Среднюю тепловую мощность: Расчёт тепловой мощности, точный и упрошенный

Содержание

Задание №10 ЕГЭ по физике 🐲 СПАДИЛО.РУ


Тепловое равновесие


Задание №10 Единого Государственного Экзамена по физике посвящено тепловому равновесию. Мы приводим краткую теорию ниже, а потом разбираем несколько вариантов!


Теория к заданию №10 ЕГЭ по физике


Удельная теплота плавления обозначается греческой буквой λ (лямбда). Количество теплоты Q, которое необходимо для того, чтобы расплавить кристаллическое тела массой m, вычисляется по формуле:

Q = λm

В процессе кристаллизации вещество теряет энергию, выделяя (отдавая) столько же теплоты, сколько ее поглощается при плавлении. Потому при расчете количества теплоты, затрачиваемого на кристаллизацию вещества, пользуются той же формулой, но со знаком «–»:

Q = –λm

Тепловая мощность равна количеству теплоты, затраченной на нагревание в единицу времени.

N=Q/t

Уравнение Менделеева – Клапейрона имеет вид:

pV = νRT

Количество теплоты Q, которое нужно для того, чтобы изменить температуру тела на ΔТ (или ∆t) градусов, определяется по формуле

Q = cmΔT

где c – удельная теплоемкость, m – масса физ.тела. ∆T=∆t, поскольку 1К=10С.


Разбор типовых заданий №10 ЕГЭ по физике


Демонстрационный вариант 2018

Для плавления льда при температуре его плавления требуется количество теплоты, равное 3 кДж. Этот кусок льда внесли в тёплое помещение. Зависимость температуры льда от времени представлена на рисунке. Определите среднюю тепловую мощность, подводимую к куску льда в процессе плавления.

Задание 10 ЕГЭ по физикеЗадание 10 ЕГЭ по физике

Алгоритм решения:
  1. Рассматриваем график изменения состояния льда. Анализируем условие. Определяем кол-во теплоты, передаваемое от горелки.
  2. Определяем мощность горелки.
  3. Записываем ответ.
Решение:

1. Рассматриваем график, заданный в условии задания. Сначала на протяжении 5 мин лёд нагревался до температуры плавления. Затем температура не меняется. Это означает, что лед нагрелся до температуры плавления и десять минут таял. С 15-й по 25-ую минуту нагревается вода, получившаяся после таяния льда. Горелка все 25 минут работала равномерно, подавая тепло ко льду. Потому чтобы определить Q, переданное льду, достаточно знать его значение на одном из  временных промежутков. В условии известно, что на таяние льда затрачено 3 кДж теплоты, в течение 10 мин.

2.Теплота, которая передавалась льду в ед.времени, равна 3:10=0,3 кДж в 1 мин. Это и есть тепловая мощность. Переведем ее в СИ: 0,3 кДж=300 Дж; 1 мин=60 с. Отсюда получаем: 300 Дж/1 мин = 300/60 = 5 (Вт).

Ответ: 5


Первый вариант задания (Демидова, № 1)

В закрытом сосуде при температуре 373 К под поршнем находится водяной пар под давлением 30 кПа. Каким станет давление пара, если, сохраняя его температуру неизменной, объём пара уменьшить в 3 раза?

 Алгоритм решения:
  1. Записываем уравнение состояния газа (Менделеева – Клапейрона), выражаем из него давление.
  2. Сравниваем величины давления.
  3. Вычисляем давление после изменения объема.
  4. Записываем ответ.
Решение:

1. Записываем уравнение Менделеева-Клапейрона: pV = νRT. Отсюда получаем давление: http://self-edu.ru/htm/2018/ege2018_phis_30/files/1_10.files/image002.gifhttp://self-edu.ru/htm/2018/ege2018_phis_30/files/1_10.files/image002.gif Температура пара неизменна, а объем уменьшился в 3 раза. тогда давление стало равно http://self-edu.ru/htm/2018/ege2018_phis_30/files/1_10.files/image003.gifhttp://self-edu.ru/htm/2018/ege2018_phis_30/files/1_10.files/image003.gif 3. Следовательно давление возросло в три раза и стало равно: р2=3∙30 = 90 кПа. Ответ: 90


Второй вариант задания (Демидова, № 11)

Определите, каково должно быть примерное отношение масс http://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image001.gifhttp://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image001.gif  железного и алюминиевого тел, чтобы при получении одного и того же количества теплоты они нагрелись на одно и то же число градусов. Ответ округлите до целых.

Алгоритм решения:
  1. Записываем формулу для определения количества теплоты железа.
  2. Записываем формулу для определения количества теплоты алюминия.
  3. Приравниваем значения теплоты, выражаем оттуда отношение масс тел.
  4. Записываем ответ.
Решение:

1. Q, необходимое для изменения температуры железного тела на ΔТ градусов, определяют по формуле: http://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image003.gifhttp://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image003.gif . Здесь с= 460 Дж/(кг∙К) – теплоемкость железа. 2. Q, для алюминиевого тела: http://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image005.gifhttp://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image005.gif . Здесь сАl =900 Дж/(кг∙К) – теплоемкость алюминия. Поскольку по условию QFe= QAl , имеем: http://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image008.gifhttp://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image008.gif . Из полученного равенства получаем: http://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image009.gifhttp://self-edu.ru/htm/ege2017_phis_30/files/11_10.files/image009.gif Ответ: 2


Третий вариант задания (Демидова, № 20)

Какое количество теплоты выделится при кристаллизации 120 г свинца, взятого при температуре плавления?

Алгоритм решения:
  1. Записываем формулу определения количества теплоты, отдаваемого телом при кристаллизации.
  2. Подставляем данные в задаче числовые значения величин, вычисляем искомую величину.
  3. Записываем ответ.
Решение:

1. В процессе кристаллизации вещества происходит выделение количества теплоты Q = λm, которое требуется для плавления.

