналов, и если он разный, то происходит включение сервопривода. Если размеры импульсов равнозначные, электромотор отключается.



Серводвигатели отличаются своим разнообразием по конструкции и принципу действия. Модели бывают со щетками и без щеток. Первая категория представлена двигателями постоянного тока. Устройства, имеющие щетки, более разнообразны – к ним относятся шаговые двигатели и работающие от переменного тока. Последняя группа делится еще на два вида — синхронные и асинхронные. Синхронные двигатели, в зависимости от особенностей работы, могут быть вращающимися или линейными.


В работе моторов также используется сервоусилитель – это элемент конструкции, который обеспечивает подачу питания и управление двигателем с постоянными магнитами. Может работать при необходимости и в автономном режиме, при помощи специальной программы, которая предварительно загружается в память устройства.


Агрегаты, гарантирующие высокую точность работы, являются весьма востребованными. Подобные двигатели широко применяются в различных сферах промышленности, всевозможных станках и оборудовании, автомобилестроении.


Область применения


В данный момент сервоприводы получили достаточно широкое распространение. Их можно встретить в точных приборах, автоматах, производящих различные платы, программируемых станках, промышленных роботах и других механизмах. Большую популярность приводы такого типа приобрели в авиамодельной сфере за счет эффективного расхода энергии и равномерного движения.


Сервоприводы меняются и развиваются. В самом начале появления они обладали коллекторными моторами с обмотками на роторе. Постепенно число обмоток выросло, также увеличилась и скорость вращения и разгона. Позже обмотки начали располагаться снаружи магнита, что также способствовало повышению эффективности работы. Дальнейшие усовершенствования позволили отказаться от коллектора, стали использоваться постоянные магниты ротора. Наиболее популярны сейчас сервоприводы, которые работают от программируемого контроллера. Это дает возможность создавать приборы высокой точности и современную технику.


Возможность достижения высокой точности часто становится решающим фактором для применения сервопривода. Кроме того, благодаря новым цифровым разработкам, позволяющим предусмотреть различные способы связи с объектами, система использует компьютер для управления и настройки, что значительно упрощает работу.


В различных сферах также используются серводвигатели. Они могут перемещать выходной вал в заданное положение и удерживать его автоматически. Также помогут придать движение какому-либо механизму, координируемому вращениями вала. Для мотора важными параметрами являются равномерность и тональность движения, эффективность затрачиваемой энергии.

что это такое, устройство, принцип работы, виды

Вряд ли сегодня кого-то можно удивить тем количеством электрических приборов, которые окружают человека в повседневной жизни. Многие из которых давно взяли на себя часть человеческого труда и обязанностей. Повсеместная автоматизация процессов охватила самые разнообразные отрасли, начиная автомобилестроением, и заканчивая устройствами в быту. Львиную долю нагрузки относительно автоматического управления параметрами работы  умных машин берет на себя сервопривод.

Что такое сервопривод?

Под сервоприводом следует понимать такое устройство, которое обеспечивает возможность управления рабочим органом посредством обратной связи. Само название произошло от латинского servus, что в переводе означает помощник. Изначально сервопривод использовался в качестве вспомогательного оборудования для различных станков, машин и механизмов. Однако с развитием технологий и постоянно растущей необходимостью повышать точность электронных устройств им начали отводить куда более значимую роль.

Устройство и принцип работы

Рис. 1. Устройство сервопривода

Устройство и принцип работы каждого сервопривода может кардинально отличаться от других моделей. Однако в качестве примера мы рассмотрим наиболее актуальные варианты.

Конструктивно он может состоять из:

  • Привода – устройства, приводящего в движение рабочий орган. Может выполняться посредством синхронного или асинхронного двигателя, пневмоцилиндра и т.д.
  • Передаточный механизм – система шестеренчатой кривошипной или другой передачи, редуктор.
  • Рабочий элемент – управляет перемещением в пространстве, непосредственно вал редуктора, передаточный механизм и т. д.
  • Датчик – сигнализирует о достигнутом положении и передает информацию по каналу обратной связи.
  • Блок питания – может применяться в случае прямого подключения сервопривода к сети, где требуется преобразование уровня и типа напряжения.
  • Блок управления – осуществляет подачу управляющих сигналов на сервомотор для передвижения или корректировки места положения. Для этого применяются микропроцессоры, микроконтроллеры и т.д. К примеру, очень популярна плата Arduino.

Принцип действия заключается в подаче управляющего импульса на асинхронный или синхронный двигатель, который начинает вращаться, пока рабочий орган не окажется в нужной позиции. Как только будет достигнуто установленное положение, на датчике обратной связи появится нужный сигнал, который, перейдя на блок управления, прекратит питание электромеханического устройства. Движение сервопривода прекратится до появления новых электрических сигналов.

Далее начнется новый цикл работы устройства, число команд и последовательность их выполнения определяется заложенной программой.

Сравнение с шаговым двигателем

Рис. 2. Сравнение с сервопривода с шаговым двигателем

Вполне вероятно вы могли слышать, что та же функция часто выполняется шаговыми двигателями, однако между этими двумя устройствами имеется существенное отличие. Шаговый привод действительно осуществляет точное  позиционирование объекта за счет четкого числа подаваемых на электрическую машину импульсов, они достаточно тихоходны и не создают лишнего шума. В остальном сервоприводы обладают рядом весомых преимуществ по сравнению с шаговыми электродвигателями:

  • Могут использовать для привода любой тип электрической машины – синхронный, асинхронный, электродвигатель постоянного тока и т.д.
  • Точность механического привода не зависит от износа деталей, появления люфтов, термических и механических изменений конструктивных элементов.
  • Диагностирование неисправностей происходит моментально за счет обратной связи.
  • Скорость вращения – любой обычный электродвигатель вращается быстрее шагового привода.
  • Экономичность – вращение вала у шаговой электрической машины осуществляется при максимально допустимом напряжении питания, чтобы обеспечить максимальный момент.

Но кроме перечисленных преимуществ есть ряд позиций, по которым сервопривод уступает шаговому двигателю:

  • Сложность системы управления и необходимость реализации ее работы – шаговый двигатель контролируется обычным счетчиком числа импульсов.
  • Необходимость контролировать как частоту вращения, так и принимать меры для принудительного затормаживания в нужной точке – это приводит к дополнительным затратам энергии, программных и механических ресурсов.
  • Обязательно используется дополнительный измерительный блок, контролирующий положение рабочего органа.
  • Сервопривод обладает значительно большей стоимостью, поэтому применение шагового двигателя обходится дешевле.

Назначение

Рис. 3. Область применения

Сервопривод используется в самых различных направлениях науки и техники, где электрический привод, помимо функции вращения каких-либо элементов, должен выполнить и точное позиционирование. На практике они повсеместно используются в ЧПУ станках, автоматических задвижках, электронных клапанах, заводских станках с программным управлением, робототехнике.

В бытовых системах сервомоторы устанавливаются в системах отопления для регулировки подачи теплоносителя, топлива, управления нагревательным элементом, контроля переключения между центральными и автономными системами энергетических ресурсов и т.д. В автомобилях их используют для отпирания, запирания багажника, электронных блокировок.

Разновидности

За счет многолетнего развития сервоприводов сегодня можно встретить самые различные виды устройства. Поэтому мы рассмотрим наиболее распространенные критерии разделения.

По типу привода:

  • асинхронные сервоприводы – получаются дешевле,
    чем с  синхронным электродвигателем,
    могут обеспечить точность даже при низких оборотах выходного вала;
  • синхронные – более дорогой вариант, но быстрее
    разгоняется, что повышает скорость выполнения операций;
  • линейные – не используют классических
    электрических моторов, но способны развивать большое ускорение.

По принципу действия выделяют:

  • электромеханический сервопривод – движение
    обеспечивается электрической машиной и шестеренчатым редуктором;
  • гидромеханический серводвигатель –
    движение осуществляется при помощи поршневого цилиндра, обладают значительно
    большей скоростью перемещения;

По материалу передаточного механизма:

  • полимерные – износоустойчивые и
    легкие, но плохо переносят большие механические нагрузки;
  • металлические – наиболее тяжелый
    вариант, относительно быстро изнашиваются, но могут выдерживать любые нагрузки;
  • карбоновые – имеют средние
    характеристики по прочности и износоустойчивости, в сравнении с двумя
    предыдущими, но имеют более высокую стоимость.

Рис. 4. По материалу шестерней

По типу вала двигателя:

  • с монолитным ротором – тяжелые сервоприводы, создают вибрацию при вращении;
  • с полым ротором – самые легкие модели, быстро реагируют на команды и набирают обороты, их легче контролировать;
  • с бесколлекторным ротором – не имеют подвижных контактов, которые создают дополнительное сопротивление вращению, наиболее дорогой вариант.

Рис. 5. По типу вала

Технические характеристики

При выборе конкретной модели сервопривода необходимо руководствоваться основными техническими параметрами, которые изготовитель указывает в паспорте устройства.

Наиболее значимыми характеристиками сервомотора являются:

  • Усилие на валу серводвигателя – определяет механический момент и способность перемещать определенный вес, создавать усилие при резке, фрезеровке и т.д.

Рис. 6. Усилие на валу

  • Скорость вращения – показывает, сколько поворотов вала может совершить устройство за единицу времени.
  • Величина питающего напряжения – чаще всего электроснабжение сервопривода выполняется постоянным током, хотя встречаются модели и с переменным током выходного напряжения. Подключение питания к сервоприводу осуществляется тремя проводами: питающим, управляющим и общим.
  • Угол вращения сервопривода – поворот выходного элемента, как правило, выпускается на 180° и 360°.
  • Скорость поворота – подразделяется на сервоприводы с постоянным вращением и с переменной частотой.

