Сравнительная таблица теплопроводности утеплителей: Сравнение утеплителей по теплопроводности | Утепление своими руками
Таблица теплопроводности материалов и утеплителей
Сравнение утеплителей. Таблица теплопроводности
Сегодня производители теплоизоляционных материалов предлагают застройщикам действительно огромный выбор материалов. При этом каждый уверяет нас, что именно его утеплитель идеально подходит для утепления дома. Из-за такого разнообразия стройматериалов, принять правильное решение в пользу определенного материала действительно довольно сложно. Мы решили в данной статье сравнить утеплители по теплопроводности и другим, не менее важным характеристикам.
Стоит сначала рассказать об основных характеристиках теплоизоляции, на которые необходимо обращать внимание при покупке. Сравнение утеплителей по характеристикам следует делать, держа в уме их назначение. Например, несмотря на то, что экструзия XPS прочнее минваты, но вблизи открытого огня или при высокой температуре эксплуатации, стоит купить огнестойкий утеплитель для своей же безопасности.
Сравнение утеплителей по характеристикам
Теплопроводность. Чем ниже данный показатель у материала, тем меньше потребуется укладывать слой утеплителя, а значит, расходы на закупку материалов сократятся (в том случае если стоимость материалов находится в одном ценовом диапазоне). Чем тоньше слой утеплителя, тем меньше будет «съедаться» пространство.
Влагопроницаемость. Низкая влаго- и паропроницаемость увеличивает срок использования теплоизоляции и снижает отрицательное воздействие влаги на теплопроводность утеплителя при последующей эксплуатации, но при этом увеличивается риск появления конденсата на конструкции при плохой вентиляции.
Пожаробезопасность. Если утеплитель используется в бане или в котельной, то материал не должен поддерживать горение, а наоборот должен выдерживать высокие температуры. Но если вы утепляете ленточный фундамент или отмостку дома, то на первый план выходят характеристики влагостойкости и прочности.
Экономичность и простота монтажа. Утеплитель должен быть доступным по стоимости, иначе утеплять дом будет просто нецелесообразно. Также важно, чтобы утеплить кирпичный фасад дома можно было бы своими силами, не прибегая к помощи специалистов или, используя дорогостоящее оборудование для монтажа.
Экологичность. Все материалы для строительства должны быть безопасными для человека и окружающей природы. Не забудем упомянуть и про хорошую звукоизоляцию, что очень важно для городов, где важно защитить свое жилье от шума с улицы.
Сравнение утеплителей по теплопроводности
Какие характеристики важны при выборе утеплителя? На что обратить внимание и спросить у продавца? Только ли теплопроводность имеет решающее значение при покупке утеплителя, или есть другие параметры, которые стоит учесть? И еще куча подобных вопросов приходит на ум застройщику, когда приходит время выбирать утеплитель. Обратим внимание в обзоре на наиболее популярные виды теплоизоляции.
Пенопласт (пенополистирол)
Пенопласт – самый популярный сегодня утеплитель, благодаря легкости монтажа и низкой стоимости. Изготавливается он методом вспенивания полистирола, имеет низкую теплопроводность, легко режется и удобен при монтаже. Однако материал хрупкий и пожароопасен, при горении пенопласт выделяет вредные, токсичные вещества. Пенополистирол предпочтительно использовать в нежилых помещениях.
Экструдированный пенополистирол
Экструзия не подвержена влаге и гниению, это очень прочный и удобный в монтаже утеплитель. Плиты Техноплекса имеют высокую прочность и сопротивление сжатию, не подвергаются разложению. Благодаря своим техническим характеристикам техноплекс используют для утепления отмостки и фундамента зданий. Экструдированный пенополистирол долговечен и прост в применении.
Базальтовая (минеральная) вата
Производится утеплитель из горных пород, путем их плавления и раздува для получения волокнистой структуры. Базальтовая вата Роклайт выдерживает высокие температуры, не горит и не слеживается со временем. Материал экологичен, имеет хорошую звукоизоляцию и теплоизоляцию. Производители рекомендуют использовать минеральную вату для утепления мансарды и других жилых помещений.
Стекловолокно (стекловата)
При слове стекловата у многих появляется ассоциация с советским материалом, однако современные материалы на основе стекловолокна не вызывают раздражения на коже. Общим недостатком минеральной ваты и стекловолокна является низкая влагостойкость, что требует устройства надежной влаго- и пароизоляции при монтаже утеплителя. Материал не рекомендуется использовать во влажных помещениях.
Вспененный полиэтилен
Этот рулонный утеплитель имеет пористую структуру, различную толщину часто производится с нанесением дополнительного слоя фольги для отражающего эффекта. Изолон и пенофол имеет толщину в 10 раз тоньше традиционных утеплителей, но сохраняет до 97% тепла. Материал не пропускает влагу, имеет низкую теплопроводность благодаря своей пористой структуре и не выделяет вредных веществ.
Напыляемая теплоизоляция
К напыляемой теплоизоляции относится ППУ (пенополиуретан) и Экотермикс. К главным недостаткам данных утеплителей относится необходимость наличия специального оборудования, для их нанесения. При этом напыляемая теплоизоляция создает на конструкции прочное, сплошное покрытие без мостиков холода, при этом конструкция будет защищена от влаги, так как ППУ влагонепроницаемый материал.
Сравнение утеплителей. Таблица теплопроводности
Полную картину о том, какой следует использовать утеплитель в том или ином случае, дает таблица теплопроводности теплоизоляции. Вам остается только соотнести данные из этой таблицы со стоимостью утеплителя у разных производителей и поставщиков, а также рассмотреть возможность его использования в конкретных условиях (утепление кровли дома, ленточного фундамента, котельной, печной трубы и т.д.).
Сравнение утеплителей по теплопроводности
Сравнение утеплителей по теплопроводности. Мы решили в данной статье сравнить утеплители в таблице по теплопроводности и другим важным характеристикам.
Источник: uteplitel-x.ru
Сравнение теплопроводности строительных материалов по толщине
В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака. Далее пойдет речь об основных свойствах материалов, способных обеспечить необходимый уровень теплопроводности объектов различного назначения, а также будет приведено их сравнение, в чем поможет таблица.
Основные характеристики утеплителей
При выборе утеплителей нужно обращать внимание на разные факторы: тип сооружения, наличие воздействия высоких температур, открытого огня, характерный уровень влажности. Только после определения условий использования, а также уровня теплопроводности применяемых материалов для сооружения определенной части конструкции, нужно смотреть на характеристики конкретного утеплителя:
- Теплопроводность. От этого показателя напрямую зависит качество проведенного утеплительного процесса, а также необходимое количество материала для обеспечения желаемого результата. Чем ниже теплопроводность, тем эффективнее использование утеплителя.
- Влагопоглощение. Показатель особо важен при утеплении внешних частей конструкции, на которые может периодически воздействовать влага. К примеру, при утеплении фундамента в грунтах с высокими водами или повышенным уровнем содержания воды в своей структуре.
- Толщина. Применение тонких утеплителей позволяет сохранить внутреннее пространство жилого сооружения, а также напрямую влияет на качество утепления.
- Горючесть. Это свойство материалов особенно важно при использовании для понижения теплопроводной способности наземных частей сооружения жилых домов, а также зданий специального назначения. Качественная продукция отличается способностью к самозатуханию, не выделяет при воспламенении ядовитых веществ.
- Термоустойчивость. Материал должен выдерживать критические температуры. К примеру, низкие температуры при наружном использовании.
- Экологичность. Нужно прибегать к использованию материалов безопасных для человека. Требования к этому фактору может изменяться в зависимости от будущего назначения сооружения.
- Звукоизоляция. Это дополнительное свойство утеплителей в некоторых ситуациях позволяет добиться хорошего уровня защиты помещения от шума, а также посторонних звуков.
Когда используется при сооружении определенной части конструкции материал с низкой теплопроводностью, то можно покупать самый дешевый утеплитель (если это позволят предварительные расчеты).
Важность конкретной характеристики напрямую зависит от условий использования и выделенного бюджета.
Сравнение популярных утеплителей
Давайте рассмотрим несколько материалов, применяемых для повышения энергоэффективности сооружений:
- Минеральная вата. Производится из естественных материалов. Устойчива к огню и отличается экологичностью, а также низкой теплопроводностью. Но невозможность противостоять воздействию воды сокращает возможности использования.
- Пенопласт. Легкий материал с отличными утеплительными свойствами. Доступный, легко устанавливается и влагоустойчив. Недостатки: хорошая воспламеняемость и выделение вредных веществ при горении. Рекомендуется его использовать в нежилых помещениях.
- Бальзовая вата. Материал практически идентичный минвате, только отличается улучшенными показателями устойчивости к влаге. При изготовлении его не уплотняют, что значительно продлевает срок службы.
- Пеноплэкс. Утеплитель хорошо противостоит влаге, высоким температурам, огню, гниению, разложению. Отличается отличными показателями теплопроводности, прост в монтаже и долговечен. Можно использовать в местах с максимальными требованиями способности материала противостоять различным воздействиям.
- Пенофол. Многослойный утеплитель естественного происхождения. Состоит из полиэтилена, предварительно вспененного перед производством. Может иметь различные показатели пористости и ширины. Часто поверхность покрыта фольгой, благодаря чему достигается отражающие эффект. Отличается легкостью, простотой монтажа, высокой энергоэффективностью, влагостойкостью, небольшим весом.
Коэффициент теплопроводности размерность
Выбирая материал для использования в непосредственной близости с человеком, необходимо особое внимание уделять его характеристикам экологичности и пожаробезопасности. Также в некоторых ситуациях рационально покупать более дорой утеплитель, который будет обладать дополнительными свойствами влагозащиты или звукоизоляции, что в окончательном счете позволяет сэкономить.
Сравнение с помощью таблицы
Показатель теплопроводных свойств является основным критерием при выборе утеплительного материала. Остается только сравнить ценовые политики разных поставщиков и определить необходимое количество.
Утеплитель – один из основных способов получить сооружение с необходимой энергоэффективностью. Перед его окончательным выбором точно определите условия использования и, вооружившись приведенной таблицей, совершите правильный выбор.
Сравнение утеплителей по теплопроводности и по плотности материалов
В продаже доступно много строительных материалов, использующихся для повышения свойств сооружения сохранять тепло – утеплителей. В конструкции дома он может применяться практически в каждой ее части: от фундамента и до чердака.