2. Масса свинцового тела равна m = 120 г =12·10-2 кг, а удельная теплота плавления равна λ= 2,5∙104Дж/кг. Подставим эти значения в формулу:

Q =2,5∙104∙12∙10-2=3000 Дж.

Ответ: 3000

Расчет тепловой мощности

Таблица тепловой мощности, необходимой для различных помещений

(для разницы температур улица-помещение 30°С)















Необходимая тепловая мощность, кВт

Объем отапливаемого помещения в новом здании
(хорошая теплоизоляция), м³

Объем отапливаемого помещения в старом здании
(средняя теплоизоляция), м³

5

70-150

60-110

10

150-300

130-220

20

320-600

240-440

30

650-1000

460-650

40

1050-1300

650-890

50

1350-1600

900-1100

60

1650-2000

1150-1350

75

2100-2500

1400-1650

100

2600-3300

1700-2200

125

3400-4100

2300-2700

150

4200-5000

2800-3300

200

5000-6500

3400-4400

 

Формула расчета тепловой мощности

Формула для расчета необходимой тепловой мощности: 

V x T x K = ккал/ч

Перед выбором обогревателя воздуха необходимо рассчитать минимальную тепловую мощность, необходимую для Вашего конкретного пoмещения. 

Обозначения:

  • V – объем обогреваемого помещения (ширина х длина х высота), м3
  • T – Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения,.С
  • K – коэффициент рассеивания

K=3,0-4,0 Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.
K=2,0-2,9 Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.
K=1,0-1,9 Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.
K=0,6-0,9 Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

 

Пример:
V – Ширина 4 м, Длина 12 м, Высота 3 м. Объем обогреваемого помещения 144 м³
T– Температура воздуха снаружи -5ºC. Требуемая температура внутри помещения +18°C. Разница между температурами внутри и снаружи +23°C
K – Этот коэффициент зависит от типа конструкции и изоляции помещения
требуемая тепловая мощность:
144 x 23 x 4 = 13 248 ккал/ч (Vx TxK = ккал/ч) 

1 кВт = 860 ккал/ч
1 ккал = 3,97 БTe
1 кВт = 3412 БTe
1 БTe = 0,252 ккал/ч

 

Теперь, зная как рассчитать тепловую мощность, Вы можете легко выбрать тепловую пушку, инфракрасный обогреватель или тепловую завесу.

Как рассчитать необходимую тепловую мощность

Таблица тепловой мощности, необходимой для различных помещений

Тепловая мощность, кВтОбъем помещения в новом здании, м3Объем помещения в старом здании, м3Площадь теплицы от теплоизолированного стекла и с двойной фольгой, м2Площадь теплицы из обычного стекла с фольгой, м2
РАЗНИЦА ТЕМПЕРАТУР, С
570 — 15060 — 1103518
10150 — 300130 — 2207037
20320 — 600240 — 44014074
30650 — 1000460 — 650210110
401050 — 1300650 — 890300150
501350 — 1600900 — 1100370180
601650 — 20001150 — 1350440220
752100 — 25001400 — 1650550280
1002600 — 33001700 — 2200740370
1253400 — 41002300 — 2700920460
1504200 — 50002800 — 33001100550
2005000 — 65003400 — 44001480740

 

РАСЧЕТ НЕОБХОДИМОЙ ТЕПЛОВОЙ МОЩНОСТИ

Формула для расчета необходимой тепловой мощности:

V x ΔT x K = ккал/ч

V – Объем обогреваемого помещения (ширина x длина x высота) в м³.

ΔT – Разница между температурой вне помещения и требуемой температурой внутри помещения (в°C).

K – Коэффициент дисперсии.

Ключ

V = ширина 4м, длина 12м, высота 3м, объем помещения = 144 м³

ΔT = темп. вне помещения -5ºC, требуемая темп. внутри помещения +18ºC, температура T = 23º

K = этот фактор зависит от вида конструкции и утепления

K=3,0-4,0
простой объект из древесины или листового материала – без утепления.

K=2,0-2,9
простая конструкция, одиночный слой кирпичей, простые окна и крыша — слабо утепленные.

K=1,0-1,9
cтандартная конструкция, двойной слой кирпичей, небольшое количество окон, стандартная закрытая крыша – умеренное утепление.

K=0,6-0,9
сложная конструкция, двойной утепленный слой кирпичей, несколько окон с двойными стеклами, высокий паркет, хорошо утепленная крыша – хорошо утепленный.

Пример: потребность в мощности тепла

144 x 23 x 4 = 13 248 ккал/ч

(V x ΔT x K = ккал/ч)

1 кВт/ч = 860 ккал/ч

1 ккал/ч = 3,97 Btu/ч

1 кВт/ч = 3412 Btu/ч

1 Btu/ч = 0,252 ккал/ч

Тепловая мощность — формула расчета

система отопления

С теплотехническими расчётами приходится сталкиваться владельцам частных домов, квартир или любых других объектов. Это основа основ проектирования зданий.

Понять суть этих расчётов в официальных бумагах, не так сложно, как кажется.

Для себя также можно научиться выполнять вычисления, чтобы решить, какой утеплитель применять, какой толщины он должен быть, какой мощности приобретать котёл и достаточно ли имеющихся радиаторов на данную площадь.

Ответы на эти и многие другие вопросы можно найти, если понять, что такое тепловая мощность. Формула, определение и сферы применения – читайте в статье.

Что такое тепловой расчет?

Если говорить просто, тепловой расчёт помогает точно узнать, сколько тепла хранит и теряет здание, и сколько энергии должно вырабатывать отопление, чтобы поддерживать в жилье комфортные условия.

Оценивая теплопотери и степень теплоснабжения, учитываются следующие факторы:

  1. Какой это объект: сколько в нём этажей, наличие угловых комнат, жилой он или производственный и т. д.
  2. Сколько человек будет «обитать» в здании.
  3. Важная деталь – это площадь остекления. И размеры кровли, стен, пола, дверей, высота потолков и т. д.
  4. Какова продолжительность отопительного сезона, климатические характеристики региона.
  5. По СНиПам определяют нормы температур, которые должны быть в помещениях.
  6. Толщина стен, перекрытий, выбранные теплоизоляторы и их свойства.