Способы управления

Рис. 7. Способ управления сервоприводом

По способу управления могут быть аналоговые или цифровые сервоприводы, первый из них подает сигналы с разной частотой, которая задается специальной микросхемой, контролирующей работу устройства. Цифровые сервоприводы, в свою очередь, отличаются наличием процессора, который принимает команды и реализует их в качестве различных режимов работы на приводе.

Их практическое отличие заключается в наличии мертвых зон у аналоговых способов,  цифровые лишены этого недостатка, к тому же они быстрее реагируют на изменения и обладают большей точностью. Однако цифровой способ управления имеет большую себестоимость и на свою работу он расходует больше электроэнергии.

На рисунке 8 приведен пример управления сервоприводом с помощью подаваемых импульсов:

Рис. 8. Схема управления сервоприводом

Как видите на рисунке, сигнал поступает к генератору опорных импульсов (ГОП), подключенному к потенциометру. Далее сигнал поступает на компаратор (К), сравнивающий величины на выходе схемы и поступающие от датчика на рабочем органе. После этого прибор управления мостом (УМ) открывает нужную пару транзисторов моста для вращения вала мотора (М) по часовой или против часовой стрелки, также может задавать усилие за счет полного или частичного открытия перехода.

Преимущества и недостатки

К преимуществам сервопривода следует отнести:

  • Универсальность
    устройства – может с легкостью устанавливаться в самые различные приборы, так
    как технические особенности редко влияют на конечный результат.
  • Может
    реализовать широкий спектр крутящего момента за счет использования редуктора и
    изменения передаточного числа.
  • Обладает
    большим ускорением, что значительно повышает продуктивность и сокращает сроки
    выполнения работы.
  • Точное
    выставление позиции благодаря проверке места положения на датчике.
  • Не боится
    перегрузок, что увеличивает срок службы, позволяет работать и в аварийных
    ситуациях.

К недостаткам следует отнести:

  • Относительно большую стоимость – наличие обратной связи, датчиков и прочего вспомогательного оборудования обуславливает повышение себестоимости сервопривода.
  • Износ передаточного механизма – в значительной мере ухудшает точность и эффективность, требует замены.
  • Более сложная настройка работы – требует изменения параметров программного обеспечения или полной замены сервопривода.

Принцип работы сервопривода, что такое сервопривод

Сервопривод – это привод, предназначенный для осуществления контроля (угол поворота вала, скорость вращения/движения и так далее) над различными объектами, находящимися в постоянном движении. Контроль производится в зависимости от заданных ему параметров извне.


Рисунок 1. Сервопривод

Данный механизм получил достаточно широкое применение в различных промышленных сферах. Например, чаще всего его можно увидеть в конструкциях станков/машин для создания таких материалов/предметов и их обработки как:

  • Упаковки и бумага;
  • Листовой металл;
  • Обработка материалов;
  • Транспортное оборудование;
  • Стройматериалы.

Также они могут использоваться в управляющих элементах механических систем (заслонка/задвижка, багажник автомобиля и тому подобные механизмы). Сервопривод очень полезен, так как позволяет поддерживать необходимый вам параметр.

Устройство


Рисунок 2. Устройство сервопривода

Сервопривод включает в свой состав такие элементы как:

  • Приводной механизм – к примеру, это может быть электромотор. Благодаря ему становится возможным управление скоростью нужного диапазона в определённый временной момент;
  • Датчики – осуществляют контроль над необходимыми параметрами. Могут быть предназначены для отслеживания положения, усилия, поворота угла или скорости вращения объекта;
  • Блок управления – немало важный элемент, так как именно благодаря ему происходит поддержание требуемых параметров в автоматическом режиме;
  • Блок питания – питает данный механизм.

Интересно, что самый простой управляющий блок чаще всего создаётся с использованием схемы сравнений значений на датчике и необходимых значений при подаче напряжения определённой полярности на привод.

Виды

Сервоприводы могут быть произведены в самых различных комплектациях. Эти устройства разделяют по принципу движения:

Вращательное

Представлено двумя вариациями: синхронной и асинхронной. Синхронный вариант помогает задать высокоточные параметры скорости вращения, углов поворота и ускорения. По сравнению с асинхронным скорость набирают быстрее, поэтому и стоят больше;

Асинхронный привод отличается способностью поддержания с большой точностью необходимой скорости даже в условиях низких оборотов.

Линейное

Также делится на два варианта: плоские и круглые. Двигатели данного типа развивают достаточно высокое ускорение (70 метров в секунду).

Ещё их выделяют по способу действия:

  • Электромеханические механизмы – формирование движений происходит за счёт электродвигателя с редуктором;
  • Электрогидромеханические – у них любое движение создаётся с участием системы поршня-цилиндра. В сравнении с электромеханическим приводом они обладают отличительно высоким быстродействием.

Параметры

Абсолютно любой сервопривод классифицируется по следующим параметрам:

Поворотная скорость представляет собой конкретный временной промежуток, необходимый для изменения позиции вала и зависима от определённого напряжения.

Поворотный угол выходного вала. Обычно этот параметр равен 180, 360.

Крутящий момент является самым важным параметром работы механизма и регулируется в зависимости от напряжения.

Управление сервопривода зависит от его типа – цифровой он или аналоговый.

Питание. Чаще всего в моделях используют напряжение, варьирующееся от 4.8 до 7.2 вольт.

Материал. Для изготовления редуктора могут использовать различные материалы. Для шестерней используют металл, карбон, пластик. Металл отличается большой устойчивостью в условиях динамических нагрузок, но не долговечен. Пластик долговечен, но не устойчив в динамических нагрузках.

Размер. По этому параметру приводы делят на микро-, стандартные и большие (существуют и другие размеры, но эти самые распространенные).

Принцип работы сервопривода


Рисунок 3. Принцип работы сервопривода

Движение редукторного выходного вала, который связан сервоприводом с шестернями, происходит за счёт работы электродвигателя. Для регулирования оборотов предназначен редуктор. Для управления необходимыми механизмами вал соединяется непосредственно с ними.

Его положение контролирует специальный датчик (на них основано всё устройство), который преобразует угол поворота в электро-сигналы. Такой датчик носит название энкодера. Во время поворота бегунка сопротивление энкодера изменяется. Это изменение пропорционально зависимо от угла поворота датчика. Благодаря этому принципу работы механизм можно зафиксировать в нужной позиции.

Для поддержания отрицательной обратной связи используется электронная плата, которая обрабатывает сигналы, приходящие от энкодера. Она сравнивает параметры и определяет запускать или остановить электродвигатель.

Управление

Для того чтобы серводвигатель мог функционировать в нём используют специальную систему, основанную на G-кодах. Упомянутые коды представлены набором управляющих команд, которые заложены в программе.

Например, в системе ЧПУ сервопривод контактирует с инверторами, способными изменять напряжение, которое соответствует входному, в обмотке электромотора.

Вся система серводвигателя управляется/контролируется блоком управления, из которого поступают различные команды, например, передвижения по оси Х или У. После подачи команды в инверторе создаётся определённое напряжение, питающее привод. Затем серводвигатель начинает своё круговое движение, связанное с главным исполнительным элементом механизма и энкодером.

Энкодер создаёт множество импульсов, которые подсчитываются блоком, осуществляемыми управление устройством. Для каждой позиции исполнительного элемента в программе установлено определённое количество импульсов. Так под их влиянием либо подаётся напряжение на моторчик, либо прекращается.

Преимущества и недостатки

Приятной особенностью сервоприводов является их достаточно малый размер и вес, что позволяет устанавливать их в различные конструкции с лёгкостью. Также они отличаются своей почти полностью бесшумной работой, что очень важно при использовании данных устройств на определённых участках. Любой сервопривод можно настроить персонально под свои конкретные задачи.

Благодаря сервоприводу можно осуществлять управление с отличительной большой точностью и стабильностью.

Из недостатков выделяется только сложность в их настройке и стоимости.

Подключение


Рисунок 4. Подключение сервопривода к системе Arduino

Подключение сервопривода осуществляется за счёт проводников в количестве трёх штук. Два проводника используются для подачи питания на электромотор, а оставшийся необходим для передачи сигналов от блока управления, которые приводят вал в нужную позицию.

Стоит отметить, что для того чтобы снизить вероятность огромных динамических нагрузок, которым может подвергаться электромотор, необходимо осуществлять как плавный разгон мотора, так и его торможение. Для этой цели создаются и используются более высокие по сложности микроконтроллеры, которые обеспечивают высокую точность в контроле и управлении положением рабочей детали.

Шаговый сервопривод

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 6 чел.
Средний рейтинг: 4.3 из 5.

Устройство сервомотора

Сервомоторы (серводвигатели) представляют собой специализированные электродвигатели, оснащенные так называемой отрицательной обратной связью, с помощью которой осуществляется точное управление всеми параметрами движения. Ее суть состоит в том, что в процессе работы этих устройств происходит постоянное сравнение выходных параметров функционирования с изначально заданными входными. Происходит это на основе управляющих сигналов, генерируемых в режиме реального времени сервоконтроллерами, имеющими в своей конструкции энкодеры, то есть датчики обратной связи.

Таким образом, в конструкцию всех современных сервомоторов входит собственно электродвигатель и управляющий блок. В совокупности они представляют собой сервоприводы, с помощью которых конструкторам технических устройств удается решать целый ряд важных задач. Наиболее часто серводвигатели (сервоприводы) применяются в тех случаях, когда требуется в автоматическом режиме осуществлять точное позиционирование одних рабочих элементов конструкции разнообразного оборудования (например, станков с числовым программным управлением, прессо-штамповочного оборудования, роботизированных сборочных конвейеров и т. п.) относительно других.