Источник: jsnip.ru
Сравнение разных видов утеплителей
В прошлый раз мы определили самый дешевый утеплитель. Сегодня мы проведем сравнение утеплителей. Таблицу с общими характеристиками вы можете найти в итогах статьи. Мы выбрали самые популярные материалы, среди которых минвата, ППУ, пеноизол, пенопласт и эковата. Как видите, это универсальные утеплители с широким спектром применения.
Сравнение теплопроводности утеплителей
Чем выше теплопроводность, тем хуже материал работает как утеплитель.
Мы начинаем сравнение утеплителей по теплопроводности неспроста, так как это, несомненно, самая важная характеристика. Она показывает, сколько тепла пропускает материал не за определенный промежуток времени, а постоянно. Теплопроводность выражается коэффициентом и исчисляется в ваттах на метр квадратный. Например, коэффициент 0,05 Вт/м*К указывает, что на квадратном метре постоянные теплопотери составляют 0,05 Ватта. Чем выше коэффициент, тем лучше материал проводит тепло, соответственно, как утеплитель он работает хуже.
Ниже представлена таблица сравнения популярных утеплителей по теплопроводности:
Изучив вышеуказанные виды утеплителей и их характеристики можно сделать вывод, что при равной толщине самая эффективная теплоизоляция среди всех – это жидкий двухкомпонентный пенополиуретан (ППУ).
Толщина теплоизоляции имеет архиважное значение, она должна рассчитываться для каждого случая индивидуально. На результат влияет регион, материал и толщина стен, наличие воздушных буферных зон.
Сравнительные характеристики утеплителей показывают, что на теплопроводность влияет плотность материала, особенно для минеральной ваты. Чем выше плотность, тем меньше воздуха в структуре утеплителя. Как известно, воздух имеет низкий коэффициент теплопроводности, который составляет менее 0,022 Вт/м*К. Исходя из этого, при увеличении плотности растет и коэффициент теплопроводности, что негативно отражается на способности материала удерживать тепло.
Сравнение паропроницаемости утеплителей
Высокая паропроницаемость=отсутствие конденсата.
Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при утеплении деревянного дома. Во всех остальных случаях данный критерий не является категорически важным.
Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют функцию пароизоляции. Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.
На сегодняшний день газовое автономное отопление загородного дома — это самый дешевый вариант обогрева жилья.
Обзор гигроскопичности теплоизоляции
Высокая гигроскопичность — это недостаток, который нужно устранять.
Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:
Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.
Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается. В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт.
Организовать автономное газовое отопление в квартире возможно только при наличии всех разрешительных документов (список довольно внушающий).
Окупаемость альтернативного отопление частного дома водородом порядка 35 лет.
Монтаж и эффективность в эксплуатации
Монтаж ППУ — быстро и легко.
Сравнение характеристик утеплителей должно осуществляться с учетом монтажа, ведь это тоже важно. Легче всего работать с жидкой теплоизоляцией, такой как ППУ и пеноизол, но для этого требуется специальное оборудование. Также не составляет труда укладка эковаты (целлюлозы) на горизонтальные поверхности, например, при утеплении пола или чердачного перекрытия. Для напыления эковаты на стены мокрым методом также нужны специальные приспособления.
Пенопласт укладывается как по обрешетке, так и сразу на рабочую поверхность. В принципе, это касается и плит из каменной ваты. Причем укладывать плитные утеплители можно и на вертикальные, и на горизонтальные поверхности (под стяжку в том числе). Мягкую стекловату в рулонах укладывают только по обрешетке.
В процессе эксплуатации теплоизоляционный слой может претерпевать некоторых нежелательных изменений:
- напитать влагу;
- дать усадку;
- стать домом для мышей;
- разрушиться от воздействия ИК лучей, воды, растворителей и прочее.
Кроме всего вышеуказанного, важное значение имеет пожаробезопасность теплоизоляции. Сравнение утеплителей, таблица группы горючести:
Сегодня мы провели обзор утеплителей для дома, которые используются чаще всего. По результатам сравнения разных характеристик мы получили данные касательно теплопроводности, паропроницаемости, гигроскопичности и степени горючести каждого из утеплителей. В
Помимо этих характеристик, мы определили, что легче всего работать с жидкими утеплителями и эковатой. ППУ, пеноизол и эковата (монтаж мокрым методом) просто напыляются на рабочую поверхность. Сухая эковата засыпается вручную.
Таблица сравнения утеплителей для дома по теплопроводности
Таблица сравнения характеристик утеплителей для дома по теплопроводности. Обзор самых популярных видов теплоизоляционных материалов для стен по эффективности.
Источник: utepleniedoma.com
Таблица теплопроводности утеплителей и других материалов
Чтобы зимой наслаждаться теплотой и уютом в своем дома, нужно заранее позаботиться об его теплоизоляции. Сегодня сделать это совершенно несложно, ведь на строительном рынке имеется широкий ассортимент утеплителей. Каждый из них имеет свои минусы и плюсы, подходит для утепления при определенных условиях эксплуатации. При выборе материала очень важным остается такой критерий, как теплопроводность.
Что такое теплопроводность
Это процесс отдачи тепловой энергии с целью получения теплового равновесия. Температурный режим должен быть выровнен, главным остается скорость, с которой будет осуществлена эта задача. Если рассмотреть теплопроводность по отношению к дому, то чем дольше происходит процесс выравнивания температур воздуха в доме и на улице, то тем лучше. Говоря простыми словами, теплопроводность – это показатель, по которому можно понять, как быстро остывают стены в доме.
Этот критерий представлен в числовом значении и характеризуется коэффициентом тепловой проводимости. Благодаря ему можно узнать какое количество тепловой энергии за единицу времени сможет пройти через единицу поверхности. Чем выше значение теплопроводности у утеплителя, тем он быстрее проводит тепловую энергию.
Чем ниже значение коэффициента проводимости тепла, тем дольше материал сможет удерживать тепло в зимние дни, а прохладу в летние. Но имеется ряд других факторов, которые также нужно принимать во внимание при выборе изолирующего материала.
Пенополистирол
Этот теплоизолятор один из самых востребованных. А связано это с его низкой проводимостью тепла, невысокой стоимостью и простотой монтажа. На полках магазинов материал представлен в плитах, толщина которых 20-150 мм. Получают путем вспенивание полистирола. Полученные ячейки заполняют воздухом. Для пенопласта характерна разная плотность, низкая проводимость тепла и стойкость к влаге.
На фото — пенополистирол
Так как пенополистирол стоит недорого, он имеет широкую популярность среди многих застройщиков для утепления различных домов и построек. Но есть у пенопласта свои недостатки. Он является очень хрупким и быстро воспламеняется, а при горении выделяет в окружающую среду вредные токсины. По этой причине применять пенопласт лучше для утепления нежилых домов и ненагружаемых конструкций.
Экструдированный пенополистирол
Этот материал не боится влияния влаги и гниению. Он прочный и удобный в плане монтажа. Легко поддается механической обработке. Имеет низкий уровень водоплоглощения, поэтому при повышенной влажности экструдированный пенополистирол сохраняет свои свойства. Утеплитель относится к пожаробезопасным материалам, он имеет продолжительный срок службы и простоту монтажа.
На фото — экструдированный пенополистирол
Представленные характеристики и низкая проводимость тепла позволят назвать экструдированный пенополистирол самым лучшим утеплителем для ленточных фундаментов и отмосток. При установке лист с толщиной 50 мм можно заменить пеноблок с толщиной 60 мм по проводимости тепла. При этом утеплитель не пропускает вод, так что не нужно заботиться про вспомогательную гидроизоляцию.
Минеральная вата
Минвата – это утеплитель, который можно отнести к природным и экологически чистым. Минеральная вата обладает низким коэффициентом проводимости тепла и совершенно не поддается влиянию огня. Производится утеплитель в виде плит и рулонов, каждый из которых имеет свои показатели жесткости.
На фото — минеральная вата
Если нужно изолировать горизонтальную поверхностность, то стоит задействовать плотные маты, а для вертикальных – жесткие и полужесткие плиты. Что касается минусов, то минвата имеет низкую стойкость к влаге, так что при ее монтаже необходимо позаботиться про влаго-и пароизоляцию. Применять минвату не стоит для обустройства подвала, погреба, парилки в бане. Хотя если грамотно выложить гидроизоляционный слой, то минвата будет служить долго и качественно. А вот какова теплопроводность минваты, поможет понять информация из статьи.
Базальтовая вата
Этот утеплитель получают методом расплавления базальтовых горных пород с добавлением вспомогательных составляющих. В результате получается материал, имеющий волокнистую структуру и отличные водоотталкивающие свойства. Утеплитель не воспламеняется и совершенно безопасен для здоровья. Кроме этого, у базальта отличные показатели для качественной изоляции звука и тепла. Применять можно для утепления как снаружи, так и внутри дома.
На фото — базальтовая вата для утепления
При установке базальтовой ваты необходимо надевать средства защиты. Сюда относят перчатки, респиратор и очки. Это позволит защитить слизистые оболочки от попадания осколков ваты. При выборе базальтовой ваты сегодня большой популярностью пользуется марка Rockwool.
В ходе эксплуатации материала можно не переживать, что плиты будут уплотняться или слеживаться. А это говорит о прекрасных свойствам низкой теплопроводности, которые со временем не меняются.
Этот утеплитель производится в виде рулонов, толщина которых 2-10 мм. В основе материала положен вспененный полиэтилен. В продаже можно встретить теплоизолятор, на одной стороне которого имеется фольга для образования отражающего фона. Толщина материала в несколько раз меньше представленных ранее материалов, но при этом это совершенно не влияет на теплопроводность. Он способен отражать до 97% тепла. Вспененные полиэтилен может похвастаться продолжительным сроком службы и экологической чистотой.
На фото- утеплитель Пенофол:
Изолон совершенно легкий, тонкий и удобный в плане установки. Применяют рулонный теплоизолятор при обустройстве влажных комнат, куда можно отнести подвал, балкон. Кроме этого, применения утеплителя позволит сохранить полезную площадь помещения, если устанавливать его внутри дома.
Таблица теплопроводности материалов и утеплителей, сравнение
Таблица теплопроводности материалов и утеплителей. Сравнение утеплителей по теплопроводности. Сравнительная таблица теплопроводности материалов.
Источник: resforbuild.ru
Таблица теплопроводности утеплителей. Объемный вес, формостабильность, паропроницаемость, горючесть, звукоизоляционные свойства
При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.
Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.
Такая диаграмма нагляднее таблицы
А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.
Что такое теплопроводность
Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.
То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.
Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.
Таблица теплопроводности
Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:
Здесь присутствуют всего два параметра. Первый — это коэффициент теплопроводности утеплителей. Второй — толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.
Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.
Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».
Иные критерии выбора
При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.
Нужно обратить внимание и на иные критерии:
- объемный вес утеплителя;
- формостабильность данного материала;
- паропроницаемость;
- горючесть теплоизоляции;
- звукоизоляционные свойства изделия.
Рассмотрим эти характеристики подробнее. Начнем по порядку.
Объемный вес утеплителя
Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.
Такая теплоизоляция будет иметь значительный объемный вес
Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.
К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.
Формостабильность
Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.
Любая деформация приведет к потере тепла
В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.
Паропроницаемость
По данному критерию все утеплители можно условно подразделить на два вида:
- «ваты» — теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
- «пены» — теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.
В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.
Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.
Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.
Звукоизоляционные свойства
Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.
Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».
Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.
К видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.
Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.
Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.
Таблица теплопроводности утеплителей: инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото
Таблица теплопроводности утеплителей: инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео,
Источник: pro-uteplenie.ru
Таблица теплопроводности и других качеств материалов для утепления
Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.
Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.
Что такое теплопроводность?
Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.
В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.
Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.
Таблица теплопроводности утеплителей
В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.
Таблица теплопроводности утеплителей
| Теплопроводность, Вт/(м*С) | Плотность, кг/м3 | Паропроницаемость, мг/ (м*ч*Па) | «+» | «-» | Горюч. |
Пенополиуретан | 0,023 | 32 | 0,0-0,05 | 2.Бесшовный монтаж пеной; 3.Долгосрочность; 4.Лучшая тепло-, гидроизоляция | 1.недешевый 2. Не устойчив к УФ-излучению | Самозатухающий |
0,029 | 40 | |||||
0,035 | 60 | |||||
0,041 | 80 | |||||
Пенополистирол (пенопласт) | 0,038 | 40 | 0,013-0,05 | 1.Отлично изолирует; 2. Дешевый; 3. Влагонепроницаем | 1. Хрупкий; 2. Не «дышит» и образует конденсат | Г3 и Г4. Сопротивление возгоранию и самозатухание |
0,041 | 100 | |||||
0,05 | 150 | |||||
Экструдированный пенополистирол | 0,031 | 33 | 0,013 | 1.Очень низкая теплопроводность; 3.Влагонепроницаем; 4.Прочен на сжатие; 5. Не гниет и не плесневеет; 6. Эксплуатация от -50 °С до +75°С; 7.Удобен в монтаже. | 1. На порядок дороже пенопласта; 2. Восприимчив к органическим растворителям; 3. Паропроницаемость низкая, образует конденсат. | Г1 у марок с антипеновыми добавками, другие Г3 и Г4. Сопротивление возгоранию и самозатухание |
Минеральная (базальтовая) вата | 0,048 | 50 | 0,49-0,6 | 1.Хорошая паропроницаемость –«дышит»; 2.Противостоит грибкам; 3.Звукоизоляция; 4.Высокая термоизоляция; 5.Механическая прочность; 6.Не сыпется | 1.Недешевый | Огнеупорный |
0,056 | 100 | |||||
0,07 | 200 | |||||
Стекловолокно (стекловата) | 0,041-0,044 | 155-200 | 0,5 | 1.Низкая теплопроводность; 2.При пожарах не выделяет токсичных веществ | 1.Со временем теплоизоляция снижается; 2.Может появляться плесень; 3.Проблемный монтаж: волокна осыпаются и наносят вред коже, глазам; 4.Паропроницаемость низкая, образует конденсат. | Не горит |
Пенопласт ПВХ | 0,052 | 125 | 0,023 | 1.Жесткий и удобный в монтаже | 1.Недолговечен; 2.Плохая паропроницаемость и образование конденсата | Г3 и Г4. Сопротивление возгоранию и самозатухание |
Древесные опилки | 0,07-0,18 | 230 | — | 1.Дешевизна; 2.Экологичность | 1.Портиться и гниет; 2.Теплоизоляционные свойства падают при высокой влажности | Пожароопасен |
Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.
Полезные показатели утеплителей
На какие основные показатели нужно обратить внимание при выборе утеплителя:
- Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
- Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
- Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
- Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
- Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
- Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
- Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
- Долговечность определяет срок службы материала;
- Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
- Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.
Кто на свете всех теплей?
Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.
Пенополиуретан или экструдированный пенополистирол
Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.
Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.
А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.
Минеральная вата или пенопласт
Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.
Другие утеплители
Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.
Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.
Выбирая утеплитель
Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».
Оцените статью:
Поделитесь с друзьями!
Теплопроводность утеплителей: таблица | Сравнение теплоизоляционных материалов
Для большинства людей холодные зимы давно уже стали привычным явлением. В связи с этим, материалы для теплоизоляции были и остаются очень востребованными. Для того, чтобы не ошибиться с выбором и приобрести подходящий для конкретных условий материал высокого качества, нужно будет учесть особенности таблицы теплопроводности материалов и утеплителей.
Потребность в теплоизоляции стен
Обоснованность применения теплоизоляции состоит в следующем:
- Сбережение тепла в помещениях в холодный период и прохлады в жару. В многоэтажном жилом доме теплопотери через стены могут достигать до 30 % или 40 %. Чтобы снизить потери тепла понадобятся особые теплоизолирующие материалы. В зимний период использование электрических обогревателей воздуха может способствовать увеличению расходов на оплату электроэнергии. Этот убыток гораздо более выгодно компенсировать за счет применения теплоизоляционного материала высокого качества, который поможет обеспечить комфортный микроклимат в помещении в любой сезон. Стоит заметить, что грамотное утепление сведет к минимуму и затраты на использование кондиционеров.
- Продление срока эксплуатации несущих конструкций здания. В случае с промышленными строениями, которые возводятся с использованием металлического каркаса, теплоизолятор выступает надежной защитой поверхности металла от процессов коррозии, которая может очень пагубно отразиться на конструкциях данного типа. Что касается срока службы кирпичных зданий, он определяется числом циклов заморозки-разморозки материала. Влияние этих циклов тоже нивелирует утеплитель, поскольку в теплоизолированном здании точка росы сдвигается в сторону утеплителя, оберегая стены от разрушения.
- Изоляция от шума. Защитой от все увеличивающегося шумового загрязнения служат материалы со свойствами шумопоглощения. Это могут быть толстые маты или стеновые панели, способные отражать звук.
- Сохранение полезной площади помещений. Применение теплоизолирующих систем позволит снизить уровень толщины наружных стен, а внутренняя площадь зданий при этом увеличится.
Сравнение показателей теплопроводности материалов
На сегодняшний день большинство производителей материалов для теплоизоляции готовы предложить застройщикам широкий ассортимент продукции. И каждый из них будет заверять, что именно выпускаемый им утеплитель станет идеальным выбором. Подобное разнообразие материалов для строительства затрудняет процесс принятия решения в пользу того или иного теплоизолятора. Поэтому цель этой статьи – помочь вам сделать самостоятельный выбор, сравнив показатели теплопроводности различных утеплителей и другие ключевые характеристики.
Мнение эксперта
Константин Александрович
Задать вопрос эксперту
Сперва хотелось бы обратить ваше внимание на основные характеристики теплоизоляторов, которые имеют первостепенное значение при покупке. Целесообразнее производить сравнение утеплителей, когда заранее известно назначение материала. К примеру, не смотря на то, что показатели прочности экстудированного XPS выше, чем у минеральной ваты, поблизости от открытого пламени или при эксплуатации при высоких температурах для собственной безопасности рекомендуется приобрести огнестойкий утеплитель.
Сравнение основных характеристик утеплителей
- Теплопроводность. Чем более низким окажется данная характеристика материала, тем меньший слой утеплителя вам понадобится уложить. А это означает, что удастся сократить расходы на приобретение материалов. Но это утверждение будет справедливо только тогда, когда материалы будут находиться в одном ценовом диапазоне. Помимо этого, меньший слой утеплителя заберет меньше свободного пространства.
- Влагопроницаемость. Сниженная проницаемость для пара и влаги способствует увеличению эксплуатационного срока теплоизоляции, а также позволяет снизить негативное влияние влаги на теплопроводность материала при его использовании. Но это может увеличить вероятность выпадения конденсата на конструктивных элементах, если не будет должной вентиляции.
- Пожаробезопасность. При использовании утепляющих материалов в котельной или бане важно, чтобы они были негорючими и могли выдерживать высокотемпературное воздействие. Если же идет теплоизоляция ленточного фундамента или отмостки здания, более важными параметрами окажутся стойкость к влаге и уровень прочности.
- Доступность и легкость монтажа. Теплоизолятор должен быть экономичен по стоимости, в противном случае утепление строения окажется нецелесообразным. Не менее важно, чтобы вы могли провести работы по утеплению кирпичного фасада самостоятельно, без наемных работников и аренды дорогостоящего монтажного оборудования.
- Экологичность. Все используемые в строительстве материалы не должны представлять опасности для окружающей среды и здоровья человека. Особо стоит отметить звукоизолирующий эффект, который наиболее востребован в городской среде и позволяет защитить жилище от проникновения уличного шума.
Коэффициент сопротивления
Помимо прочего, выполняя расчеты важно учитывать коэффициент U, отвечающий за сопротивление конструктивных элементов теплопередаче. Он никак не относится к основным качествам утеплителей, но поможет вам не ошибиться при выборе среди большого количества разных утеплителей. Коэффициент U – это соотношение разности температур с обеих сторон изолятора к объему теплового потока, который проходит через него. Для верного расчета теплового сопротивления стен и перекрытий потребуется таблица, в которой приведены расчеты теплопроводности различных материалов для строительства.
Сделать все нужные вычисления можно и самому. Достаточно разделить толщину материала на его коэффициент теплопроводности. В случае с теплоизоляцией, информация о показателе теплопроводности обычно указывается на упаковке с утеплителем. Если речь идет о конструктивных элементах строения, процесс вычисления окажется более сложным. Если толщину получится измерить самому, то показатели теплопроводности таких материалов как кирпич, бетон или древесина потребуется найти в специальных пособиях.
Не редкость, когда для утепления пола, потолка и стен в одном здании применяются различные типы материалов, так как для каждой поверхности приходится отдельно рассчитывать коэффициент теплопроводности.
Плотность и теплоемкость
Пористость является отражением процентного соотношения числа воздушных пор к общему объему материала. Поры могут различаться по структуре – открытой или закрытой, а также по размеру – крупные и мелкие.
Крайне важно убедиться, что поры равномерно распределяются в структуре утеплителя, это будет лучшим показателем качества материала. В некоторых случаях уровень пористости может достигать 50 %, а в случае использования ячеистой пластмассы показатель составит от 90 % до 98 %.