Могут учитываться и другие условия и особенности, например, для производственных объектов считаются рабочие и выходные дни, мощность и тип вентиляции, ориентация жилья по сторонам света и др.

Для чего нужен тепловой расчет?

теплорасчет теплообменникаКак умудрялись обходиться без тепловых расчётов строители прошлого?

Сохранившиеся купеческие дома показывают, что всё делалось просто с запасом: окна поменьше, стены – потолще. Получалось тепло, но экономически не выгодно.

Теплотехнический расчёт позволяет строить наиболее оптимально. Материалов берётся ни больше – ни меньше, а ровно столько, сколько нужно. Сокращаются габариты строения и расходы на его возведение.

Вычисление точки росы позволяет строить так, чтобы материалы не портились как можно дольше.

Для определения необходимой мощности котла также не обойтись без расчётов. Суммарная мощность его складывается из затрат энергии на обогрев комнат, нагрев горячей воды для хозяйственных нужд, и способности перекрывать теплопотери от вентиляции и кондиционирования. Прибавляется запас мощности, на время пиковых холодов.

При газификации объекта требуется согласование со службами. Рассчитывается годовой расход газа на отопление и общая мощность тепловых источников в гигакалориях.

Нужны расчёты при подборе элементов отопительной системы. Обсчитывается система труб и радиаторов – можно узнать, какова должна быть их протяжённость, площадь поверхности. Учитывается потеря мощности при поворотах трубопровода, на стыках и прохождении арматуры.

затраты энергииПри расчетах затрат тепловой энергии могут пригодиться знания, как перевести Гкал в Квт и обратно. В следующей статье подробно рассмотрена эта тема с примерами расчета.

Полный расчет теплого водяного пола приведен в этом примере.

Знаете ли вы, что количество секций радиаторов отопления не берется “с потолка”? Слишком малое их количество приведет к тому, что в доме будет холодно, а чрезмерно больше создаст жару и приведет к чрезмерной сухости воздуха. По ссылке https://microklimat.pro/sistemy-otopleniya/raschet-sistem-otopleniya/kolichestva-sekcij-radiatorov.html приведены примеры правильного расчета радиаторов.

Расчет тепловой мощности: формула

Рассмотрим формулу и приведем примеры, как произвести расчет для зданий с разным коэффициентом рассеивания.

Vx(дельта)TxK= ккал/ч (тепловая мощность), где:

расчет теплопотерь

  • Первый показатель «V» – объем рассчитываемого помещения;
  • Дельта «Т» – разница температур – это та величина, которая показывает насколько градусов внутри помещения теплее, чем снаружи;
  • «К» – коэффициент рассеивания (его еще называют «коэффициент пропускания тепла»). Величина берется из таблицы. Обычно цифра колеблется от 4 до 0,6.

Примерные величины коэффициента рассеивания для упрощенного расчёта

  • Если это неутепленный металлопрофиль или доска то «К» будет = 3 – 4 единицы.
  • Одинарная кирпичная кладка и минимальное утепление – «К» = от 2 до 3-ёх.
  • Стена в два кирпича, стандартное перекрытие, окна и
  • двери – «К» = от 1 до 2.
  • Самый теплый вариант. Стеклопакеты, кирпичные стены с двойным утеплителем и т. п. – «К» = 0,6 – 0,9.

Более точный расчет можно произвести, высчитывая точные размеры отличающихся по свойствам поверхностей дома в м2 (окна, двери и т. д.), производя расчёт для них отдельно и складывая получившиеся показатели.

Пример расчета тепловой мощности

расчеты на бумагеВозьмем некое помещение 80 м2 с высотой потолков 2,5 м и посчитаем, какой мощности котел нам потребуется для его отопления.

Вначале высчитываем кубатуру: 80 х 2,5 = 200 м3. Дом у нас утеплен, но недостаточно – коэффициент рассеивания 1,2.

Морозы бывают до -40 °C, а в помещении хочется иметь комфортные +22 градуса, разница температур (дельта «Т») получается 62 °C.

Подставляем в формулу мощности тепловых потерь цифры и перемножаем:

200 х 62 х 1,2 = 14880 ккал/ч.

Полученные килокалории переводим в киловатты, пользуясь конвертером:

  • 1 кВт = 860 ккал;
  • 14880 ккал = 17302,3 Вт.

Округляем в большую сторону с запасом, и понимаем, что в самый сильный мороз -40 градусов нам потребуется 18 кВт энергии в час.

Можем посчитать теплопотери в Вт на каждый м2 стен и потолка. Высота потолков известна 2,5 м. Дом 80 м2 – это может быть 8 х 10 м.

Умножаем периметр дома на высоту стен:

(8 + 10) х 2 х 2,5 = 90 м2 поверхности стены + 80 м2 потолок = 170 м2 поверхности, контактирующей с холодом. Теплопотери, высчитанные нами выше, составили 18 кВт/ч, делим поверхность дома на расчетную израсходованную энергию получаем, что 1 м2 теряет примерно 0,1 кВт или 100 Вт ежечасно при температуре на улице -40 °C, а в помещении +22 °С.

Эти данные могут стать основой для расчёта требуемой толщины утеплителя на стены.

Приведем другой пример расчета, он в некоторых моментах сложнее, но более точный.

теплопотери домаФормула:

Q = S x (дельта)T / R:

  • Q– искомая величина теплопотерь дома в Вт;
  • S– площадь охлаждающих поверхностей в м2;
  • T– разница температур в градусах Цельсия;
  • R– тепловое сопротивление материала (м2 х К/Вт) (Метры квадратные умноженные на Кельвин и делёный на Ватт).

Итак, чтобы найти «Q» того же дома, что и в примере выше, подсчитаем площадь его поверхностей «S» (пол и окна считать не будем).