Все выпускаемые ведущими мировыми производителями серводвигатели можно разделить на две большие группы: со щетками и без щеток. В сервоприводах могут использоваться как синхронные, так и асинхронные электродвигатели, а также синхронные линейные двигатели. Кроме того, в сервоприводах могут использоваться как корпусные, так и бескорпусные электродвигатели, причем во втором варианте исполнения роль корпуса играет пакет пластин статора, что позволяет максимально эффективно использовать весь их профиль, и при этом существенно уменьшить размеры и вес устройств в целом.

Большинство современных серводвигателей, работающих по принципу обратной связи, управляется сигналами, сформированными энкодером из нескольких системных. Одной из основных особенностей сервосистем является то, что они способны усиливать выходные сигналы, которые изначально, как правило, имеют гораздо меньшую мощность, чем входные (это необходимо для того, чтобы их можно было сравнить). Таким образом, при работе сервосистем их контуры в прямом направлении передают энергию, а в обратном – информацию, требуемую для точного управления.

Основными техническими характеристиками сервомоторов являются их динамика, равномерность движения и энергоэффективность. В последние годы все более широкое применение находят синхронные серводвигатели, которые выгодно отличаются от асинхронных более высокой динамикой, возможностью длительной работы на низких скоростях без принудительного охлаждения и более высокой устойчивостью к перегрузкам. В то же самое время асинхронные двигатели, используемые в сервоприводах, имеют перед синхронными двигателями такое преимущество, как полное отсутствие пульсации при вращении.

Сервомоторы, выпускаемые ведущими мировыми производителями, удачно сочетают в себе компактность и высокую мощность. Кроме того, они отличаются большой надежностью, отказоустойчивостью, легкостью и простотой в обслуживании.

подключение, управление, примеры работы [Амперка / Вики]

Познакомимся поближе с сервоприводами. Рассмотрим их разновидности, предназначение, подсказки по подключению и управлению.

Что такое сервопривод?

Сервопривод — это мотор с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервомотором является любой тип механического привода, имеющий в составе датчик положения и плату управления.

Простыми словами, сервопривод — это механизм с электромотором, который может поворачиваться в заданный угол и удерживать текущее положение.

Элементы сервопривода

Рассмотрим составные части сервопривода.

Электромотор с редуктором

За преобразование электричества в механический поворот в сервоприводе отвечает электромотор. В асинхронных сервоприводах установлен коллекторный мотор, а в синхронных — бесколлекторный.

Однако зачастую скорость вращения мотора слишком большая для практического использования, а крутящий момент — наоборот слишком слабый. Для решения двух проблем используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.

Включая и выключая электромотор, вращается выходной вал — конечная шестерня редуктора, к которой можно прикрепить нечто, чем мы хотим управлять.

Позиционер

Для контроля положения вала, на сервоприводе установлен датчик обратной связи, например потенциометр или энкодер. Позиционер преобразует угол поворота вала обратно в электрический сигнал.

Плата управления

За всю обработку данных в сервоприводе отвечает плата управления, которая сравнивает внешнее значения с микроконтроллера со показателем датчика обратной связи, и по результату соответственно включает или выключает мотор.

Выходной вал

Вал — это часть редуктора, которая выведена за пределы корпуса мотора и непосредственно приводиться в движение при подаче управляющих сигналов на сервопривод. В комплектации сервомоторов идут качельки разных формфакторов, которые одеваются на вал сервопривода для дальнейшей коммуникации с вашими задумками.

Не рекомендуем прилагать к валу нагрузки, которые больше крутящего момента сервопривода. Это может привести к разрушению редуктора.

Выходной шлейф

Для работы сервопривода его необходимо подключить к источнику питания и к управляющей плате. Для коммуникации от сервопривода выходит шлейф из трёх проводов:

  • Красный — питание сервомотора. Подключите к плюсовому контакту источнику питания. Значения напряжение смотрите в характеристиках конкретно вашего сервопривода.

  • Чёрный — земля. Подключите к минусовому контакту источника питания и земле микроконтроллера.

  • Жёлтый — управляющий сигнал. Подключите к цифровому пину микроконтроллера.

Если сервопривод питается напряжением от 5 вольт и потребляет ток менее 500 мА, то есть возможность обойтись без внешнего источника питания и подключить провод питания сервомотора непосредственно к питанию микроконтроллера.

Управление сервоприводом

Алгоритм работы

  1. Сервопривод получает на вход управляющие импульсы, которые содержат:

    1. Для простых сервоприводов: значение угла поворота.

    2. Для сервоприводов постоянного вращения: значения скорости и направления вращения.

  2. Плата управления сравнивает это значение с показанием на датчике обратной связи.

  3. На основе результата сравнения привод производит некоторое действие: например, поворот, ускорение или замедление так, чтобы значение с внутреннего датчика стало как можно ближе к значению внешнего управляющего параметра.

Интерфейс управления

Чтобы указать сервоприводу желаемое состояние, по сигнальному проводу необходимо посылать управляющий сигнал — импульсы постоянной частоты и переменной ширины.

То, какое положение должен занять сервопривод, зависит от длины импульсов. Когда сигнал от микроконтроллера поступает в управляющую схему сервопривода, имеющийся в нём генератор импульсов производит свой импульс, длительность которого определяется через датчик обратной связи. Далее схема сравнивает длительность двух импульсов:

  • Если длительность разная, включается электромотор с направлением вращения определяется тем, какой из импульсов короче.

  • Если длины импульсов равны, электромотор останавливается.

Для управления хобби-сервоприводами подают импульсы с частотой 50 Гц, т.е. период равен 20 мс:

  • 1540 мкс означает, что сервопривод должен занять среднее положение.

  • 544 мкс — для 0°

  • 2400 мкс — для 180°.

Обратите внимание, что на вашем конкретном устройстве заводские настройки могут оказаться отличными от стандартных. Некоторые сервоприводы используют ширину импульса 760 мкс. Среднее положение при этом соответствует 760 мкс, аналогично тому, как в обычных сервоприводах среднему положению соответствует 1520 мкс.

Это всего лишь общепринятые длины. Даже в рамках одной и той же модели сервопривода может существовать погрешность, допускаемая при производстве, которая приводит к тому, что рабочий диапазон длин импульсов отличается. Для точной работы каждый конкретный сервопривод должен быть откалиброван: путём экспериментов необходимо подобрать корректный диапазон, характерный именно для него.

Часто способ управления сервоприводами называют PWM (Pulse Width Modulation) или PPM (Pulse Position Modulation). Это не так, и использование этих способов может даже повредить привод. Корректный термин — PDM (Pulse Duration Modulation) в котором важна длина импульсов, а не частота.

Характеристики сервопривода

Рассмотрим основные характеристики сервоприводов.

Крутящий момент

Момент силы или крутящий момент показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.

Скорость поворота

Скорость сервопривода — это время, которое требуется выходному валу повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё можно вычислить скорость в оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют именно интервал времени за 60°.

Форм-фактор

Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов.

Форм-фактор Вес Размеры
Микро 8-25 г 22×15×25 мм
Стандартный 40-80 г 40×20×37 мм
Большой 50-90 г 49×25×40 мм

Внутренний интерфейс

Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?

Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.

Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс — минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.

Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка — все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.

Материалы шестерней

Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические. Все они широко используются, выбор зависит от конкретной задачи и от того, какие характеристики требуются в установке.

Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.

Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостатой — дороговизна.

Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. К сожалению, они обойдутся вам достаточно дорого.

Коллекторные и бесколлекторные моторы

Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.

Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.

Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.

Сервопривод постоянного вращения

Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°».

Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».

Сервопривод постоянного вращения можно управлять с помощью библиотек Servo или Servo2. Отличие заключается в том, что функция Servo.write(angle) задаёт не угол, а скорость вращения привода:

Функция Arduino Сервопривод 180° Сервопривод 360°
Servo.write(0) Крайне левое положение Полный ход в одном направлении
Servo.write(90) Середнее положение Остановка сервопривода
Servo.write(180) Крайне правое положение Полный ход в обратном направлении

Для иллюстрации работы с сервами постоянного вращения мы собрали двух мобильных ботов — на Arduino Uno и Iskra JS. Инструкции по сборке и примеры скетчей смотрите в статье собираем ИК-бота.

Примеры работы с Arduino

Схема подключения

Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:

  • красный — питание; подключается к контакту 5V или напрямую к источнику питания

  • коричневый или чёрный — земля

  • жёлтый или белый — сигнал; подключается к цифровому выходу Arduino.

Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield. Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.

Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo.

Ограничение по питанию

Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.

Рассмотрим на примере подключения 12V сервопривода:

Ограничение по количеству подключаемых сервоприводов

На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.