Плотность – это важная характеристика, которая напрямую влияет на массу теплоизолятора. При помощи специальной таблицы возможно точно рассчитать эти два параметра. Если вам известна плотность, вы без труда определите увеличение уровня нагрузки на перекрытия или стены дома.
Теплоемкость является показателем, который наглядно демонстрирует количество тепла, аккумулируемого утеплителем.
Биологическая стойкость – это качество сопротивления материала действию факторов биологического происхождения, таких как патогенная микрофлора.
Огнеупорность означает устойчивость теплоизоляции к воздействию огня. Она отличается от показателя пожаробезопасности и путать их не стоит.
Могут различаться и другие характеристики, такие как прочность к изгибам и механическим воздействиям, износу и влиянию отрицательных температур.
Преимущества и недостатки теплоизоляторов
Пенополиуретан
Считается одним из самых эффективных утеплителей современности.
Преимущества: монтаж однородного бесшовного покрытия, долгий срок службы, отличная изоляция от холода и влаги.
Недостатки: высокая стоимость материала, слабая устойчивость к УФ-излучению.
Пенополистирол (или пенопласт)
Является очень востребованным и применяется в качестве изоляции для разных типов помещений.
Преимущества: невысокая теплопроводность, доступная стоимость, простота монтажа, непроницаемость для влаги.
Недостатки: хрупкий, легко воспламеняется, способствует образованию конденсата.
Экструдированный пенополистирол
Прочный и простой в работе материал, его легко раскроить на фрагменты необходимого размера и формы обычным острым ножом.
Преимущества: очень низкий коэффициент теплопроводности, плохая водопроницаемость, высокая прочность на сжатие, легкий монтаж, не боится плесени и гниения, может эксплуатироваться при температурах от -50⸰С до +75⸰С.
Недостатки: значительно дороже, чем пенопласт, восприимчив к растворителям на органической основе, способствует возникновению конденсата.
Базальтовая (или каменная) вата
Разновидность минеральной ваты, которая изготавливается на основе природного базальта.
Преимущества: противостоит возникновению грибков, звукоизолирует, имеет высокую прочность к механическим повреждениям, огнеупорна, негорюча.
Недостатки: в сравнении с аналогами имеет повышенную стоимость.
Эковата
Утепляющий материал, производимый из природных материалов , таких как древесные волокна и минералы.
Преимущества: изоляция посторонних звуков, экологическая чистота, стойкость к влаге, демократичная стоимость.
Недостатки: при эксплуатации возрастает ее теплопроводность, нужно использовать профессиональное оборудования для монтажа, может дать усадку.
Изолон
Один из высокотехнологичных утеплителей, который производят из пенополиэтилена. Очень востребован.
Преимущества: пониженная теплопроводность и паропроницаемость, высокие показатели шумоизоляции, удобно резать и мотнировать, экологичен, гибкий и маловесный.
Недостатки: невысокая прочность, нужно предусмотреть обязательный вентиляционный зазор.
Пенофол
Теплоизолятор, отвечающий всем основным требованиям, которые предъявляются к качеству материала при утеплении разнообразных помещений и конструкций.
Преимущества: экологическая чистота, хорошая способность отражать тепло, качественная шумоизоляция, непроницаемость для влаги, негорючесть, комфортность транспортировки и монтажа, может нейтрализовать негативное воздействие радиации.
Недостатки: пониженная жесткость, сложности с закреплением материала, при теплоизоляции только пенофола будет недостаточно.
Заключение
Все сильные и слабые стороны рассмотренных утеплителей, представленные в этом обзоре, облегчат муки выбора подходящего материала еще на стадии проекта здания. Но не забывайте, что основополагающей характеристикой материала для теплоизоляции все-таки является его теплопроводность.
Видео про таблицу теплопроводности
Таблица данных по теплопроводности утеплителей
Современные утеплительные материалы имеют уникальные характеристики и применяются для решения задач определенного спектра. Большинство из них предназначены для обработки стен дома, но есть и специфичные, разработанные для обустройства дверных и оконных проемов, мест стыка кровли с несущими опорами, подвальных и чердачных помещений. Таким образом, выполняя сравнение теплоизоляционных материалов, нужно учитывать не только их эксплуатационные свойства, но и сферу применения.
Главные параметры
Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.
Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.
Чувствительность к влаге
Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.
Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.
При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.
Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.
Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.
Плотность и теплоемкость
Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.
Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.
Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.
Коэффициент сопротивления
Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.
Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.
При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.
Теплопроводность основных видов утеплителей
Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:
Преимущества и недостатки
При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.
Сравнение самых современных вариантов
Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.
Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.
Сравнение ватных материалов
Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.
У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.
Сыпучие и органические материалы
Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.
Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.
В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.
инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото
При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.
Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.
Такая диаграмма нагляднее таблицы
А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.
Что такое теплопроводность
Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.
То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.
Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.
Таблица теплопроводности
Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:
Сводная таблица
Здесь присутствуют всего два параметра. Первый – это коэффициент теплопроводности утеплителей. Второй – толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.
Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.
Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.
Совет!
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».
Иные критерии выбора
При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.
Нужно обратить внимание и на иные критерии:
- объемный вес утеплителя;
- формостабильность данного материала;
- паропроницаемость;
- горючесть теплоизоляции;
- звукоизоляционные свойства изделия.
Рассмотрим эти характеристики подробнее. Начнем по порядку.
Объемный вес утеплителя
Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.
Такая теплоизоляция будет иметь значительный объемный вес
Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.
К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.
Формостабильность
Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.
Любая деформация приведет к потере тепла
В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.
Паропроницаемость
По данному критерию все утеплители можно условно подразделить на два вида:
- «ваты» – теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
- «пены» – теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.
В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.
Горючесть
Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.
Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.
Звукоизоляционные свойства
Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.
Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».
Вывод
Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.
На фото – наглядная таблица
То же самое, но в виде диаграммы
Как видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.
Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.
В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.
Сравнение утеплителей по теплопроводности | Утепление своими руками
Предисловие. На рынке стройматериалов имеется сегодня большой выбор различных теплоизоляционных материалов, различных по стоимости, теплопроводности и своим характеристикам. Как же разобраться в этом разнообразии и принять правильное решение в пользу определенного материала? Какие параметры важны при выборе? В этой статье мы сравним утеплители по теплопроводности и другим характеристикам.
Обзор утеплителей
Свойства Rockwool Лайт Баттс
Минвата Изовер: характеристики
Утеплители Кнауф: характеристики
Свойства минваты Ursa PureOne
Применение ТехноНИКОЛЬ
Сравнение характеристик утеплителей
Для начала мы предоставим основные характеристики теплоизоляционных материалов, на которые стоит обратить внимание при их выборе. Сравнение утеплителей по этим характеристикам следует производить исходя из назначения и характеристик утепляемого помещения (наличие открытого огня, влажность, природные условия и т.д.). Мы расположили основные характеристики утеплителей в порядке их значимости.
Теплопроводность. Чем ниже теплопроводность, тем меньше требуется утеплительный слой, а значит, и ваши расходы на утепление сократятся.
Влагопроницаемость. Меньшая влагопроницаемость снижает негативное воздействие влаги на утеплитель при последующей эксплуатации.
Пожаробезопасность. Материал не должен поддерживать горение и выделять ядовитые пары, а иметь свойство к самозатуханию.
Экономичность. Утеплитель должен быть доступным по стоимости для широкого слоя потребителей.
Долговечность. Чем больше срок использования утеплителя, тем он дешевле обходится потребителю при эксплуатации и не требует частой замены или ремонта.
Экологичность. Материал для теплоизоляции должен быть экологически чистым, безопасным для здоровья человека и окружающей природы. Эта характеристика важна для жилых помещений.
Толщина материала. Чем тоньше утеплитель, тем меньше будет “съедаться” жилое пространство помещения.
Вес материала. Меньший вес утеплителя даст меньшее утяжеление утепляемой конструкции после монтажа.
Звукоизоляция. Чем выше звукоизоляция, тем лучше защита жилых помещений от шума со стороны улицы.
Простота монтажа. Момент достаточно важен для любителей делать ремонт в доме своими руками.
Сравнение характеристик популярных утеплителей
Пенопласт (пенополистирол)
Этот утеплитель самый популярный, благодаря легкости монтажу и небольшой стоимости.
Пенопласт изготавливается при помощи вспенивания полистирола, имеет очень низкую теплопроводность, устойчив к влажности, легко режется ножом и удобен во время монтажа. Благодаря низкой стоимости имеет большую востребованность для утепления различных помещений. Однако материал достаточно хрупкий, а также поддерживает горение, выделяя токсичные вещества в атмосферу. Пенопласт предпочтительнее использовать в нежилых помещениях.
Пеноплэкс (экструдированный пенополистирол)
Утеплитель не подвергается гниению и воздействию влаги, очень прочный и удобный в использовании – легко режется ножом. Низкое водопоглощение обеспечивает незначительные изменения теплопроводности материала в условиях высокой влажности, плиты имеют высокую сопротивляемость сжатию, не подвергаются разложению. Благодаря этому экструдированный пенополистирол можно использовать для утепления ленточного фундамента и отмостки. Пеноплекс пожаробезопасен, долговечен и прост в применении.
Базальтовая вата
Материал производится из базальтовых горных пород при расплавлении и раздуве с добавлением компонентов для получения волокнистой структуры материала с водоотталкивающими свойствами. При эксплуатации базальтовая вата Rockwool не уплотняется, а значит, ее свойства не изменяются со временем. Материал пожаробезопасен и экологичен, имеет хорошие показатели звукоизоляции и теплоизоляции. Используется для внутреннего и наружного утепления. Во влажных помещениях требует дополнительной пароизоляции.
Минеральная вата
Минвата производится из природных материалов – горных пород, шлака, доломита с помощью специальной технологии. Минвата Изовер имеет низкую теплопроводность, пожаробезопасна и абсолютно безопасна. Одним из недостатков утеплителя является низкая влагостойкость, что требует обустройства дополнительной влаго- пароизоляции при его использовании. Материал не рекомендуется использовать для утепления подвалов домов и фундаментов, а также во влажных помещениях – парилках, банях, предбанниках.
Пенофол, изолон (фольгированный теплоизолятор из полиэтилена)
Утеплитель состоит из нескольких слоев вспененного полиэтилена, имеющих различную толщину и пористую структуру. Материал часто имеет слой фольги для отражающего эффекта, выпускается в рулонах и в листах. Утеплитель имеет толщину в несколько миллиметров (в 10 раз тоньше обычных утеплителей), но отражает до 97% тепловой энергии, очень легкий, тонкий и удобный в работе материал. Используются для теплоизоляции и гидроизоляции помещений. Имеет длительный срок эксплуатации, не выделяет вредных веществ.