  • «S» в нашем случае = 170 м2, из них 80 м2 потолок и 90 м2 – стены;
  • T = 62 °С;
  • R– тепловое сопротивление.

Ищем «R» по таблице тепловых сопротивлений или по формуле. Формула для расчета по коэффициенту теплопроводности такая:

R= H/ К.Т. (Н – толщина материала в метрах, К.Т. – коэффициент теплопроводности).

В этом случае, дом у нас имеет стены в два кирпича обшитые пенопластом толщиной 10 см. Потолок засыпан опилками толщиной 30 см.

отопительный котелОтопительную систему частного дома нужно устраивать с учетом экономии средств на энергоносители. Расчет системы отопления частного дома, а также рекомендации по выбору котлов и радиаторов – читайте внимательно.

Чем и как утеплить деревянный дом изнутри, вы узнаете, прочитав эту информацию. Выбор утеплителя и технология утепления.

Из таблицы коэффициентов теплопроводности (измеряется Вт / (м2 х К) Ватт делёный на произведение метра квадратного на Кельвин). Находим значения для каждого материала, они будут:

  • кирпич – 0,67;
  • пенопласт – 0,037;
  • опилки – 0,065.

Подставляем данные в формулу (R= H/ К.Т.):

  • R (потолка 30 см толщиной) = 0,3 / 0,065 = 4,6 (м2 х К) / Вт;
  • R (кирпичной стены 50 см) = 0,5 / 0,67 = 0,7 (м2 х К) / Вт;
  • R (пенопласт 10 см) = 0,1 / 0,037 = 2,7 (м2 х К) / Вт;
  • R (стен) = R(кирпич) + R(пенопласт) = 0,7 + 2,7 = 3,4 (м2 х К) / Вт.

Теперь можем приступить к расчету теплопотерь «Q»:

  • Q для потолка = 80 х 62 / 4,6 = 1078,2 Вт.
  • Q стен = 90 х 62 / 3,4 = 1641,1 Вт.
  • Остается сложить 1078,2 + 1641,1 и перевести в кВт, получается (если сразу округлить) 2,7 кВт энергии за 1 час.

Можно обратить внимание, насколько большая разница получилась в первом и втором случае, хотя объём домов и температура за окном в первом и втором случае были совершенно одинаковыми.

Всё дело в степени утомлённости домов (хотя, конечно, данные могли быть и иными, если бы мы рассчитывали пол и окна).

Заключение

Приведённые формулы и примеры показываю, что при теплотехнических расчётах очень важно учитывать как можно больше факторов, влияющих на теплопотери. Сюда входит и вентиляция, и площадь окон, степень их утомлённости и т. д.

А подход, когда на 10 м2 дома берётся 1 кВт мощности котла – слишком приблизительный, чтобы всерьёз опираться на него.

Видео на тему

Самостоятельный расчёт тепловой мощности. Расчет тепловой мощности

В этой статье нам с читателем предстоит выяснить, что такое тепловая мощность и на что она влияет. Кроме того, мы ознакомимся с несколькими методами расчета потребности помещения в тепле и теплового потока для разных видов отопительных приборов.

Определение

  1. Какой параметр называется тепловой мощностью?

Это количество тепла, выделяемое или потребляемое каким-либо объектом за единицу времени.

При проектировании систем отопления расчет этого параметра необходим в двух случаях:

  • Когда необходимо оценить потребность помещения в тепле для компенсации потери тепловой энергии через пол, потолок, стены и ;
  • Когда нужно выяснить, сколько тепла способен отдать отопительный прибор или контур с известными характеристиками.

Факторы

Для помещения

  1. Что влияет на потребность квартиры, комнаты или дома в тепле
    ?

При расчетах учитываются:

  • Объем. От него зависит количество воздуха, нуждающегося в нагреве;

Примерно одинаковая высота потолков (около 2,5 метров) в большинстве домов поздней советской постройки породила упрощенную систему расчета — по площади помещения.

  • Качество утепления. Оно зависит от теплоизоляции стен, площади и количества дверей и окон, а также от структуры остекления окон. Скажем, одинарное остекление и тройной стеклопакет будут сильно различаться по количеству теплопотерь;
  • Климатическая зона. При неизменных качестве утепления и объеме помещения разность температур между улицей и комнатой будет линейно связана с количеством теряющегося через стены и перекрытия тепла. При неизменных +20 в доме потребность дома в тепле в Ялте при температуре 0С и в Якутске при -40 будет различаться ровно втрое.

Для прибора

  1. Чем определяется тепловая мощность радиаторов отопления?

Здесь действует три фактора:

  • Дельта температур — перепад между теплоносителем и окружающей средой. Чем он больше, тем выше мощность;
  • Площадь поверхности. И здесь тоже наблюдается линейная зависимость между параметрами: чем больше площадь при неизменной температуре, тем больше тепла она отдает окружающей среде за счет прямого контакта с воздухом и инфракрасного излучения;

Именно поэтому алюминиевые, чугунные и биметаллические тепловые радиаторы отопления, а также все виды конвекторов снабжаются оребрением. Оно увеличивает мощность прибора при неизменном количестве протекающего через него теплоносителя.

  • Теплопроводность материала прибора. Оно играет особенно важную роль при большой площади оребрения: чем выше теплопроводность, тем более высокую температуру будут иметь края ребер, тем сильнее они нагреют контактирующий с ними воздух.

Расчет по площади

  1. Как максимально просто выполнить расчет мощности радиаторов отопления по площади квартиры или дома
    ?

Вот самая простая схема вычислений: на 1 квадратный метр берется 100 ватт мощности. Так, для комнаты размером 4х5 м площадь будет равной 20 м2, а потребность в тепле — 20*100=2000 ватт, или два киловатта.

Самая простая схема вычисления — по площади.

Помните поговорку «истина — в простом»? В этом случае она лжет.