Пример использования библиотеки Servo

servo_example.ino
// подключаем библиотеку для работы с сервоприводами
#include <Servo.h> 
// создаём объект для управления сервоприводом
Servo myservo;
 
void setup() 
{
  // подключаем сервопривод к 9 пину 
  myservo.attach(9);
} 
 
void loop() 
{
  // устанавливаем сервопривод в серединное положение
  myservo.write(90);
  delay(500);
  // устанавливаем сервопривод в крайнее левое положение  
  myservo.write(0);
  delay(500);
  // устанавливаем сервопривод в крайнее правое положение
  myservo.write(180);
  delay(500);
} 

По аналогии подключим 2 сервопривода

2servo_example.ino
// подключаем библиотеку для работы с сервоприводами
#include <Servo.h> 
// создаём объекты для управления сервоприводами
Servo myservo1;
Servo myservo2;
 
void setup() 
{
  // подключаем сервоприводы к 11 и 12 пину 
  myservo1.attach(11);
  myservo2.attach(12);
} 
 
void loop() 
{
  // устанавливаем сервопривод в серединное положение
  myservo1.write(90);
  myservo2.write(90);
  delay(500);
  // устанавливаем сервопривод в крайнее левое положение  
  myservo1.write(0);
  myservo2.write(0);
  delay(500);
  // устанавливаем сервопривод в крайнее правое положение
  myservo1.write(180);
  myservo2.write(180);
  delay(500);
}

Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц.

Альтернативная библиотека Servo2

Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками / передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.

Все методы библиотеки Servo2 совпадают с методами Servo.

Пример использования библиотеки Servo

servo2_example.ino
// подключаем библиотеку для работы с сервоприводами
// данная библиотека совместима с библиотекой «VirtualWire»
// для работы с приёмником и передатчиком на 433 МГц
#include <Servo2.h> 
// создаём объект для управления сервоприводом
Servo2 myservo;
 
void setup() 
{
  // подключаем сервопривод к 9 пину 
  myservo.attach(9);
} 
 
void loop() 
{
  // устанавливаем сервопривод в серединное положение
  myservo.write(90);
  delay(500);
  // устанавливаем сервопривод в крайнее левое положение  
  myservo.write(0);
  delay(500);
  // устанавливаем сервопривод в крайнее правое положение
  myservo.write(180);
  delay(500);
} 

Примеры работы с Espruino

Примеры работы с Raspberry Pi

Вывод

Сервоприводы бывают разные, одни получше — другие подешевле, одни надёжнее — другие точнее. И перед тем, как купить сервопривод, стоит иметь в виду, что он может не обладать лучшими характеристиками, главное, чтобы подходил для вашего проекта. Удачи в ваших начинаниях!

Ресурсы

Принцип работы сервоприводов

Принцип работы

Вентильные электродвигатели

Вентильные двигатели – это синхронные бесколлекторные (бесщёточные) машины.
На роторе находятся постоянные магниты из редкоземельных металлов, на статоре — якорная обмотка. Коммутация обмоток статора осуществляется полупроводниковыми силовыми ключами (транзисторами) так, чтобы вектор магнитного поля статора был всегда перпендикулярен вектору магнитного поля ротора — для этого используется датчик положения ротора (датчик Холла или энкодер).
Фазный ток регулируется с помощью ШИМ-модуляции и может иметь трапецеидальную или синусоидальную форму.

Линейные серводвигатели

Плоский ротор линейного двигателя сделан из редкоземельных постоянных магнитов.
По принципу действия он похож на вентильный двигатель.

Шаговые электродвигатели

В отличие от синхронных машин непрерывного вращения шаговые двигатели имеют на статоре явно выраженные полюса,
на которых расположены катушки обмоток управления – их коммутация выполняется внешним приводом.

Рассмотрим принцип работы реактивного шагового двигателя, у которого на полюсах статора расположены зубцы,
а ротор выполнен из магнитомягкой стали и тоже имеет зубцы. Зубцы на статоре расположены так, что на одном шаге
магнитное сопротивление меньше по продольной оси двигателя, а на другом – по поперечной.
Если дискретно возбуждать в определённой последовательности обмотки статора постоянным током,
то ротор при каждой коммутации будет поворачиваться на один шаг, равный шагу зубцов на роторе.

Сервопривод

Некоторые модели преобразователей частоты могут работать как со стандартными асинхронными двигателями,
так и с серводвигателями. То есть основное отличие сервоприводов не в силовой части, а в алгоритме управления
и скорости вычислений. Поскольку в программе используется информация о положении ротора, то у сервопривода
есть интерфейс для подключения энкодера, установленного на валу двигателя.

Сервоконтроллер

В сервосистемах используется принцип подчинённого управления: контур тока подчинён контуру скорости,
который в свою очередь подчинён контуру положения (см. теорию автоматического управления).
Сначала настраивается самый внутренний контур – контур тока, потом – контур скорости и самым последним
настраивается контур положения.

Контур тока всегда реализован в сервоприводе.

Контур скорости (как и датчик скорости) также всегда присутствует в сервосистеме,
он может быть реализован как на базе встроенного в привод сервоконтроллера, так и внешнего.

Контур положения используется для точного позиционирования (например, осей подач в станках с ЧПУ).
Если в кинематических связях между исполнительным органом (координатным столом) и валом двигателя нет люфтов,
то координата косвенно пересчитывается по значению кругового датчика. Если люфты есть, то на исполнительный орган
устанавливается дополнительный датчик положения (который подключается к сервоконтроллеру) для прямого измерения координаты.
Те есть, в зависимости от конфигурации контуров скорости и положения подбирается соответствующий сервоконтроллер и
сервопривод (не в любом сервоконтроллере можно реализовать контур положения!).

Как выбрать сервопривод

Основные функции сервосистем

  • Позиционирование (Positioning)
  • Интерполяция (Interpolation)
  • Синхронизация, электронный редуктор (Gear)
  • Точное поддержание скорости вращения (шпиндель станка)
  • Электронный кулачок (Cam)
  • Программируемый логический контроллер.

Компоненты сервосистемы

В общем случае сервосистема (Motion Control System) может состоять из следующих устройств:

  • Серводвигатель (Servo Motor) с круговым датчиком обратной связи по скорости (он же может выполнять функцию
    датчика положения ротора)
  • Серворедуктор (Servo Gear)
  • Датчик положения исполнительного механизма (например, линейный датчик координаты оси подач)
  • Сервопривод (Servo Drive)
  • Сервоконтроллер (Motion Controller)
  • Операторский интерфейс (HMI).

Варианты аппаратно-программной реализации сервосистемы

  • Сервосистема на базе ПЛК (PLC-based Motion Control)
    • Функциональный модуль управления перемещением добавляется в корзину расширения ПЛК
    • Автономный сервоконтроллер
  • Сервосистема на базе ПК (PC-based Motion Control)
    • Специальный софт Motion Control для планшетного ПК с пользовательским интерфейсом (HMI)
    • Programmable Automation controller (PAC) с функцией управления перемещением
  • Сервосистема на базе привода (Drive-based Motion Control)
    • Преобразователь частоты со встроенным сервоконтроллером
    • Опциональное программное обеспечение, которое загружается в привод и дополняет его функциями управления движением
    • Опциональные платы с функциями управления движением, которые встраиваются в привод.

Типы серводвигателей

  • Синхронные

    Компактные бесщёточные серводвигатели с возбуждением от постоянных магнитов (вентильные), обеспечивающие высокую динамику и точность.

  • Асинхронные

    Приводы главного движения и шпинделей инструментальных станков.

  • Прямой привод (Direct Drive)
  • Прямой привод не содержит промежуточных передаточных механизмов (шарико-винтовых пар, ремней, редукторов):

    • Линейные двигатели (Linear Motors) могут поставляться вместе с профильными рельсовыми направляющими
    • Моментные двигатели (Torque Motors) — синхронные многополюсные машины с возбуждением от постоянных магнитов,
      с жидкостным охлаждением, ротор с полым валом. Обеспечивают высокую точность и мощность на низких оборотах.

Преимущества серводвигателей

  • Высокое быстродействие, динамика и точность позиционирования
  • Высокомоментные
  • Малоинерционные
  • Большая перегрузочная способность по моменту
  • Широкий диапазон регулирования
  • Бесщёточные.

Преимущества линейных приводов

Отсутствие кинематических цепей для преобразования вращательного движения в линейное:

  • Меньше инерционность
  • Нет зазоров
  • Меньше температурные и упругие деформации
  • Меньше износ и снижение точности при эксплуатации
  • Меньше потери на трение – выше КПД.

Точность

Микронная точность требуется в металлообрабатывающих станках с ЧПУ, а в штабелёрах достаточно и сантиметра.
От точности зависит выбор серводвигателя и сервопривода.

  • Точность позиционирования
  • Точность поддержания скорости
  • Точность поддержания момента.


Приводы и двигатели постоянного тока

Электродвигатели

Работа серводвигателей

| Как работают серводвигатели

Серводвигатели

: высокая эффективность и мощность

Серводвигатели существуют уже давно и используются во многих приложениях. Они небольшие по размеру, но обладают большой мощностью и очень энергоэффективны. Эти особенности позволяют использовать их для управления игрушечными машинками, роботами и самолетами с дистанционным или радиоуправлением. Серводвигатели также используются в промышленных приложениях, робототехнике, поточном производстве, фармацевтике и в сфере общественного питания.Но как работают маленькие ребята?

Сервосистема встроена прямо в моторный блок и имеет позиционируемый вал, который обычно снабжен шестерней (как показано ниже). Двигатель управляется электрическим сигналом, который определяет величину перемещения вала.

Что внутри сервопривода?

Чтобы полностью понять, как работает сервопривод, вам нужно заглянуть под капот. Внутри находится довольно простая установка: небольшой двигатель постоянного тока, потенциометр и схема управления.Двигатель прикреплен шестернями к управляющему колесу. Когда двигатель вращается, сопротивление потенциометра изменяется, поэтому схема управления может точно регулировать, насколько велико движение и в каком направлении.