Сравнение утеплителей. Таблица теплопроводности
Сравнение утеплителей по теплопроводности. Таблица
Данная таблица теплопроводности утеплителей дает полную картину и представление, о том, какой лучше использовать утеплитель. Остается лишь соотнести данные этой таблицы с сравнением стоимости утеплителей у разных поставщиков. Узнать цены на материалы для утепления и сравнить их стоимость можно в каталоге компаний. А чтобы не ошибиться в выборе рассчитайте толщину утепления на нашем сайте.
сравнение строительных материалов по толщине, характеристики
В выборе строительных материалов с лучшими характеристиками поможет таблица теплопроводности материалов и утеплителейСбережение тепла в доме – особая функция строительства и обустройства жилища. Но какие материалы самые современные, качественные, при этом доступные и несложные в монтаже? Нельзя ответить однозначно на этот вопрос, но приведенные ниже сравнительные характеристики помогут разобраться в этом вопросе.
Описание и сравнение утеплителей
Сегодня потребитель может выбрать материал, свойства которого удовлетворяют его запросы в той или иной степени. От того, какой выбор вы делаете, зависит и монтаж утеплителя – справитесь ли вы с ним сами, или придется вызывать специалистов. Структура и текстура материалов имеет значение.
Основываясь на этом критерии можно выделить:
- Плиты – представляют собой стройматериал разной плотности и толщины, который изготовлен с помощью склеивания и прессования;
- Пеноблоки – сделаны из бетона, с включением специальных добавок, пористой структура получается вследствие химической реакции;
- Вата – реализуется в рулонах, имеет волокнистую структуру;
- Крошка или гранулы – сыпучий уплотнитель включает пеновещества различной фракции.
Свойства, стоимость и функционал материала – вот на что обращается внимание. Обычно на материале указывается, для какой именно поверхности он предназначен. Сырье для утеплителя может быть разным, а целом же оно бывает органическим и неорганическим.
Органические утеплители делают на основе торфа, древесины и камыша. Неорганические утеплители – это минералы, вспененный бетон, вещества с содержанием асбеста и т.д. Стоит научиться оценивать и понимать свойства различных веществ.
Свойства утеплителей: теплопроводность и т.д.
Насколько тот или иной материал эффективен, зависит от трех основных характеристик – плотность, гигроскопичность, теплопроводность. Теплопроводность – это, пожалуй, основной показатель качества материала. Исчисляется это свойство в ваттах на один метр квадратный. На данный показатель немало влияет и такой параметр, как впитывание влаги.
В таблице представлены основные свойства строительных материалов
Плотность – чем выше она у пористого материала, тем более эффективно удерживается тепло внутри здания. Обычно этот показатель определяющий, если вы ищите утеплитель для стен, крыши или же этажного перекрытия. Гигроскопичностью называется устойчивость к влиянию влаги. Те же цокольные перекрытия нужно укреплять материалами с очень низкой гигроскопичностью. Таковым будет, к примеру, пластиформ.
Таблица сравнения утеплителей
Чтобы показать наглядно и схематично, какой утеплитель, образно говоря, чего стоит, сравнить, проще изобразить это в таблице. Здесь представлены самые популярные утеплители. Оцениваются они по таким категориям, как вышеуказанные теплопроводность, гигроскопичность и плотность.
Материал
|
Теплопроводность
|
Гигроскопичность
|
Плотность (кг/м3)
|
Минеральная вата
|
Низкая
|
Высокая
|
30-125
|
Пенофол
|
Низкая
|
Средняя
|
60-70
|
Пенополистирол
|
Очень низкая
|
Средняя
|
30-40
|
Керамзит
|
Высокая
|
Низкая
|
500
|
Пластиформ
|
Низкая
|
Очень низкая
|
50-60
|
Пенопласт
|
Очень низкая
|
Средняя
|
35-50
|
Пеноплекс
|
Низкая
|
Низкая
|
25-32
|
Ячеистый бетон
|
Высокая
|
Высокая
|
400-800
|
Базальтовое волокно
|
Низкая
|
Высокая
|
130
|
Своеобразным лидеров в рейтинге утеплительных материалов можно считать пенопласт. Здесь конкурентной будет также доступность и вполне себе недорогая цена. Но некорректным будет советовать что-то одно, не зная ситуации, области утепления, финансовых возможностей, объема работы и т.д.
По толщине: сравнение теплопроводности строительных материалов
Есть много таблиц, где упоминается такой важный показатель, как толщина утеплителя. Действительно, от этого многое зависит, ведь толщина этого слоя тоже «съедает» пространство и влияет на результат. В данном материале можно отталкиваться от того, какой толщины в сантиметрах будет минимальный слой того или иного утеплителя.
Минимальный слой (толщина) утеплителя:
- Пластиформ – 2 см;
- Пенофол – 5 см;
- Пенопласт и пенополистирол – 10 см;
- Пеностекло – 10-15 см;
- Минвата – 15 см;
- Базальтовое волокно – 15 см;
- Пеноплекс и керамзит – 20 см;
- Ячеистый бетон – от 20 до 40 см.
Конечно, важно, для чего именно вам нужен утеплитель. Например, керамзитом можно утеплять только полы и перекрытия между этажами. Также помните о том, что редкий утеплитель обойдется без гидро- и пароизоляции.
Нюансы применения утеплителей
Есть некоторые полезные рекомендации, которые можно учитывать при выборе утеплителя и последующем монтаже. Например, для пола и потолка, то есть горизонтальных поверхностей, вы можете использовать буквально любой материал. Но следует применять дополнительный слой, обладающий высокой механической прочностью – это обязательное условие.
Сравнительная таблица теплопроводности утеплителей
Если говорить о цокольных перекрытиях, то их утеплять нужно стройматериалами низкой гигроскопичности. Обязательно учитывается и повышенная влажность. Если этого не сделать, что утеплитель под действием влаги может частично и полностью утратить свои свойства.
Ну а для стен (вертикальных поверхностей) нужно использовать материалы в виде плит или листов. Если вы выберите рулонный материал или насыпной, то со временем материалы однозначно станут проседать. Значит, способ крепежа должен быть безукоризненный. А это уже отдельная тема.
Сравнительная таблица теплопроводности материалов и утеплителей (видео)
Выбирая утеплитель, приходится прислушиваться к советам знакомых, читать отзывы, консультироваться с продавцом. Хорошо идти в магазин, зная хотя бы главную информацию о том или ином утеплителе, его свойства и возможности.
Удачного выбора!
Добавить комментарий
Теплопроводность газов
Значение теплопроводности для большинства газов и паров колеблется от 0,01 до 0,03 Вт / мК при комнатной температуре. Заметными исключениями являются гелий (0,15) и водород (0,18).
Наиболее распространенное теоретическое объяснение теплопроводности в газах обеспечивается кинетической теорией газа, которая рассматривает столкновения между атомами или молекулами как основной способ передачи энергии. В этом подходе не учитывается лучистый теплообмен.
Согласно этой теории, теплопроводность пропорциональна теплоемкости единицы объема, средней скорости газа и средней длине свободного пробега.Поскольку динамическая вязкость пропорциональна произведению плотности, скорости и длины свободного пробега, отсюда следует, что теплопроводность также пропорциональна вязкости. На практике зависимости намного сложнее, и не следует ожидать высокой точности, получая теплопроводность из гораздо более легко измеряемых физических свойств, упомянутых выше.
Что касается температурной зависимости теплопроводности, следует отметить, что ее значение увеличивается примерно пропорционально абсолютной температуре, по крайней мере, в диапазоне «нормальных» давлений.С увеличением давления увеличивается и теплопроводность. Примерно при 0,001 бар длина свободного пробега становится того же порядка, что и у стенок, ограничивающих газ, и величина линейно увеличивается с давлением. При давлении выше 0,001 бар увеличение теплопроводности составляет порядка 1% на увеличение давления на бар. Из этих рисунков можно, например, сделать вывод, что изменениями теплопроводности из-за атмосферных колебаний в большинстве случаев можно пренебречь.
В следующей таблице приведены значения теплопроводности при комнатной температуре для различных газов.
.
Коэффициент теплопроводности, теплопроводность — Скачать PDF бесплатно
4 Термомеханический анализ (ТМА)
172 4 Термомеханический анализ 4 Термомеханический анализ (ТМА) 4.1 Принципы ТМА 4.1.1 Введение Дилатометр используется для определения линейного теплового расширения твердого тела как функции температуры.
Дополнительная информация
ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОВОЙ ДИФФУЗИОННОСТЬ
ТЕПЛОПРОВОДНОСТЬ И ТЕПЛОВОЙ ДИФФУЗИВНОСТЬ New Castle, DE США Lindon, UT USA Hüllhorst, Германия Шанхай, Китай Пекин, Китай Токио, Япония Сеул, Южная Корея Тайбэй, Тайвань Бангалор, Индия Сидней,
Дополнительная информация
Agilent Cary 60 UV-Vis
Agilent Cary 60 UV-Vis Efficient.Точная. Гибкое. Технические характеристики Введение Спектрофотометр Agilent Cary 60 UV-Vis является эффективным, точным и универсальным, он разработан для соответствия требованиям действующего стандарта
.
Дополнительная информация
Устранение аналитического пробела
Устранение аналитического пробела Термический анализ предоставляет идеальные инструменты для определения характеристик всех видов органических и неорганических твердых веществ или жидкостей. Термодинамические переходы, термическая стабильность, разложение
Дополнительная информация
Высокоточная низкооборотная пила TechCut 4
Брошюра по продукту TechCut 4 Прецизионная низкоскоростная пила Диапазон лезвий 3–6 дюймов Цифровой дисплей скорости Индексирование образцов размером 1 микрон Подпружиненная насадка для правки Все конструкция из алюминия и нержавеющей стали
Дополнительная информация
Калибровка датчиков Далласа
Калибровка датчиков Далласа Мариуш Сапински INFN Sezione di Roma1 Рим, Италия (апрель 2006 г.) 1.Цели. Целью данной работы является калибровка датчиков Далласа. Девять датчиков Далласа —
Дополнительная информация
Основы притирки и полировки
Основы притирки и полировки Приложения Лабораторный отчет 54 Притирка и полировка 1.0: Введение Притирка и полировка — это процесс, при котором материал точно удаляется с заготовки (или образца)
Дополнительная информация
Измеритель удельного сопротивления ACL 395
РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ измерителя сопротивления ACL 395 Гарантия на детали и работу составляет один год с даты покупки.Калибровка рекомендуется каждые 12 месяцев. 840 Вт. 49-е место Страница 1 из 13 [email protected]
Дополнительная информация
Климатическая камера с подсветкой
Серия KBWF (E5.2) Климатические камеры с подсветкой Климатическая камера с подсветкой Климатическая камера BINDER с подсветкой серии KBW обеспечивает однородное распределение света с его естественным светом
Дополнительная информация
8001782 Руководство пользователя
8001782 Цифровой инфракрасный термометр Руководство пользователя Введение Этот прибор представляет собой портативный, простой в использовании цифровой термометр компактного размера с лазерным прицелом, предназначенный для работы одной рукой.Счетчик
Дополнительная информация
Плитка, поглощающая микроволны:
На основе результатов, полученных в ходе первых работ по проекту, были определены условия измельчения в более крупном масштабе. Что касается спекания, проведена корректировка роликовых печей
.