Простая схема расчета пренебрегает слишком большим количеством факторов:

  • Высотой потолков. Очевидно, что комнате с потолками высотой 3,5 метра потребуется больше тепла, чем помещению высотой 2,4 м;
  • Теплоизоляцией стен. Эта методика расчета родилась в советскую эпоху, когда все многоквартирные дома имели примерно одинаковое качество теплоизоляции. С введением СНиП 23.02.2003, регламентирующего тепловую защиту зданий, требования к строительству радикально изменились. Поэтому для новых и старых зданий потребность в тепловой энергии может различаться весьма заметно;
  • Размером и площадью окон. Они пропускают куда больше тепла по сравнению со стенами;

  • Расположением комнаты в доме. Угловой комнате и помещению, расположенному в центре здания и окруженному теплыми соседскими квартирами, для поддержания одинаковой температуры потребуется весьма разное количество теплоты;
  • Климатической зоной. Как мы уже выяснили, для Сочи и Оймякона потребность в тепле будет различаться в разы.
  1. Можно ли вычислить мощность батареи отопления от площади более точно
    ?

Само собой.

Вот сравнительно несложная схема расчета для домов, соответствующих требованиям пресловутого СНиП за номером 23.02.2003:

  • Базовое количество тепла рассчитывается не по площади, а по объему. На кубометр в расчеты закладывают 40 ватт;
  • Для примыкающих к торцам дома комнат вводится коэффициент 1,2, для угловых — 1,3, а для частных одноквартирных домов (у них все стены общие с улицей) — 1,5;

  • На одно окно к полученному результату добавляют 100 ватт, на дверь — 200;
  • Для разных климатических зон используются следующие коэффициенты:

Давайте в качестве примера подсчитаем потребность в тепле той же комнаты размером 4х5 метров, уточнив ряд условий:

  • Высота потолка 3 метра;

  • В комнате два окна;
  • Она угловая,
  • Комната расположена в городе Комсомольске-на-Амуре.

Город расположен в 400 км от областного центра — Хабаровска.

Приступим.

  • Объем помещения будет равным 4*5*3=60 м3;
  • Простой расчет по объему даст 40*60=2400 Вт;
  • Две общих с улицей стены заставят нас применить коэффициент 1,3. 2400*1,3 = 3120 Вт;
  • Два окна добавят еще 200 ватт. Итого 3320;
  • Подобрать соответствующий региональный коэффициент поможет приведенная выше таблица. Поскольку средняя температура самого холодного в году месяца — января — в городе равна 25,7, умножаем расчетную тепловую мощность на 1,5. 3320*1,5=4980 ватт.

Разница с упрощенной схемой расчета составила

Подготовка к олимпиадам: мощность теплопередачи, 8 класс.

Продолжаем подготовку к олимпиадам. Сегодня рассматриваем тему “мощность теплопередачи”. Задачи интересные, и в школе эту тему не дают, заимствованы на «Фоксфорде» – спасибо составителям за удовольствие от решения.

Мощность теплопередачи – количество теплоты, отданное системой за время \tau.

    \[N=\frac{Q}{\tau}\]

Эта мощность зависит от разности температур (если горячее тело вынести на мороз, остывает быстрее, чем если такое же тело вынести на жару), от площади поверхности тела (чем она больше, тем быстрее остынет), от расстояния, на которое тепло передают:

    \[Q=\frac{2S(t_1-t_2)}{l}\]

Задача 1. Ведро воды удалось нагреть кипятильником мощностью 800 Вт лишь до 95^{\circ} С. За какое время ведро остынет до 94^{\circ} С после выключения кипятильника? Масса воды 10 кг.

Задача на прямое применение данной выше формулы. Ведро остывает на 1 градус, следовательно,

    \[\tau =\frac{Q}{ N }=\frac{cm\Delta t}{N}=\frac{4200\cdot 10\cdot 1}{800}=52,5\]

Ответ: 52,5 с.

Задача 2. Петя заметил, что на морозе вода в стакане остывает от 91^{\circ} С до 89^{\circ} С за 3 мин, а от 31^{\circ} С до 29^{\circ} С за 6 мин. Чему равна температура окружающей среды t_0? Считайте, что мощность теплопередачи пропорциональна разности температур стакана и окружающей среды.

Вода и в первом, и во втором случае отдает одно и то же количество теплоты, так как остывает в обоих случаях на три градуса. Тогда

    \[N_1\frac{Q}{\tau_1}\]

    \[N_2\frac{Q}{\tau_2}\]

    \[\frac{ N_2}{ N_1}=\frac{\tau_1}{\tau_2}=\frac{1}{2}\]

Но, с другой стороны,

    \[N_1=k(t_1-t_0)\]

    \[N_2=k(t_2-t_0)\]

t_1 и t_2  -средняя температура воды в первом и во втором случаях. Коэффициент k учитывает все остальные параметры: длины, площади и пр.

Поделим уравнения друг на друга

    \[\frac{ N_2}{ N_1}=\frac{ t_2-t_0}{ t_1-t_0}\]

Или

    \[t_1-t_0= 2t_2-2t_0\]

    \[t_0=2t_2-t_1=2\cdot30-90=-30\]

Ответ: t_0=-30^{\circ}

Задача 3. На плите стоит кастрюля с водой. При нагревании температура воды увеличилась от 90^{\circ} C до 92^{\circ} C за одну минуту. Какая доля теплоты, получаемой водой при нагревании, рассеивается в окружающем пространстве, если время остывания той же воды от 92^{\circ} C до 90^{\circ} C равно 9,0 минутам?

Кастрюлю подогревают – но это не значит, что она не остывает! Вот такой парадокс. Тепло кастрюля все равно отдает, всегда, когда она теплее, чем окружающие предметы. Просто, если кастрюля нагревается, то это означает, что тепло, которое она получает от плитки, больше, чем то, которое она рассеивает.