Когда вал двигателя находится в желаемом положении, питание двигателя прекращается. В противном случае двигатель вращается в соответствующем направлении. Желаемое положение передается с помощью электрических импульсов по сигнальному проводу. Скорость двигателя пропорциональна разнице между его фактическим положением и желаемым положением.Таким образом, если двигатель находится рядом с желаемым положением, он будет вращаться медленно, в противном случае он будет вращаться быстро. Это называется пропорциональным управлением . Это означает, что двигатель будет работать ровно настолько, насколько это необходимо для выполнения поставленной задачи, очень эффективный маленький парень.

Как регулируется сервопривод?

Внутренности серводвигателя (L) и сервопривода в сборе (R)
Сервомашинки
управляются путем отправки электрического импульса переменной ширины или широтно-импульсной модуляции (ШИМ) через провод управления.Есть минимальный импульс, максимальный пульс и частота повторения. Серводвигатель обычно может поворачиваться только на 90 ° в любом направлении, всего на 180 °. Нейтральное положение двигателя определяется как положение, в котором сервопривод имеет одинаковую величину потенциального вращения как по часовой стрелке, так и против часовой стрелки.
ШИМ, отправляемый на двигатель, определяет положение вала на основе длительности импульса, отправляемого через провод управления; ротор повернется в нужное положение. Серводвигатель ожидает увидеть импульс каждые 20 миллисекунд (мс), и длина импульса будет определять, насколько далеко двигатель вращается.Например, импульс 1,5 мс заставит двигатель повернуться в положение 90 °. Менее 1,5 мс перемещает его против часовой стрелки к положению 0 °, а более 1,5 мс поворачивает сервопривод по часовой стрелке к положению 180 °.
Положение сервопривода с регулируемой шириной импульса

Когда эти сервоприводы получают команду двигаться, они перемещаются в положение и удерживают это положение. Если внешняя сила толкает сервопривод, когда сервопривод удерживает позицию, сервопривод будет сопротивляться выходу из этого положения.Максимальное усилие, которое может оказать сервопривод, называется номинальным крутящим моментом сервопривода . Однако сервоприводы не будут оставаться на своем месте вечно; импульс положения должен быть повторен, чтобы сервопривод оставался на месте.

Типы серводвигателей

Есть два типа серводвигателей — переменного и постоянного тока. Сервопривод переменного тока может выдерживать более высокие скачки тока и, как правило, используется в промышленном оборудовании. Сервоприводы постоянного тока не предназначены для сильных скачков тока и обычно лучше подходят для небольших приложений.Вообще говоря, двигатели постоянного тока дешевле, чем их аналоги переменного тока.
Это также серводвигатели, которые были созданы специально для непрерывного вращения, что упрощает движение вашего робота. Они оснащены двумя шарикоподшипниками на выходном валу для уменьшения трения и легкого доступа к потенциометру регулировки точки покоя.

Применения серводвигателя

Сервоприводы используются в радиоуправляемых самолетах для позиционирования поверхностей управления, таких как рули высоты, рули направления, ходьба робота или управление захватами .Серводвигатели небольшие, имеют встроенную схему управления и обладают хорошей мощностью для своего размера.

В сфере общественного питания и фармацевтики инструменты предназначены для использования в более суровых условиях, где высока вероятность коррозии из-за многократной мойки при высоких давлениях и температурах для соблюдения строгих гигиенических стандартов. Сервоприводы также используются в поточном производстве , где требуется высокая повторяемость, но точная работа.

Конечно, вам не нужно знать, как работает сервопривод, чтобы использовать его, но, как и в случае с большинством электроники, чем больше вы понимаете, тем больше возможностей открывается для расширенных проектов и возможностей проектов.Если вы любитель, создающий роботов, инженер, разрабатывающий промышленные системы, или просто постоянно любопытствуете, куда вас приведут серводвигатели?
Руководство покупателя серводвигателя


Если у вас есть история или проект в области электроники, которым вы хотели бы поделиться, отправьте электронное письмо [электронная почта защищена].
Сервомоторы

— Принцип работы, управление и применение

Сервомоторы

подразумевают управление с обратной связью с обнаружением ошибок, которое используется для корректировки производительности системы.Для этого также требуется обычно сложный контроллер, часто специальный модуль, специально разработанный для использования с серводвигателями. Серводвигатели — это двигатели постоянного тока, которые позволяют точно контролировать угловое положение. Это двигатели постоянного тока, скорость которых медленно снижается шестернями. Серводвигатели обычно имеют отсечку оборотов от 90 ° до 180 °. Некоторые серводвигатели также имеют отсечку оборотов на 360 ° или более. Но серводвигатели не вращаются постоянно. Их вращение ограничено фиксированными углами.

Серводвигатель представляет собой сборку из четырех частей: обычного двигателя постоянного тока, редуктора, устройства определения положения и цепи управления. Двигатель постоянного тока соединен с зубчатым механизмом, который обеспечивает обратную связь с датчиком положения, который в основном представляет собой потенциометр. От коробки передач мощность двигателя через шлицевую часть сервопривода подается на рычаг сервопривода. Для стандартных серводвигателей шестерня обычно сделана из пластика, тогда как для сервоприводов большой мощности шестерня сделана из металла.

Серводвигатель состоит из трех проводов — черного провода, подключенного к земле, белого / желтого провода, подключенного к блоку управления, и красного провода, подключенного к источнику питания.

Функция серводвигателя состоит в том, чтобы получать управляющий сигнал, который представляет желаемое выходное положение вала сервомотора, и подавать питание на его двигатель постоянного тока до тех пор, пока его вал не повернется в это положение.

Он использует устройство определения положения, чтобы определить положение вращения вала, поэтому он знает, в какую сторону должен повернуться двигатель, чтобы переместить вал в заданное положение. Вал обычно не вращается свободно, как двигатель постоянного тока, а может просто повернуться на 200 градусов.

Серводвигатель

Из положения ротора создается вращающееся магнитное поле для эффективного генерирования крутящего момента. В обмотке течет ток, создавая вращающееся магнитное поле. Вал передает выходную мощность двигателя. Нагрузка приводится в движение передаточным механизмом. Высокоэффективный редкоземельный или другой постоянный магнит расположен снаружи вала. Оптический энкодер всегда отслеживает количество оборотов и положение вала.

Работа серводвигателя

Серводвигатель состоит из двигателя постоянного тока, зубчатой ​​передачи, датчика положения и цепи управления.Двигатели постоянного тока питаются от батареи и работают с высокой скоростью и низким крутящим моментом. Узел шестерни и вала, соединенный с двигателями постоянного тока, снижает эту скорость до достаточной скорости и более высокого крутящего момента. Датчик положения определяет положение вала из его определенного положения и передает информацию в схему управления. Схема управления соответственно декодирует сигналы от датчика положения и сравнивает фактическое положение двигателей с желаемым положением и, соответственно, управляет направлением вращения двигателя постоянного тока, чтобы получить требуемое положение.Серводвигатель обычно требует питания постоянного тока от 4,8 В до 6 В.

Управление серводвигателем

Серводвигатель управляется путем управления его положением с помощью метода широтно-импульсной модуляции. Ширина импульса, подаваемого на двигатель, варьируется и отправляется в течение фиксированного периода времени.

Ширина импульса определяет угловое положение серводвигателя. Например, ширина импульса 1 мс приводит к угловому положению 0 градусов, тогда как ширина импульса 2 мс вызывает угловую ширину 180 градусов.

Преимущества:

  • Если на двигатель оказывается большая нагрузка, драйвер будет увеличивать ток, подаваемый на катушку двигателя, когда он пытается вращать двигатель. Нет никаких отклонений от шага.
  • Возможна высокоскоростная работа.

Недостатки:

  • Поскольку серводвигатель пытается вращаться в соответствии с командными импульсами, но с запаздыванием, он не подходит для точного управления вращением.
  • Более высокая стоимость.
  • При остановке ротор двигателя продолжает двигаться вперед и назад на один импульс, поэтому он не подходит для предотвращения вибрации

7 Применения серводвигателей

Серводвигатели используются в приложениях, требующих быстрых изменений скорости без перегрева двигателя.

  • В промышленности они используются в станках, упаковке, автоматизации производства, погрузочно-разгрузочных работах, преобразовании печати, сборочных линиях и многих других сложных приложениях в робототехнике, станках с ЧПУ или автоматизированном производстве.
  • Они также используются в радиоуправляемых самолетах для управления позиционированием и движением лифтов.
  • Они используются в роботах из-за плавного включения и выключения и точного позиционирования.
  • Они также используются в аэрокосмической промышленности для поддержания гидравлической жидкости в гидравлических системах.
  • Они используются во многих радиоуправляемых игрушках.
  • Они используются в электронных устройствах, таких как DVD-диски или проигрыватели Blue-ray Disc, для расширения или воспроизведения лотков для дисков.
  • Они также используются в автомобилях для поддержания скорости транспортных средств.

Прикладная цепь серводвигателя

Из приведенной ниже прикладной схемы: Каждый двигатель имеет три входа: VCC, заземление и периодический прямоугольный сигнал. Ширина импульса прямоугольной волны определяет скорость и направление серводвигателей. В нашем случае нам просто нужно изменить направление, чтобы устройство могло двигаться вперед, назад и поворачиваться влево и вправо. Если ширина импульса меньше определенного периода времени, двигатель будет вращаться по часовой стрелке.Если ширина импульса превышает этот временной интервал, двигатель будет вращаться против часовой стрелки. Средний временной интервал можно регулировать с помощью встроенного потенциометра внутри двигателя.