Дополнительная информация
APE T углепластик Аслан 500
Полимерная лента, армированная углеродным волокном (CFRP), используется для структурного усиления бетона, кирпичной кладки или деревянных элементов с использованием техники, известной как укрепление на поверхности или NSM.Использование CFRP
Дополнительная информация
DMA-1 Прямой анализатор ртути
DMA-1 Прямой анализатор ртути www.milestonesrl.com ЭЛЕКТРОННАЯ ВЕЩЬ 8 веских причин выбрать контрольную точку DmA-1 1. отсутствие пробоподготовки 2. простота использования 3. низкая стоимость анализа
Дополнительная информация
Основы управления массовым расходом
Основы управления массовым расходом Критическая терминология и принципы работы для газовых и жидких MFC Контроллер массового расхода (MFC) — это устройство с обратной связью, которое устанавливает, измеряет и контролирует поток
Дополнительная информация
Раздел 4: NiResist Iron
Раздел 4: Железо NiResist Раздел 4 Описание марок Ni-Resist…4-2 201 (Тип 1) Ni-Resist … 4-3 202 (Тип 2) Ni-Resist … 4-6 Списки акций … 4-8 4-1 Ni-Resist Описание марок Ni-Resist Dura-Bar
Дополнительная информация
Примечание по применению Пельтье
Замечания по применению Пельтье Ученые начала XIX века Томас Зеебек и Жан Пельтье первыми обнаружили явления, которые лежат в основе современной термоэлектрической промышленности. Зеебек обнаружил, что если вы
Дополнительная информация
,
Эффективная теплопроводность пенобетона разной плотности
Прочность бетона
Прочность бетона При проектировании и контроле качества бетона обычно указывается прочность. Это связано с тем, что по сравнению с большинством других свойств испытать прочность относительно легко.Кроме того,
Дополнительная информация
Глава 8 Проектирование бетонных смесей
Глава 8 Проектирование бетонных смесей 1 Основная процедура расчета бетонных смесей применима к бетону для большинства целей, включая тротуары. Бетонные смеси должны встречаться; Технологичность (просадка / вебе) на сжатие
Дополнительная информация
Пожарные и бетонные конструкции
Пожарные и бетонные конструкции Авторы: Дэвид Н.Билоу, P.E., S.E., директор по инженерным конструкциям, Portland Cement Association 5420 Old Orchard Road, Skokie, IL 60077, телефон 847-972-9064, электронная почта: [email protected]
Дополнительная информация
1.5 Бетон (Часть I)
1.5 Бетон (Часть I) В этом разделе рассматриваются следующие темы. Составляющие бетона Свойства затвердевшего бетона (Часть I) 1.5.1 Составляющие бетона Введение Бетон — композитный материал
Дополнительная информация
Всасывание почвы.Полное всасывание
Всасывание почвы Общее всасывание Полное всасывание почвы определяется в терминах свободной энергии или относительного давления пара (относительной влажности) влажности почвы. Ψ = v RT ln v w 0ω v u v 0 (u) u = частичное
Дополнительная информация
Фильтр вспомогательной фильтрации
Вспомогательная фильтрация Фильтрация Фильтрация — это отделение твердых частиц от жидкостей путем принудительного протекания жидкости через пористую среду и осаждения твердых частиц на ней.Фильтрующее средство (мелкодисперсный материал
Дополнительная информация
Стабильная теплопроводность
Устойчивая теплопроводность. В термодинамике мы рассматривали количество теплопередачи, когда система претерпевает процесс перехода из одного состояния равновесия в другое. Гермодинамика не показывает, как долго
Дополнительная информация
Свойства свежего бетона
Свойства свежего бетона Введение Потенциальная прочность и долговечность бетона данной пропорции смеси во многом зависит от степени его уплотнения.Поэтому жизненно важно, чтобы
Дополнительная информация
ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ
ИНЖЕНЕРНЫЙ 2 КВАРЦЕВОЙ КАМЕНЬ 18 ХОРОШИЕ ОТРАСЛЕВЫЕ ПРАКТИКИ 2 ИНЖЕНЕРНЫЙ КВАРЦЕВОЙ КАМЕНЬ Натуральные камни, особенно гранит, использовались для изготовления полов и материалов столешниц в элитных домах из-за их красоты и
Дополнительная информация
2. ПОДГОТОВКА ИСПЫТАНИЙ.
Выщелачивание цементной футеровки в недавно проложенных водопроводах (Часть II) Онг Туан Чин и др.Школа гражданского строительства и окружающей среды им. Вонг Сук Фан, Технологический университет Наньян, 5 Наньян-авеню, Сингапур
Дополнительная информация
Североамериканский нержавеющий
Плоские нержавеющие изделия из Северной Америки Лист нержавеющей стали марки 310S (S31008) / EN 1.4845 Введение: SS310 — это высоколегированная аустенитная нержавеющая сталь, предназначенная для работы при повышенных температурах.
Дополнительная информация
ПРИМЕНЕНИЕ ДЛЯ КОММЕРЧЕСКОГО ЗДАНИЯ
РАСШИРЕННЫЙ ПОЛИСТИРОЛ ДЛЯ КОММЕРЧЕСКОГО ЗДАНИЯ www.falconfoam.com Изоляция из вспененного полистирола для коммерческих зданий. Компания Falcon Foam является лидером отрасли коммерческого строительства, предлагая продукцию
Дополнительная информация
Лекция 9, Тепловые заметки, 3.054
Лекция 9, Тепловые заметки, 3.054. Тепловые свойства пен Пенопласты с закрытыми ячейками, широко используемые для теплоизоляции. Аэрогели (как правило, хрупкие и слабые) и вакуумные
— это материалы с более низкой проводимостью.
Дополнительная информация
Внутренняя система предотвращения плесени
Внутренняя изоляция и ремонтные панели Система компонентов, которые были разработаны для идеальной работы вместе для устранения повреждений, вызванных плесенью.Система состоит из досок, изоляционных клиньев, откос
Дополнительная информация
Затвердевший бетон. Лекция № 14
Лекция по затвердевшему бетону № 14 Прочность бетона Прочность бетона обычно считается его самым ценным свойством, хотя во многих практических случаях и другие характеристики, такие как долговечность
Дополнительная информация
,
Теплопроводность — Курсовая работа
Похожие документы
Премиум-эссе
Определение теплопроводности отходов
…ИНЖЕНЕРНОЕ ДЕЛО
ОПРЕДЕЛЕНИЕ ТЕПЛОПРОВОДНОСТИ
ОТХОДОВ
(ПЛАСТИКА)
МАШИНОСТРОИТЕЛЬНАЯ ЛАБОРАТОРИЯ 2
ME 11L
ПРЕДСТАВЛЕННЫЙ:
Алега, Улисс младший Х.
Бикальдо, Марк Зедрик Л.
Энганьо, Мойзес А.
Сабида, Рикалин Б.
ПРЕДСТАВЛЕНО:
Энгр.Мануэль Э. Европео
10 марта 2014 г.
ВВЕДЕНИЕ
Теплопроводность (или теплопроводность) — это передача внутренней энергии за счет микроскопической диффузии и столкновений частиц или квазичастиц внутри тела из-за градиента температуры. Микроскопически диффундирующие и сталкивающиеся объекты включают молекулы, электроны, атомы и фононы. Они передают неорганизованную микроскопическую кинетическую и потенциальную энергию, которые вместе известны как внутренняя энергия.Кондукция может иметь место только внутри объекта или материала или между двумя объектами, которые находятся в прямом или косвенном контакте друг с другом. Проводимость имеет место во всех весомых формах, таких как твердые тела, жидкости, газы и плазма.
За счет теплопроводности или теплового излучения тепло самопроизвольно перетекает от более горячего тела к более холодному. В отсутствие внешних драйверов разность температур со временем уменьшается, и тела достигают теплового равновесия.
При теплопроводности тепловой поток проходит внутри самого тела и через него.Напротив, при передаче тепла посредством теплового излучения передача часто происходит между телами, которые могут быть пространственно разделены. Также возможна передача тепла за счет теплопроводности и теплового излучения. В конвекции, внутри ……
Слова: 3390 — Страниц: 14
Премиум-эссе
Теплопроводность
…Аннотация
Нашей целью в этом эксперименте было измерить проводимость плохого проводника, в данном случае тонкого куска картона. Путем определения того, сколько тепловой энергии могло пройти от одного блока, к которому было добавлено тепло, и другого блока, от которого они были разделены тонким куском картона. Наше значение для K, константа теплопроводности составляла 0,157 Вт · м-1 · K-1, что было довольно близко к значению 0,21 Вт · м-1 · K-1 с погрешностью в процентах 25,2%.
Ссылка: http: // www.physics.usyd.edu.au/teach_res/db/d0005e.htm
Введение и теория
Концепция проводимости включает в себя передачу энергии через материал, который может быть плохим или слабым проводником, в данном случае тепло через плохой картонный проводник. Мы ожидаем, что картон как плохой проводник не будет эффективно передавать тепло от одного диска к другому, как показано на рис.1.
рисунок 1
Формула, по которой мы вычисляем значение k для картона, выглядит так:
dQ / dt = -k.A.dT / дх (1)
В приведенном выше уравнении dQ / dt представляет собой скорость теплопередачи и рассчитывается с использованием формулы (2), как показано ниже. А — площадь картонного диска. dT — это разница температур между двумя дисками при установившейся температуре, которая объясняется далее в экспериментальном методе. Наконец, dx — это толщина картонного диска.