Поэтому при нагреве

    \[\tau_1(N-N_{rass})=c m \Delta t\]

А при пассивном остывании

    \[\tau_2 N_{rass}=c m \Delta t\]

Тогда

    \[\tau_1(N-N_{rass})=\tau_2 N_{rass}\]

    \[N_{rass}(\tau_1+\tau_2)=\tau_1N\]

Искомая величина:

    \[\frac{ N_{rass}}{N}=\frac{\tau_1}{\tau_1+\tau_2}=\frac{1}{10}\]

Задача 4. В палатке, покрытой сверху шерстяными одеялами, пол застелен толстым теплонепроницаемым войлоком. Одинокий спящий индеец начинает мерзнуть в такой палатке при уличной температуре воздуха 10^{\circ} С. Два спящих индейца начинают мерзнуть в такой палатке при уличной температуре воздуха 4^{\circ} С. При какой температуре воздуха индейцы начинают пользоваться палатками? При какой температуре в той же палате будет холодно трем индейцам? Какому количеству индейцев никогда не будет холодно в палатке? Считайте, что тепловая мощность, передаваемая через тент палатки, пропорциональна разности температур внутри и снаружи.

Индеец теплый, теплее окружающей среды. Он отдает тепло наружному холодному воздуху. Если температура воздуха t_0, мощность теплоотдачи индейца N. Потому что если на улице другая температура, то и мощность уже другая, индеец остывает или быстрее, или медленнее. Пусть температура вокруг индейца, при которой индеец начинает замерзать, t_0. Это может быть и температура наружного воздуха, и температура в палатке. Тогда двое индейцев имеют мощность теплоотдачи 2N, трое – 3N и так далее. Пусть коэффициент k учитывает площадь поверхности индейца, рост, материал, из которого индеец состоит… Тогда

    \[N=k

    \[2N=k

    \[3N=k

    \[nN=k

Разделим второе на первое:

    \[2=\frac{ t_0-t_2}{ t_0-t_1}\]

    \[t_0=2t_1-t_2=2\cdot10-4=16\]

Разделим третье на первое:

    \[3=\frac{ t_0-t_3}{ t_0-t_1}\]

    \[t_0=3t_1-2t_0=3\cdot10-2\cdot16=-2\]

Разделим четвертое на первое:

    \[n=\frac{ t_0-t_n}{ t_0-t_1}\]

Тогда, если температура на улице t_n=-273, то

    \[n=\frac{ 16+273}{ 16-10}=48,17\]

Таким образом, 48-49 индейцев не должны замерзнуть даже при абсолютном нуле.

Задача 5. Система охлаждения нагревателя состоит из нескольких одинаковых теплопроводящих стержней, соединенных небольшими шариками. Температура нагревателя T_n=100^{\circ}С, температура холодильника T_x=30^{\circ} С.  Чему равна разность температур шарика K и шарика B  (T_K-T_B) в установившемся режиме? Приток тепла в системе осуществляется только от нагревателя, а отвод только через холодильник. Мощность теплопередачи через стержень пропорциональна разности температур на его концах.

теплопередача

Рисунок 1

Расставим направления потоков тепла. В центре все понятно: все стрелки направлены от горячего к холодному «очагу» – холодильнику. А что по верхним правому и левому углам?

теплопередача

Рисунок 2

Точка A ближе к холодильнику, чем B, поэтому направление потока логично будет выбрать от B к A.

теплопередача

Рисунок 3

Точка B дальше от нагревателя, чем C, поэтому ставим стрелку от C к B.

теплопередача

Рисунок 4

Теперь определим величины этих потоков. Если от B к A направлен поток N, то от C к B – тоже N. Но тогда от A к холодильнику – 2N, так как в силу симметрии в левой части расстановка потоков такая же.

теплопередача

Рисунок 5

Если теперь пройти от точки C к холодильнику по красной стрелке, наберется 4N, следовательно, поток от точки C к холодильнику тоже 4N. Тогда от нагревателя к точке C будет течь поток 5N, и в левой части аналогично.

теплопередача

Рисунок 6

Следовательно, если пройти от нагревателя к холодильнику через точку C по стрелке, поток будет равен 14N. Тогда и “напрямки” тоже 14N.

Но температура холодильника и нагревателя отличается на 70^{\circ}, поэтому

    \[14N=70\]

    \[N=5\]

Тогда расставляем температуры узлов: в точке C и симметричной ей слева 30^{\circ}+4\cdot5=50^{\circ}, в точке B50^{\circ}-N=45^{\circ}, в точке K100^{\circ} -5N=75^{\circ}.

Определяем искомое:

    \[T_K-T_B=75^{\circ}-45^{\circ}=30^{\circ}\]

Ответ: T_K-T_B=30^{\circ}.

Расчет тепловой нагрузки отопления здания. Определяем потери

расчет тепловой нагрузки здания

Отопительная система является многокомпонентной схемой, предназначенной для обеспечения требуемых температурных показателей в зданиях. Грамотный расчёт показателей тепловой нагрузки обогрева позволяет минимизировать затраты на оплату энергоносителей и сделать пребывание в здании комфортным вне зависимости от времени года.

Определение тепловой нагрузки

Само определение «Тепловая нагрузка» характеризует получение определённого количества теплоэнергии за одну единицу времени в конкретных условиях. В отопительный сезон такой показатель должен изменяться согласно установленному температурному графику теплоснабжения. Он отражает общий объём теплоэнергии, расходуемой всей отопительной конструкцией на прогрев строений до нормативного температурного уровня в самый холодный период.

Профессиональный расчёт показателя нагрузки необходим в следующих случаях:

  • отсутствие приборов учёта;
  • сокращение расчётной нагрузки;
  • снижение расходов на обогрев здания;
  • проектирование индивидуальной системы обогрева;
  • изменение состава потребляющего энергию оборудования;
  • подтверждение лимита для потребляемой тепловой энергии;
  • выявление причин потери тепловой эффективности и перерасхода;
  • оптимальное распределение субабонентов, использующих в работе тепло;
  • подсоединение к схеме отопления построек и сооружений, потребляющих тепло;
  • уточнение тепловых нагрузок и заключение договора со снабжающими организациями.