3 Различия между шаговым двигателем и серводвигателем:

  • Шаговые двигатели имеют большое количество полюсов, магнитных пар, генерируемых постоянным магнитом или электрическим током. У серводвигателей очень мало полюсов; каждый полюс обеспечивает естественную точку остановки вала двигателя.
  • Крутящий момент шагового двигателя на низких скоростях больше, чем у серводвигателя того же размера.
  • Работа шагового двигателя синхронизируется сигналами командных импульсов, выдаваемыми генератором импульсов. Напротив, работа серводвигателя отстает от командных импульсов.

Теперь у вас есть представление о работе сервометра, если у вас есть какие-либо вопросы по этой теме или проекты по электротехнике и электронике, оставьте комментарии ниже.

Кредит на фото

Как работает серводвигатель?

Серводвигатели — это двигатели, специально разработанные для использования в системах управления и робототехнике.Они используются для точного управления положением и скоростью при высоких крутящих моментах. Он состоит из подходящего двигателя, датчика положения и сложного контроллера. Серводвигатели можно охарактеризовать в соответствии с двигателем, управляемым сервомеханизмом, то есть, если двигатель постоянного тока управляется с помощью сервомеханизма, он называется серводвигателем постоянного тока. Таким образом, основными типами серводвигателей могут быть: (i) серводвигатель постоянного тока, (ii) серводвигатель переменного тока.

Серводвигатели доступны с номинальной мощностью от долей до нескольких 100 Вт.У них высокий крутящий момент. Ротор серводвигателя выполнен меньшего диаметра и большей длины, поэтому он имеет меньшую инерцию.

Что такое сервомеханизм?

Сервомеханизм — это в основном замкнутая система, состоящая из управляемого устройства, контроллера, выходного датчика и системы обратной связи. Термин сервомеханизм, скорее всего, относится к системам, в которых необходимо управлять положением и скоростью.

Как работает серводвигатель?

Серводвигатели используются для очень точного управления положением и скоростью , но в простом случае можно управлять только положением.Механическое положение вала можно определить с помощью потенциометра, который соединен с валом двигателя через шестерни. Текущее положение вала преобразуется в электрический сигнал потенциометром и сравнивается с командным входным сигналом. В современных серводвигателях для определения положения вала используются электронные энкодеры или датчики.

Команда вводится в соответствии с требуемым положением вала. Если сигнал обратной связи отличается от заданного входа, генерируется сигнал ошибки.Этот сигнал ошибки затем усиливается и подается на вход двигателя, который заставляет двигатель вращаться. И когда вал достигает требуемого положения, сигнал ошибки становится нулевым, и, следовательно, двигатель остается в неподвижном состоянии, удерживая положение.

Командный ввод осуществляется в виде электрических импульсов. Поскольку фактический входной сигнал, подаваемый на двигатель, представляет собой разницу между сигналом обратной связи (текущее положение) и подаваемым сигналом (требуемое положение), скорость двигателя пропорциональна разнице между текущим положением и требуемым положением.Мощность, требуемая двигателем, пропорциональна расстоянию, которое ему необходимо преодолеть.

Как управляется серводвигатель?

Обычно серводвигатель поворачивается на 90 ° в любом направлении, т.е. максимальное перемещение может составлять 180 °. Обычный серводвигатель не может вращаться дальше из-за встроенного механического упора.

Из сервопривода выведены три провода: плюсовой, заземляющий и контрольный. Сервомотор управляется путем отправки сигнала с широтно-импульсной модуляцией (ШИМ) через провод управления.Импульс отправляется каждые 20 миллисекунд. Ширина импульсов определяет положение вала. Например, пульс
1 мс перемещает вал против часовой стрелки на -90 °, импульс 1,5 мс перемещает вал в нейтральное положение, которое составляет 0 °, а импульс в 2 мс перемещает вал по часовой стрелке на + 90 °.

Когда серводвигатель получает команду на движение с помощью импульсов соответствующей ширины, вал перемещается в требуемое положение и удерживает его. Если внешняя сила пытается изменить положение вала, двигатель сопротивляется изменению.Чтобы двигатель удерживал свое положение, необходимо повторять импульсы.

Применение серводвигателя

Серводвигатели широко используются в робототехнике, компьютерах, CD / DVD-плеерах, игрушках и т. Д. Сервомоторы широко используются в тех приложениях, где конкретная задача должна выполняться многократно и очень точно.

Серводвигатель

: основы и принцип работы

Основы серводвигателя
Что такое серводвигатель? Серводвигатель — это двигатель, который управляет работой механических компонентов сервосистемы.Серводвигатель может преобразовывать сигнал напряжения в крутящий момент и скорость, а затем управлять объектом управления. Скорость управления и точность позиционирования очень высоки. В системе автоматического управления серводвигатель может быстро реагировать как исполняющий компонент, преобразовывать принимаемый электрический сигнал в угловое смещение или выходную угловую скорость оси двигателя. Основная особенность заключается в том, что когда напряжение сигнала равно нулю и нет самовращения, скорость вращения будет снижаться с одинаковой скоростью вместе с увеличением крутящего момента. Серводвигатель имеет 2 типа: серводвигатель постоянного тока и серводвигатель переменного тока.

Принцип работы серводвигателя
Как работает сервомотор? Серводвигатель в основном зависит от импульса для фиксации положения, когда он получает 1 импульс, затем вращается на относительный угол в 1 импульс, чтобы реализовать перемещение. Серводвигатель имеет функцию отправки импульса, поэтому серводвигатель будет отправлять импульс относительного количества при повороте на определенный угол. Затем он действует во взаимодействии с серводвигателем, получившим импульс или называемым замкнутым контуром. В этом случае система знает количество импульсов, отправленных на серводвигатель, и импульс, полученный в ответ, затем может точно управлять работой двигателя и осуществлять точное определение положения до 0.001мм. Ротор внутри серводвигателя представляет собой постоянный магнит, трехфазное электричество U / V / W, управляемое драйвером, формирует электромагнитное поле, ротор вращается под действием магнитного поля, одновременно кодер внутри двигателя подает сигнал обратно драйверу, драйвер сравнивает значение обратной связи и цель значение, отрегулируйте угол поворота ротора.
Выбор серводвигателя

  1. Рассчитать инерцию нагрузки. Обратитесь к согласованию по инерции, возьмите серводвигатель ATO в качестве примера, согласование по инерции некоторых продуктов может достигать 50 раз.Но на самом деле, чем меньше, тем лучше для точности и скорости отклика. Если инерция нагрузки и инерция двигателя не соответствуют друг другу, то реакция системы будет очень плохой.
  2. Обработка момента нагрузки на оси двигателя и расчет момента ускорения и замедления.
  3. Требование точности. Используется для выбора точности кодера серводвигателя, так как точность серводвигателя зависит от точности вращающегося кодера (начиная с коаксиального).
  4. Диапазон скоростей.Низкая скорость обычно менее 2000 об / мин, двигатель с большим крутящим моментом менее 1000 об / мин, высокая скорость может достигать 5000 об / мин, серводвигатель постоянного тока может достигать 10000-20000 об / мин. Номинальная скорость серводвигателей переменного тока ATO составляет 1000 ~ 3000 об / мин.
  5. Метод контроля. В основном это позиционное управление, разнообразный и интеллектуальный метод управления. Метод управления положением, скоростью вращения и крутящим моментом.

Если вы найдете серводвигатель с высокими характеристиками и низкой стоимостью, ATO.com — ваш лучший выбор.У нас есть серводвигатели переменного тока 1 кВт, 1,5 кВт, 2 кВт, 3 кВт … различной мощности на ваш выбор.

Серводвигатель

— Типы и принцип работы

Серводвигатель — один из широко используемых приводов с регулируемой скоростью в промышленном производстве, автоматизации процессов и строительной техники во всем мире.

Хотя серводвигатели не относятся к определенному классу двигателей, они предназначены и предназначены для использования в приложениях управления движением, которые требуют высокой точности позиционирования, быстрого реверсирования и исключительной производительности.

Серводвигатели

Они широко используются в робототехнике, радиолокационных системах, автоматизированных производственных системах, станках, компьютерах, станках с ЧПУ, системах слежения и т. Д.

Что такое сервомоторы?

Серводвигатель — это линейный или поворотный привод, который обеспечивает быстрое прецизионное управление положением для приложений управления положением с обратной связью. В отличие от больших промышленных двигателей, серводвигатель не используется для непрерывного преобразования энергии.

Серводвигатели обладают высокой скоростью отклика из-за низкой инерции и имеют малый диаметр и большую длину ротора.Тогда как же работают серводвигатели?

Серводвигатели работают с сервомеханизмом, который использует обратную связь по положению для управления скоростью и конечным положением двигателя. Внутри серводвигатель объединяет двигатель, цепь обратной связи, контроллер и другую электронную схему.

Серводвигатели

Он использует энкодер или датчик скорости для обеспечения обратной связи по скорости и положению. Этот сигнал обратной связи сравнивается с положением входной команды (желаемое положение двигателя, соответствующее нагрузке) и выдает сигнал ошибки (если между ними существует разница).

Сигнала ошибки на выходе детектора ошибки недостаточно для привода двигателя. Таким образом, детектор ошибки, за которым следует сервоусилитель, повышает уровень напряжения и мощности сигнала ошибки, а затем поворачивает вал двигателя в желаемое положение.

Типы серводвигателей

В основном серводвигатели подразделяются на серводвигатели переменного и постоянного тока в зависимости от характера источника питания, используемого для их работы. Серводвигатели постоянного тока с щеточными постоянными магнитами используются для простых применений из-за их стоимости, эффективности и простоты.

Они лучше всего подходят для небольших приложений. С развитием микропроцессоров и силовых транзисторов серводвигатели переменного тока используются все чаще из-за их высокой точности управления.