После всех наших измерений мы построим график зависимости температуры от прошедшего времени, как показано на рис.3 мы затем смогли получить dQ / dt по формуле:
……
Слова: 876 — Страниц: 4
Премиум-эссе
Теплопроводность
…Изучение теплопроводности цементного раствора с добавлением золы кукурузного початка.
А.А. Рахим, доктор философии 1 * и профессор Д.А. Adesanya2
1
Кафедра гражданского строительства, Технологический университет Ладоке Акинтола, Огбомосо, Нигерия. 2 Строительный факультет, Университет Обафеми Аволово, Иле-Ифе, Нигерия. Электронная почта: [email protected]* Телефон: 2348033928991
РЕФЕРАТ В данном исследовании изучалась теплопроводность цементного раствора, смешанного с зерном кукурузного кочана (CCA).Были использованы девять классов цементов с добавками CCA с содержанием CCA от 0% до 25%. При замене 0% CCA использовался обычный портландцемент, который служил контролем. Пропорции смеси цемент: использованный острый песок составляли 1: 1, 1: 2 и 1: 3 с соотношением воды к вяжущему в диапазоне от 0,26 до 0,29. Испытание на теплопроводность проводилось на образцах кубиков из раствора размером 50 x 50 x 15, отлитых в деревянные формы попарно. Метод стационарного нагрева с использованием трех блоков латуни был использован для проведения испытания с нагревателем из нихромовой проволоки, намотанной на керамический стержень.Конечная разница температур, полученная за период непрерывного нагрева в течение восьми часов, использовалась для определения теплопроводности. Теплопроводность образцов цемента с добавлением CCA неуклонно снижалась по мере увеличения процентного содержания CCA. Для пропорции смеси 1: 1; теплопроводность 0 уменьшается с 1,80 Вт / м C 0 до 0,69 Вт / м C, когда процентное замещение CCA увеличивается с 2% до 25% как 0 против контрольного значения 2 …
Слова: 2727 — Страниц: 11
Премиум-эссе
Ха-ха
.Явление транспорта (электрическое и тепловое) в двух аллотропных формах углерода (алмаз и графит)
Графит и алмаз образованы из углерода (двух аллотропных форм углерода). Хотя они имеют схожий составной элемент, они сильно различаются по своим свойствам. Алмаз — хороший проводник тепла, но плохой проводник, а графит — плохой проводник тепла, но хороший проводник электричества. Это один из примеров разницы в их собственности. Разница в их свойствах возникает из-за разного расположения присутствующих в них атомов углерода.Основные физико-химические свойства графита и алмаза, чтобы выделить их различия, следующие:
Различия между графитом и алмазом
Внешность:
Графит непрозрачен и имеет вид от металлического до землистого, а алмазы прозрачные и блестящие. Еще одно важное физическое отличие — их твердость. Твердость минералов сравнивается с использованием шкалы твердости Мооса, относительной шкалы от 1 (самый мягкий) до 10 (самый твердый).Графит очень мягкий и имеет твердость от 1 до 2 по этой шкале. Алмазы являются самым твердым из известных природных веществ и имеют твердость 10. Алмаз используется в качестве абразива из-за его высокой твердости, тогда как графит используется в качестве смазки.
Структурные различия:
ромб
Космическая группа Fd3m гранецентрированная кубика
Атомы / элементарная ячейка 8
Объем ячейки 45,385 x 10-24 см3
Плотность рентгеновского излучения 3,5155 г / см3
{draw: frame} Графит
Космическая группа C6 / mmc ;……
Слова: 913 — Страниц: 4
Бесплатное эссе
Enterprise Rent-a-Car: измерение качества обслуживания
…Принятые рукописи
Название: Влияние толщины слоя на термические свойства многослойных тонких пленок, полученных методом PVD Авторы: Б. Тлили, К. Нуво, М. Дж. Валок, М. Насри, Т. Гариб PII: DOI: Ссылка: Появиться в: S0042-207X ( 11) 00353-8 10.1016 / j.vacuum.2011.09.008 VAC 5485 Vacuum
Дата получения: 20 февраля 2011 г. Дата пересмотра: 5 сентября 2011 г. Дата принятия: 18 сентября 2011 г.
Цитируйте эту статью как: Tlili B, Nouveau C, Walock MJ, Nasri M, Gharib T.Влияние толщины слоя на термические свойства многослойных тонких пленок, изготовленных методом PVD, Vacuum (2011), doi: 10.1016 / j.vacuum.2011.09.008 Это PDF-файл неотредактированной рукописи, принятой к публикации. В качестве услуги для наших клиентов мы предоставляем эту раннюю версию рукописи. Рукопись будет подвергнута копирайтингу, верстке и рассмотрению полученного доказательства перед публикацией в окончательной форме. Обратите внимание, что во время производственного процесса могут быть обнаружены ошибки, которые могут повлиять на содержание, и все юридические оговорки, относящиеся к журналу, имеют отношение.ПРИНЯТАЯ РУКОПИСЬ
Влияние толщины слоя на термические свойства многослойных тонких пленок, полученных методом PVD
Б. Тлилия, Б., К. Нувоб, М. Дж. Валок, А., М. Насрия, Д. Т. Гариб.
UR. Mécanique Appliquée, Ingénierie et Industrialization (MA2I), ENIT, BP 37, Le Belvédère, 1002 Tunis, Tunisie b Laboratoire Bourguignon des Matériaux et Procédés (LaBoMaP), Center Arts et Métiers ParisTech de Cluny, 50, Rue-Porte de Cluny, 50 ,…..
Слова: 6993 — Страниц: 28
Бесплатное эссе
Физические свойства элементов и соединений
…Задача 1 — ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ ЭЛЕМЕНТОВ И СОЕДИНЕНИЙ
| | Тест на |
| | |
| Вещества | |
| | Электро | Теплопроводность | Растворимость — это | Температура плавления? | Точка кипения |
| | проводимость: делает | | растворим в воде? | | |
| | это проводить | | | | |
| | Электричество? | | | | |
| | | | | | |
| | В виде твердых тел | В растворах | | | | |
| Хлорид калия | | Слабопроводящий | | __ | 7700C | 15000C |
| Хлорид натрия | | Довольно | | Растворимый | 14650C | 8010C |
| | | Проводящие | | | 266900F | 1473.40F |
| HCL | | Слабопроводящий | …
Слов: 505 — Страниц: 3
Премиум-эссе
Механизм теплопередачи в породах
…Теплообмен в скалах
ТЕПЛОПРОВОДНОСТЬ ПОРОД
Теплопроводность горной породы (������) определяется как тепловой поток через поверхность на единицу площади в единицу времени, когда существует определенная разница температур на единице длины, перпендикулярной поверхности. Это зависит от следующих факторов: —
Химический состав горных пород (породы — агрегаты минералов)
1. Обводненность породы
2.температура
3. Давление
4. Радиоактивный распад (если есть) и т. Д.
Теплопроводность измеряется в Вт / (м ℃).
Тепло передается через насыщенную пористую среду в комбинированном механизме: за счет теплопроводности через твердую матрицу и жидкость в порах, а также за счет конвекции движущейся жидкости. Применяя закон сохранения энергии к контрольному объему, уравнение теплопередачи в насыщенной пористой среде может быть выражено как:
ρc∂t∂τ + ρwcwV · ∇t = ∇ · (k∇t) (2) где k означает эффективную теплопроводность пористой среды;
ρc — объемная удельная теплоемкость пористой среды, включая твердую матрицу и воду в ее порах,
ρwcw — объемная удельная теплоемкость воды.Обратите внимание, что в уравнении тепло накапливается и проводится через матрицу воды и почвы, но только вода принимает участие в конвекции тепла здесь. Средняя линейная скорость V грунтовых вод по поперечному сечению среды может быть определена распределением гидравлического напора в соответствии с законом Дарси, если гидравлическая проводимость среды известна …….
Слова: 451 — Страниц: 2
Бесплатное эссе
Нестационарная одномерная теплопроводность в конвективно охлаждаемой сфере
…h (Ts — T∞)
(1)
где h — коэффициент теплоотдачи, Ts — локальная температура поверхности.
Проблема значительно упрощается, если предположить, что поток тепла на
поверхность однородная. При этом условии Ts = T (r0) также равномерно и
температура внутри сферы зависит только от радиуса r и времени t, т. е.
∗ Департамент машиностроения и материаловедения, Государственный университет Портленда, Портленд,
ИЛИ, 97201, gerry @ me.pdx.edu
† Исправления, внесенные 10 сентября 2011 г.
час
T
ро
Рис. 1. Сфера, погруженная в поток жидкости и обменивающаяся с ней теплом.
1
2
Т = Т (г, t). Температурное поле определяется уравнением теплопроводности в сферической
координаты
дТ
α∂
1 ∂T
= 2
(2)
∂t
г ∂r r2 ∂r
где α = k / (ρc) — теплопроводность материала сферы, k —
теплопроводность, ρ — плотность, c — удельная теплоемкость.Граница
состояние на поверхности
К
дТ
∂r
= h (T∞ — Ts).
(3)
г = г0
Начальное условие
Т (г, 0) = Ti.
(4)
Остальное условие — температура во всех точках сферы равна
ограничены. Этих трех условий достаточно для получения решения уравнения (2).2
Аналитическое решение
Аналитическое решение уравнения (2) с учетом уравнения (3), уравнения (4),
а условие ограниченности T (r, t) задается несколькими значениями теплопередачи …
Words: 3869 — Страниц: 16
Бесплатное эссе
Композиционные материалы в строительстве
… стать основным материалом выбора.
Использование композитов в строительной индустрии
быстро растущий.
Традиционные преимущества композитов
признаны и используются для устранения конструктивных ограничений
и может использоваться для сокращения жизненного цикла окружающей среды и
влияние на стоимость.
Цели обучения
• Определите «Композитные материалы» и изучите историю композитов в
несколько отраслей и факторы, которые привели к росту композитов в
эти отрасли.• Определить конструкцию и характеристики композитов, используемых в
другие отрасли, применимые к зданию / строительству
рынок.
• Просмотрите тематические исследования, демонстрирующие, как неотъемлемые атрибуты
такие композиты, как малый вес, прочность и низкая теплопроводность,
приводят к появлению экологически эффективных и экономичных материалов.
• Изучите веб-инструменты обучения, предлагающие тематические исследования по использованию
композитов в строительстве и позволяют пользователям подключаться к
производители композитных материалов, специализирующиеся на проектировании, производстве и
монтаж композитных строительных материалов.Что такое композит?