При определении максимальной почасовой нагрузки на отопление учитывается количество тепла, используемого с целью сохранения нормированных показателей на протяжении одного часа при максимально неблагоприятных внешних воздействиях.

Как рассчитать нагрузку?

Показатель тепловой нагрузки определяется несколькими наиболее важными факторами, поэтому при выполнении расчётных мероприятий в обязательном порядке требуется учитывать:

  • общую площадь остекления и количество дверей;
  • разницу температурных режимов за пределами и внутри строения;
  • уровень производительности, режим эксплуатации системы вентиляции;
  • толщину конструкций и материалы, задействованные в возведении строения;
  • свойства кровельного материала и основные конструктивные особенности крыши;
  • величину инсоляции и степень поглощения солнечного тепла внешними поверхностями.

теплопотери дома

Практикуется применение нескольких способов вычисления тепловой нагрузки, которые заметно различаются не только степенью сложности, но и точностью полученных расчётных результатов. Важно предварительно собрать необходимые для проектирования и расчётных мероприятий сведения, касающиеся схемы установки радиаторов и места вывода ГВС, а также поэтажный план и экспликацию сооружения.

Формулы расчёта

Исходя из общих потребностей здания в тепловой энергии и технических характеристик постройки, с целью определения оптимального количества теплоты за единицу времени могут использоваться разные стандартные формулы.

При отсутствии приборов учёта: Q = V × (Тх - Тy) / 1000

Обозначение

Параметр

V

Объём теплового носителя в отопительной системе

Тх

Показатели температурного режима нагретого теплоносителя (60-65оС)

Тy

Исходная температура не нагретого теплового носителя

1000

Стандартный поправочный числовой множитель

Схема отопления с замкнутым типом контура:

Qот = α × qо × V × (Тв - Тн.р) × (1 + Kн.р) × 0,000001

Обозначение

Параметр

α

 

Корректирующий погодные характеристики числовой множитель при уличном температурном режиме, отличном от минус 30оС

V

 

Показатели объёма строения в соответствии с наружными замерами

 

Отопительный удельный показатель при температурном режиме -30оС

 

Расчётные показатели внутреннего температурного режима в строении

tн.р

 

Расчётный режим наружного температурного режима для проектирования отопительной системы

Kн.р

Поправочный числовой множитель в виде соотношения теплопотерь с инфильтрацией и тепловой передачей посредством внешних конструктивных элементов

Применение поправочного числового множителя

При выполнении расчётов тепловой нагрузки обязательно учитывается поправочный числовой множитель, при помощи которого определяется отличие расчётного температурного режима наружного воздуха для проектов отопительных систем. В таблице представлены поправочные числовые множители для различных климатических зон, расположенных на территории Российской Федерации.

-35оС

-36оС

-37оС

-38оС

-39оС

-40оС

0,95

0,94

0,93

0,92

0,91

0,90

В других регионах России, где расчётный температурный режим наружных воздушных масс при проектировании отопительной системы находится на уровне минус 31°С или ниже, значения расчётных температур внутри обогреваемых помещений принимаются в соответствии с данными, приведёнными в действующей редакции СНиП 2.08.01-85.

На что обратить внимание при расчётах

В соответствии с действующим СНиП, на каждые 10 м2 обогреваемой площади должно приходится не менее 1 кВт тепловой мощности, но при этом в обязательном порядке учитывается так называемый региональный поправочный числовой множитель:

  • зона с умеренными климатическими условиями – 1.2-1.3;
  • территория южных регионов – 0.7-0.9;
  • районы крайнего севера – 1.5-2.0.

Кроме прочего, немаловажное значение имеет высота потолочных конструкций и индивидуальные тепловые потери, которые напрямую зависят от типовых характеристик эксплуатируемого строения. Как правило, на каждый кубометр полезной площади затрачивается 40 ватт тепловой энергии, но при выполнении расчётов потребуется также учитывать следующие поправки:

  • наличие окна – плюс 100 ватт;
  • наличие двери – плюс 200 ватт;
  • угловое помещение – поправочный числовой множитель 1.2-1.3;
  • торцевая часть здания – поправочный числовой множитель 1.2-1.3;
  • частное домовладение – поправочный числовой множитель 1.5.

Практическое значение имеют показатели потолочного и стенового сопротивления, потери тепла через конструкции ограждающего типа и функционирующую вентиляционную систему.

Вид материала

Уровень термического сопротивления

Кирпичная кладка в три кирпича

 

0,592 м2 × с/Вт

 

Кирпичная кладка в два с половиной кирпича

0,502 м2 × с/Вт

 

Кирпичная кладка в два кирпича

 

0,405 м2 × с/Вт

 

Кирпичная кладка в один кирпич

0,187 м2 × с/Вт

 

Газосиликатные блоки толщиной 200 мм

 

0,476 м2 × с/Вт

Газосиликатные блоки толщиной 300 мм

0,709 м2 × с/Вт

Бревенчатые стены толщиной 250 мм

0,550 м2 × с/Вт

Бревенчатые стены толщиной 200 мм

0,440 м2 × с/Вт

Бревенчатые стены толщиной 100 мм

0,353 м2 × с/Вт

Деревянный неутеплённый пол

1,85 м2 × с/Вт

Двойная деревянная дверь

0,21 м2 × с/Вт

Штукатурка толщиной 30 мм

0,035 м2 × с/Вт

Каркасные стены толщиной 20 см с утеплением

0,703 м2 × с/Вт

В результате функционирования вентиляционной системы потери тепловой энергии в зданиях составляют порядка 30-40%, через кровельные перекрытия уходит примерно 10-25%, а сквозь стены – около 20-30%, что должно учитываться при проектировании и расчёте тепловой нагрузки.  