Серводвигатели постоянного тока

Серводвигатели постоянного тока состоят из небольшого электродвигателя постоянного тока, потенциометра обратной связи, коробки передач, электронной схемы привода двигателя и электронного контура управления с обратной связью. Он более или менее похож на обычный двигатель постоянного тока.

Статор двигателя состоит из цилиндрической рамы, и магнит прикреплен к внутренней части рамы.

Серводвигатель постоянного тока

Ротор состоит из щетки и вала. Коммутатор и металлическая опорная рама ротора прикреплены к внешней стороне вала, а обмотка якоря намотана на металлическую опорную раму ротора.

Щетка состоит из катушки якоря, которая подает ток на коммутатор. В задней части вала в ротор встроен датчик для определения скорости вращения.

С такой конструкцией легко спроектировать контроллер, используя простую схему, поскольку крутящий момент пропорционален величине тока, протекающего через якорь.

А также мгновенная полярность управляющего напряжения определяет направление крутящего момента, развиваемого двигателем. Типы серводвигателей постоянного тока включают последовательные двигатели, двигатели с параллельным управлением, двигатели с разделенным последовательным подключением и параллельные двигатели с постоянными магнитами.

Принцип работы серводвигателя постоянного тока

Серводвигатель постоянного тока представляет собой сборку из четырех основных компонентов, а именно электродвигателя постоянного тока, устройства определения положения, узла шестерни и схемы управления. На рисунке ниже показаны части, которые состоят в серводвигателях RC, в которых используется небольшой двигатель постоянного тока для привода нагрузок с точной скоростью и положением.

Внутренняя схема

Опорное напряжение постоянного тока установлено на значение, соответствующее желаемому выходу. Это напряжение может подаваться с помощью другого потенциометра, преобразователя ширины управляющего импульса в напряжение или через таймеры в зависимости от схемы управления.

Диск потенциометра создает соответствующее напряжение, которое затем подается на один из входов усилителя ошибки.

В некоторых схемах управляющий импульс используется для создания опорного напряжения постоянного тока, соответствующего желаемому положению или скорости двигателя, и подается на преобразователь ширины импульса в напряжение.

В этом преобразователе конденсатор начинает заряжаться с постоянной скоростью при высоком уровне импульса. Затем заряд конденсатора подается на буферный усилитель, когда импульс низкий, и этот заряд далее подается на усилитель ошибки.

Таким образом, длина импульса определяет напряжение, приложенное к усилителю ошибки, как желаемое напряжение для достижения желаемой скорости или положения.

В цифровом управлении микропроцессор или микроконтроллер используются для генерации плюсов ШИМ с точки зрения рабочих циклов для получения более точных управляющих сигналов.

Сигнал обратной связи, соответствующий текущему положению груза, получается с помощью датчика положения. Этот датчик обычно представляет собой потенциометр, который выдает напряжение, соответствующее абсолютному углу вала двигателя через зубчатый механизм. Затем значение напряжения обратной связи подается на вход усилителя ошибки (компаратора).

Усилитель ошибки — это усилитель с отрицательной обратной связью, который уменьшает разницу между его входами. Он сравнивает напряжение, относящееся к текущему положению двигателя (полученное с помощью потенциометра), с желаемым напряжением, относящимся к желаемому положению двигателя (полученное с помощью преобразователя ширины импульса в напряжение), и выдает ошибку либо положительное, либо отрицательное напряжение.

Это напряжение ошибки подается на якорь двигателя. Если ошибка больше, то на якорь двигателя подается больший выходной сигнал.

Пока существует ошибка, усилитель усиливает напряжение ошибки и, соответственно, питает якорь. Двигатель вращается, пока ошибка не станет равной нулю. Если ошибка отрицательная, напряжение якоря меняется на противоположное, и, следовательно, якорь вращается в противоположном направлении.

Серводвигатели переменного тока

Серводвигатели переменного тока в основном представляют собой двухфазные асинхронные двигатели с короткозамкнутым ротором и используются в системах с малой мощностью.В настоящее время трехфазные асинхронные двигатели с короткозамкнутым ротором модифицированы таким образом, что их можно использовать в сервосистемах большой мощности.

Основное различие между стандартным асинхронным двигателем с расщепленной фазой и двигателем переменного тока состоит в том, что ротор серводвигателя с короткозамкнутым ротором сделан с более тонкими проводящими шинами, поэтому сопротивление двигателя выше.

Серводвигатель переменного тока

В зависимости от конструкции существует два различных типа серводвигателей переменного тока: это синхронный серводвигатель переменного тока и асинхронный серводвигатель переменного тока.

Синхронный серводвигатель переменного тока состоит из статора и ротора. Статор состоит из цилиндрической рамы и сердечника статора. Катушка якоря намотана вокруг сердечника статора, и конец катушки соединен с подводящим проводом, по которому ток подается на двигатель.

Ротор состоит из постоянного магнита и, следовательно, они не зависят от ротора индукционного типа переменного тока, в котором наведен ток. И поэтому их также называют бесщеточными серводвигателями из-за конструктивных характеристик.

Синхронный серводвигатель переменного тока

Когда поле статора возбуждено, ротор следует за вращающимся магнитным полем статора с синхронной скоростью. Если поле статора останавливается, ротор также останавливается. С этим ротором с постоянными магнитами не требуется ток ротора и, следовательно, вырабатывается меньше тепла.

Также эти двигатели обладают высоким КПД за счет отсутствия тока ротора. Чтобы узнать положение ротора относительно статора, на ротор помещается энкодер, который действует как обратная связь с контроллером двигателя.

Конструкция асинхронного сервомотора переменного тока серии r идентична конструкции обычного двигателя. В этом двигателе статор состоит из сердечника статора, обмотки якоря и выводного провода, а ротор состоит из вала и сердечника ротора, который построен с проводником, как и ротор с короткозамкнутым ротором.

асинхронный серводвигатель переменного тока

Принцип работы этого серводвигателя аналогичен обычному асинхронному двигателю. Опять же, контроллер должен знать точное положение ротора с помощью энкодера для точного управления скоростью и положением.

Принцип работы серводвигателя переменного тока

Принципиальная схема сервосистемы для двухфазного асинхронного двигателя переменного тока показана на рисунке ниже. При этом опорный вход, при котором вал двигателя должен удерживаться в определенном положении, передается на ротор синхрогенератора как механический входной тета. Этот ротор подключен к электрическому входу с номинальным напряжением и фиксированной частотой.

Три клеммы статора синхрогенератора подключены соответственно к клеммам управляющего трансформатора.Угловое положение двухфазного двигателя передается на ротор управляющего трансформатора через зубчатую передачу и представляет собой условие управления альфа.

Изначально существует разница между положением вала синхронизатора и положением вала управляющего трансформатора. Эта ошибка отражается как напряжение на управляющем трансформаторе. Это напряжение ошибки подается на сервоусилитель, а затем на фазу управления двигателем.

При подаче управляющего напряжения ротор двигателя вращается в нужном направлении до тех пор, пока погрешность не станет равной нулю.Таким образом обеспечивается желаемое положение вала в серводвигателях переменного тока.

В качестве альтернативы современные сервоприводы переменного тока представляют собой встроенные контроллеры, такие как ПЛК, микропроцессоры и микроконтроллеры, для достижения переменной частоты и переменного напряжения для управления двигателем.

В основном, методы широтно-импульсной модуляции и пропорционально-интегрально-производной (ПИД) используются для управления желаемой частотой и напряжением. Блок-схема системы серводвигателя переменного тока с использованием программируемых логических контроллеров, позиционных и сервоконтроллеров приведена ниже.

Разница между серводвигателями постоянного и переменного тока

90

Серводвигатель постоянного тока Серводвигатель переменного тока
Обеспечивает высокую выходную мощность Обеспечивает низкую мощность от 0,5 Вт до 10020 Вт
У него больше проблем со стабильностью У него меньше проблем со стабильностью
Он требует частого обслуживания из-за наличия коммутатора Он требует меньше обслуживания из-за отсутствия коммутатора
Он обеспечивает высокую эффективность КПД серводвигателя переменного тока меньше и составляет от 5 до 20%
Срок службы серводвигателя постоянного тока зависит от срока службы щеток Срок службы серводвигателя переменного тока зависит от срока службы подшипников
Включает постоянный магнит в своей конструкции Серводвигатель переменного тока синхронного типа использует постоянный магнит, в то время как индукционный тип doe sn’t требовать этого.
Эти двигатели используются для приложений с высокой мощностью Эти двигатели используются для приложений с низким энергопотреблением

Серводвигатель

— Типы, принцип работы и области применения

Серводвигатель чаще всего используется для высоких технологий устройства в промышленном применении, например, в технике автоматизации. Это автономное электрическое устройство, которое вращает части машины с высокой эффективностью и точностью. Выходной вал этого двигателя можно поворачивать на определенный угол.Серводвигатели в основном используются в бытовой электронике, игрушках, автомобилях, самолетах и ​​т. Д. В этой статье обсуждается, что такое серводвигатель, работающий серводвигатель, типы серводвигателей и их применения.

Серводвигатель

Типы серводвигателя

Серводвигатели делятся на различные типы в зависимости от их применения, такие как серводвигатель переменного тока, серводвигатель постоянного тока, бесщеточный серводвигатель постоянного тока, позиционное вращение, непрерывное вращение и линейный серводвигатель и т. Типичные серводвигатели состоят из трех проводов, а именно: управления питанием и заземления.Форма и размер этих двигателей зависят от области их применения. Серводвигатель RC — это наиболее распространенный тип серводвигателя, используемый в приложениях для хобби, в робототехнике из-за их простоты, доступности и надежности управления с помощью микропроцессоров.