композитный
Разработанная комбинация материалов, в результате
в готовом материале с лучшими общими свойствами
чем исходные составляющие.
На микроскопическом уровне составляющие материалы
остаются отличными от законченной структуры.
«Традиционные» композиты
Дерево — это натуральный композит
волокна целлюлозы в лигниновой матрице.Конструкционная древесина — это древесные волокна,
пряди ……
Слова: 1246 — Страниц: 5
Премиум-эссе
Очерк
… Курсовая работа по передаче тепла
название
учреждение
Дата
Введение
Чтобы исследовать космос и работать в нем, астронавты должны нести свое окружение, потому что нет кислорода и атмосферного давления для поддержания жизни. Скафандр — это больше, чем просто одежда, которую астронавт надевает в космосе. Это действительно небольшой космический корабль. Его основная работа — защищать космонавта в космосе. Космонавтам необходимо надевать скафандры каждый раз, когда они покидают космический корабль и подвергаются воздействию окружающего пространства.В космосе воздух для дыхания и давление воздуха недоступны. Космос имеет опасную радиацию и очень холодный, поэтому без защиты космонавт быстро погибнет в космосе. Конструкция скафандров такова, что они защищают космонавтов от радиации, холода и низкого давления в космосе и, кроме того, обеспечивают воздухом для дыхания. Ношение скафандра позволяет космонавту выживать и работать в космосе. Они также не дают космонавту пораниться космической пылью. Космическая пыль всегда движется с очень высокой скоростью и может нанести вред космонавту.Кроме того, в костюмах есть питьевая вода для космонавта.
Скафандр состоит из множества частей, которые выполняют разные роли. Одна часть защищает грудь, другая часть закрывает руки и соединяется с перчатками, а шлем защищает голову. Последняя часть этого костюма закрывает ступни и ноги космонавта. Другие части этого костюма состоят из множества слоев материала. Каждый уровень выполняет разные роли; некоторые защищают космонавта от ……
Слова: 2517 — Страниц: 11
Премиум-эссе
Аксиоматический подход к проектированию наножидкостей
… Доступно на сайте www.sciencedirect.com
Прикладная теплотехника 29 (2009) 75–90
www.elsevier.com/locate/apthermeng
Аксиоматический подход к проектированию при разработке охлаждающих жидкостей на основе наножидкости
In Cheol Bang a, *, Gyunyoung Heo b
б
Энергетические науки, Институт Global Edge, Токийский технологический институт, 2-12-1-S6-13 О-окаяма, Мегуро-ку, Токио 152-8550, Япония
Кафедра ядерной инженерии, Университет Кён Хи, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyunggi-do 446-701, Республика Корея
Поступило 4 сентября 2007 г .; принята к печати 4 февраля 2008 г.
Доступно онлайн 12 февраля 2008 г.
Аннотация
Экспериментальные данные для наножидкостей в тепловых жидкостных системах показали, что новые жидкости обещают стать передовыми жидкостями для теплопередачи с точки зрения тепловых характеристик.При улучшении тепловых характеристик смеси твердое тело-жидкость неизбежно создают
недостаток по стоимости перекачки для экономичной эксплуатации теплогидравлических систем. Кроме того, нет согласия между
экспериментальные данные приведены в литературе. Настоящая работа показала, что при разработке нанофлюидов не будет понятной стратегии дизайна. В этой работе теория аксиоматического дизайна (AD) применяется для систематизации дизайна наножидкостей с тем, чтобы
практическое использование вперед.Согласно Аксиоме Независимости теории AD, чрезмерные связи между функциональными требованиями и параметрами системы наножидкостей мешают достижению функциональных целей ……
Слова: 7984 — Страниц: 32
Премиум-эссе
Урок 2 Инженерное дело
… (1)
(Велти, Роррер, Фостер, 6-е издание, международная студенческая версия 16.2)
Желательно транспортировать жидкий металл через трубу, встроенную в стену в точке, где температура составляет 650 К. Стена толщиной 1,2 м, изготовленная из материала, имеющего теплопроводность, изменяющуюся в зависимости от температуры, в зависимости от того, где Т выражается в К, а k в Вт / мК, имеет внутреннюю поверхность, поддерживаемую при 925 К. Внешняя поверхность подвергается воздействию воздуха при температуре 300 ° С. K с коэффициентом конвективной теплоотдачи 23 Вт / м2.K. На каком расстоянии от горячей поверхности должна быть расположена труба. Какой тепловой поток у стены? (2) WWWR 17.13 Лист пластика толщиной 2,5 см (k = 2,42 Вт / м · К) должен быть приклеен к алюминиевой пластине толщиной 5 см. Клей, который будет выполнять склеивание, должен храниться при температуре 325K для достижения наилучшего сцепления, а тепло для достижения этой температуры должно обеспечиваться источником излучения. Коэффициент конвективной теплопередачи на поверхностях как пластика, так и алюминия составляет 12 Вт / м2.K, а окружающий воздух — 295 K. Каков требуемый тепловой поток, если он приложен к поверхности (а) пластика? (б) алюминий? (3) (Изменено из Welty, Rorrer, Foster, 6th Edition International Student Version 16.1) Выражение в устойчивом состоянии для теплопроводности через плоскую стену равно. Для стационарной теплопроводности через полый цилиндр выражение, аналогичное уравнению, имеет вид
куда
— среднее арифметическое, определяются как
а.Покажите, что, как определено выше, удовлетворяет уравнениям для …
Слова: 1263 — Страниц: 6
Премиум-эссе
Edm Wirecutting
…параметры процесса в EDM
Опишите характеристики EDM
Определите назначение диэлектрической жидкости в EDM
Перечислите две распространенные диэлектрические жидкости
Проанализировать необходимые свойства инструмента EDM
Перечислите четыре общих инструментальных материала для EDM
Разработка моделей скорости съема материала в EDM
Определите характеристики обработки в EDM
Анализировать влияние переменных процесса на шероховатость поверхности
Анализируйте срез конуса и перерез в электроэрозионной резке
Определить различные модули системы EDM
Нарисуйте схематическое изображение различных электрических генераторов.
используется в EDM
Проанализировать принцип работы генератора EDM RC типа
1.Введение
Электроэрозионная обработка (EDM) — это нетрадиционная электротермическая обработка.
процесс, при котором электрическая энергия используется для генерации электрической искры и материала
удаление в основном происходит за счет тепловой энергии искры.
EDM в основном используется для обработки труднообрабатываемых и высокопрочных материалов.
термостойкие сплавы. EDM можно использовать для обработки сложных геометрических
небольшими партиями или даже по индивидуальному заказу.Рабочий материал для электроэрозионной обработки имеет
быть электропроводящим.
2. Процесс
На рис. 1 схематично показан основной принцип работы электроэрозионного процесса.
В
(-Ve)
я
рисунок 1
Схематическое изображение базового …
Слова: 3200 — Страниц: 13
Премиум-эссе
高 导电 Tic 增强 铜基 复合 材料 的 制备 及 性能 研究
… |
| 6 месяцев 2012 г. |
高 导电 TiC 增强 铜基 复合 材料 的 制备 及 性能 研究
摘要
铜 及其 合金 不仅 具有 优良 的 导电 性, 导热 性, 结合 性 和 可加工 性 等 综合 物理 性能, 力学 性能, 并且 价格 适中. 所以 铜 及其 合金 在 电子 工业, 仪表, 军 工业 中 应用 十分 广泛.但是, 随着 科技 的 发展, 现有 的 铜 合金 材料 不能 全面 满足 航空, 航天, 微电子 行业 的 飞速 发展, 因此 不断 研发 新型 铜 合金 材料 变得 尤为 重要. 我们 实验 的 意义 在于 在 铜基 中 添加TiC 第二 相 颗粒, 在 提高 其 硬度 和 耐磨性 的 同时, 不 使 铜 本身 具有 的 良 导电 性 和 强度 损失 太多.
我们 的 实验 过程 是 先 取 粒度 复合 的 金属 和 陶瓷 粉末 进行 不同 质量 分数 的 配比, 然后 应用 高能 球磨 法 在 湿磨 的 条件 下 混合 两种 粉末, 湿磨 后 的 粉末 经过 干燥 处理 后, 利用 压 片机 和 标准化 模具 进行 压 片 成型, 最后 把 试样 块 放入 烧结 炉 中 烧结. 我们 用 烧结 后 的 试样 进行 电导率, 密度, 抗弯 强度 的 测试, 利用 扫描 电镜观察 断面 的 微观 结构.
经过 试验, 我们 合成 的 Cu-TiC 材料 在 不 损失 太大 电学 性能, 强度 的 同时, 提高 了 硬度 和 耐磨性, 证明 了 我们 实验 的 可行性.
关键字: 铜基, TiC, 强化, 分析
Аннотация
Медь и ее сплав обладают не только отличной электропроводностью и теплопроводностью, сочетанием и технологичностью, а также другими комплексными физическими характеристиками, механическими свойствами и умеренной ценой, поэтому медь и ее сплавы широко используются в электронной промышленности, приборостроении и военной промышленности.Однако с развитием науки и техники существующий материал из медного сплава не может полностью удовлетворять требованиям …
Слова: 2304 — Страниц: 10
Бесплатное эссе
Кабели накладные
…. воздушные линии электропередачи должны соответствовать нескольким требованиям. При проектировании необходимо учитывать различные факторы, механические и электрические, а также места, где будут крепиться кабели.
Участок очень важен, потому что его площадь сильно варьируется в зависимости от характера местности и климата. Также важными для требований являются минимальное электрическое сопротивление (для уменьшения потерь), безопасный зазор над землей, достаточная прочность для приложенных нагрузок, хорошая механическая прочность, способная выдерживать нагрузки и вес, а также удобная стоимость для 100 или 1000 единиц км линии установлены исправно.Жизненно важно обеспечить соответствующую защиту окружающей среды. Это достигается за счет определения предела теплового расширения, устойчивости к коррозии и ветроустойчивости для кабелей.
Предлагаются многочисленные разновидности кабелей, отвечающие требованиям к различным токам и британским стандартам.
Проводники высоковольтных кабелей: сравнение
Введение
Поскольку медь была первым материалом, который использовался в этом качестве, а алюминий — наиболее часто используемый материал сегодня, я решил сравнить эти два материала.Свойства материала проводника
Материалы, обычно используемые в проводниках, — это алюминий, медь и сталь. Стальные провода соединяются с алюминием в наиболее частом типе контактных проводов. Алюминиевый проводник, армированный сталью (ACSR). Использование меди в современных линиях электропередачи необычно ……
Words: 2061 — Страниц: 9
,