1) Серводвигатель постоянного тока

Двигатель, который используется в качестве серводвигателя постоянного тока, обычно имеет отдельный источник постоянного тока в области обмотки и обмотки якоря. Управление можно заархивировать, управляя током якоря или током возбуждения.Полевое управление имеет некоторые особые преимущества по сравнению с управлением якорем. Таким же образом управление якорем имеет некоторые преимущества по сравнению с управлением полем. В зависимости от приложений управление должно применяться к серводвигателю постоянного тока. Серводвигатель постоянного тока обеспечивает очень точную и быструю реакцию на командные сигналы пуска или останова благодаря низкому индуктивному сопротивлению якоря. Серводвигатели постоянного тока используются в аналогичном оборудовании и компьютеризированных машинах с числовым программным управлением.

Серводвигатель постоянного тока

2) Серводвигатель переменного тока

Серводвигатель переменного тока — это двигатель переменного тока, который включает в себя энкодер, который используется с контроллерами для обеспечения управления с обратной связью и обратной связи.Этот двигатель может быть установлен с высокой точностью, а также точно контролироваться, что является обязательным для приложений. Часто эти двигатели имеют конструкции с более высокими допусками или лучшие подшипники, а в некоторых простых конструкциях также используются более высокие напряжения для достижения большего крутящего момента. Применение двигателя переменного тока в основном связано с автоматизацией, робототехникой, станками с ЧПУ и другими приложениями, обеспечивающими высокий уровень точности и необходимую универсальность.

Серводвигатель переменного тока

3) Серводвигатель позиционного вращения

Серводвигатель позиционного вращения является наиболее распространенным типом серводвигателя.О / п вала вращается примерно на 180o. Он включает в себя физические упоры, расположенные в зубчатом механизме, для остановки вращения вне этих пределов для защиты датчика вращения. Эти обычные сервоприводы используются в радиоуправляемой воде, радиоуправляемых автомобилях, самолетах, роботах, игрушках и во многих других приложениях.

4) Серводвигатель непрерывного вращения

Серводвигатель непрерывного вращения в значительной степени похож на обычный серводвигатель позиционного вращения, но он может вращаться в любом направлении бесконечно. Управляющий сигнал, а не установка статического положения сервопривода, понимается как скорость и направление вращения.Диапазон возможных команд заставляет сервопривод вращаться по часовой стрелке или против часовой стрелки, в зависимости от предпочтения, с изменяющейся скоростью, в зависимости от командного сигнала. Этот тип двигателя используется в радарной тарелке, если вы едете на нем на роботе или можете использовать его в качестве приводного двигателя на мобильном роботе.

Серводвигатель непрерывного вращения

5) Линейный серводвигатель

Линейный серводвигатель также аналогичен сервомотору позиционного вращения, описанному выше, но с дополнительными шестернями для изменения положения вращения с кругового на возвратно-поступательное.Эти серводвигатели нелегко найти, но иногда их можно найти в хобби-магазинах, где они используются в качестве приводов в более высоких моделях самолетов.

Линейный серводвигатель

Принцип работы серводвигателя

Для управления робототехникой и для приложений управления предлагается уникальная конструкция серводвигателей. Они в основном используются для регулировки скорости при высоких крутящих моментах и ​​точного позиционирования. Необходимые детали — датчик положения двигателя и высокотехнологичный контроллер.Эти двигатели можно разделить на категории по серводвигателям, управляемым сервомеханизмом. Если двигатель постоянного тока управляется с помощью этого механизма, то он называется серводвигателем постоянного тока. Серводвигатели доступны с номинальной мощностью от долей ватта до 100 Вт. Ротор серводвигателя имеет большую длину и меньший диаметр, поэтому он имеет низкую инерцию.

Серводвигатель работает

Применения серводвигателя

Серводвигатель небольшой и эффективный, но его можно использовать в некоторых приложениях, например, в точном управлении положением.Этот двигатель управляется сигналом широтно-импульсного модулятора. Применения серводвигателей в основном связаны с компьютерами, робототехникой, игрушками, CD / DVD-плеерами и т. Д. Эти двигатели широко используются в тех приложениях, где конкретная задача должна выполняться часто и точно.

Серводвигатель в упаковочной машине

  • Серводвигатель используется в робототехнике для активации движений, придающих руке точный угол.
  • Серводвигатель используется для запуска, перемещения и остановки конвейерных лент, транспортирующих продукт на многих этапах.Например, маркировка продукта, розлив и упаковка.
  • Серводвигатель встроен в камеру для корректировки линзы камеры для улучшения не в фокусе изображений.
  • Серводвигатель используется в роботизированном транспортном средстве для управления колесами робота, создавая достаточный крутящий момент для движения, запуска и остановки транспортного средства и управления его скоростью.
  • Серводвигатель используется в системе слежения за солнечными лучами для корректировки угла наклона панели, чтобы каждая солнечная панель была обращена к солнцу
    Серводвигатель используется в металлообрабатывающих и режущих станках для обеспечения особого управления движением фрезерных станков
  • Серводвигатель используется в текстильной промышленности для управления прядильными и ткацкими машинами, вязальными машинами и ткацкими станками
  • Сервомотор используется в автоматических открывателях дверей для управления дверьми в общественных местах, таких как супермаркеты, больницы и театры

Таким образом, это все о работе серводвигателя, типах и применении.Мы надеемся, что вы лучше понимаете эту концепцию. Кроме того, при любых сомнениях относительно этой статьи или проектов в области электрики и электроники, пожалуйста, дайте свои ценные предложения, комментируя в разделе комментариев ниже. Вот вам вопрос: какова основная функция серводвигателя?

Фото:

Принцип работы серводвигателя | Robu.in

Вы когда-нибудь задумывались о том, как роботизированное транспортное средство обычно используется в военных целях для управления задержанием бомб.А также то, как металлорежущие и формовочные станки обеспечивают точное движение на фрезерных, токарных и гибочных станках при производстве металла. И как система позиционирования антенны контролирует точность по азимуту и ​​углу места?

Во всех этих приложениях используется серводвигатель, и в этой статье мы узнаем о принципе работы серводвигателя.

ДОЛЖЕН ПРОЧИТАТЬ ЗАПИСИ В БЛОГЕ НА СЕРВОДВИГАТЕЛЕ:

Принцип работы серводвигателя

Серводвигатель постоянного тока представляет собой сборку из четырех основных компонентов,

  • Двигатель постоянного тока
  • Датчик положения
  • Шестерня в сборе
  • Цепь управления

В цифровом управлении — микроконтроллер, используемый для генерации плюсов ШИМ с точки зрения рабочих циклов для получения более точных управляющих сигналов.

Датчик положения выдает сигнал обратной связи, соответствующий текущему положению груза. Этот датчик обычно представляет собой потенциометр, который выдает напряжение, соответствующее абсолютному углу вала двигателя через зубчатый механизм. Затем значение напряжения обратной связи подается на вход усилителя ошибки.

Усилитель ошибки — это усилитель с отрицательной обратной связью, который уменьшает разницу между его входами. Он сравнивает напряжение, относящееся к текущему положению двигателя, с желаемым напряжением, относящимся к желаемому положению двигателя.И выдает ошибку либо положительное, либо отрицательное напряжение.

Это ошибка напряжения, приложенного к якорю двигателя. Если ошибка больше, якорь двигателя получает большую мощность.

Усилитель усиливает напряжение ошибки и питает якорь. Двигатель вращается, пока ошибка не станет равной нулю. Если ошибка отрицательная, напряжение якоря меняется на противоположное, и, следовательно, якорь вращается в противоположном направлении.

Как управлять сервоприводом?

На приведенном ниже рисунке показаны части, которые состоят в серводвигателях RC, в которых используются небольшие двигатели постоянного тока для привода нагрузок с точной скоростью и положением.

Ширина импульса определяет угловое положение серводвигателя. В некоторых схемах управляющий импульс используется для создания опорного напряжения постоянного тока, соответствующего желаемому положению или скорости двигателя. И это относится к преобразователю ширины импульса в напряжение.

В этом преобразователе конденсатор начинает заряжаться с постоянной скоростью при высоком импульсе. при низком уровне импульса заряд конденсатора поступает на буферный усилитель. Таким образом, длина импульса определяет напряжение, приложенное к усилителю ошибки, как желаемое напряжение для достижения желаемой скорости или положения.

Например, импульс 1,5 мс заставит двигатель повернуться в положение 90 °. Менее 1,5 мс перемещает его против часовой стрелки в положение 0 °. Время, превышающее 1,5 мс, повернет сервопривод по часовой стрелке в положение 180 °.

Сервомашинки

управляются посылкой электрического импульса переменной ширины или широтно-импульсной модуляции (ШИМ). Существует минимальный импульс, максимальный импульс и частота повторения. Серводвигатель обычно может поворачиваться только на 90 ° в любом направлении, всего на 180 °.Нейтральное положение двигателя определяется как положение, в котором сервопривод имеет одинаковую величину потенциального вращения как по часовой стрелке, так и против часовой стрелки.

В соответствии с командой сервопривод переместится в позицию и удержит ее. Максимальное усилие, которое может оказать сервопривод, называется номинальным крутящим моментом сервопривода . Сервоприводы не будут оставаться на своем месте вечно. Тем не менее, импульс положения должен быть повторен, чтобы сервопривод оставался на месте.

.

Добавить комментарий

Ваш адрес email не будет опубликован.