Средняя тепловая нагрузка

Максимально просто осуществляется самостоятельный расчёт тепловой нагрузки по площади здания или отдельно взятого помещения. В этом случае показатели обогреваемой площади умножаются на уровень тепловой мощности (100 Вт). Например, для здания общей площадью 180 м2 уровень тепловой нагрузки составит:

180 × 100 Вт = 18000 Вт

Таким образом, для максимально эффективного обогрева здания площадью 180 м2 потребуется обеспечить 18 кВт мощности. Полученный результат необходимо разделить на количество тепла, выделяемого в течение одного часа отдельной секцией установленных отопительных радиаторов.

18000 Вт / 180 Вт = 100

В результате можно понять, что в разных по назначению и площади помещениях здания должно быть установлено не менее 100 секций. С этой целью можно приобрести 10 радиаторов, имеющих по 10 секций, или остановить свой выбор на других вариантах комплектации. Следует отметить, что средняя тепловая нагрузка чаще всего рассчитывается в зданиях, оснащённых централизованной системой отопления при температурных показателях теплоносителя в пределах 70-75оС.  

Расчёт тепловой нагрузки ГВС

котельная на твердом топливе

Общие показатели тепловой нагрузки на оборудованную систему горячего водоснабжения в течение года определяются в соответствии со следующей формулой:

Qyhw = 24 Qhw / 1 + khl = (365 – m) × khl + zht + а × (365 – m – zht) × 55 – twcs /55 – twc

Обозначение

Параметр

khl

Поправочный числовой множитель тепловой потери трубопроводными системами горячего водоснабжения

twc

Температурные показатели холодной воды (стандарт – 5)

m

Количество суток без горячего водоснабжения

zht

 

Количество суток в течение отопительного сезона при среднесуточных показателях температуры на улице ниже 8°C

а

 

Поправочный числовой множитель снижения уровня разбора воды в зданиях летом: 0,9 – жилые строения и 1 – здания другого назначения

twcs

Температурные показатели холодной воды летом (для открытых источников водоснабжения поправочный числовой множитель равен 15)

Нужно учитывать, что среднюю почасовую тепловую нагрузку на горячее водоснабжение в зданиях необходимо определять не только для зимнего отопительного сезона, но и для неотопительного периода в летние месяцы. При этом важно помнить, что если в процессе проектирования системы отопления выявлено, что оптимизация расходов на оплату энергоносителя – это не приоритетная задача, то вполне допустимо использовать на практике наименее точные и простые в понимании методики расчётов. 

Читайте так же:

Средняя тепловая мощность компьютера | Малый бизнес

Каждое вычислительное устройство производит тепло пропорционально потребляемой электроэнергии. ENIAC, один из первых гигантов 1940-х годов размером с комнату, потреблял 174 киловатта для работы своих электронных ламп; в наши дни в вашем карманном калькуляторе примерно столько же вычислительной мощности. Хотя технологии улучшили энергоэффективность компьютеров, тепловая мощность по-прежнему является серьезным фактором для архитекторов и других лиц, планирующих выделенные серверные комнаты и общие офисные помещения.

Энергия и тепло

В любой механической или электронной системе затраченная энергия в конечном итоге превращается в тепло. Например, автомобильный двигатель преобразует энергию бензина в полезное движение, но трение с воздухом, дорогой и механическими деталями превращает это движение в тепло. То же самое и с компьютерами: микрочипы в ПК перемещают информацию туда и обратно, но в конце концов электрическая энергия превращается в тепло. Если вы измерили производимое тепло и потребляемую энергию, вы обнаружите, что они точно сбалансированы.Физики называют этот принцип «Сохранением энергии».

Типы компьютеров

Более быстрые и мощные компьютеры выделяют больше тепла, чем портативные модели меньшего размера. Например, типичный ноутбук, который используется умеренно, потребляет 40 Вт электроэнергии и производит эквивалентное количество тепла. Для сравнения, настольный компьютер, который используется нечасто, потребляет около 100 Вт. Мобильные устройства потребляют гораздо меньше энергии и, соответственно, выделяют меньше тепла; потребляемая мощность ограничена небольшим, экономичным аккумулятором.Типичный смартфон, такой как iPhone 4S, потребляет всего несколько ватт при совершении телефонного звонка.

Компоненты и тепло

Горстка компонентов внутри компьютера обеспечивает большую часть выделяемого тепла. В настольных ПК у микропроцессора есть собственный вентилятор. Сами по себе эти чипы генерируют от нескольких ватт тепла до почти 100 ватт, в зависимости от устройства и приложения. Графический процессор, отдельный вычислительный чип, также сильно нагревается. Экран компьютера — еще один крупный производитель тепла, вырабатывающий до 50 Вт для более крупных моделей.

Варианты мощности

Количество тепла, выделяемого компьютером, зависит от объема выполняемой им работы. Что касается нижнего предела, сотовый телефон в режиме ожидания вырабатывает всего несколько милливатт тепла, экономя заряд батареи. От минимальной мощности 100 Вт средний настольный ПК может достигать 130 Вт при интенсивном использовании. Вентиляторы, используемые в настольных компьютерах и портативных компьютерах, определяют температуру микропроцессора и работают медленно при небольшом использовании и быстрее при выполнении сложных вычислительных задач; это сводит к минимуму шум вентилятора и экономит энергию.

.

Ноутбук против. Потребляемая мощность ПК | Small Business

Энергоэффективность и потребление энергии являются ключевыми элементами дизайна портативных компьютеров, которые делают устройства гораздо менее энергоемкими, чем их аналоги для настольных ПК. Настольные компьютеры постоянно подключены к массивному источнику питания, что делает энергоэффективность бонусом или преимуществом, а не функциональной необходимостью. Даже производительным портативным компьютерам может не хватать мощности, характерной для настольных ПК, но ноутбуки оставят вам гораздо более низкие счета за электроэнергию в конце месяца.

Ноутбуки более эффективны

Портативные компьютеры потребляют на 80 процентов меньше электроэнергии, чем настольные компьютеры, и потребляют от одной пятой до одной трети энергии. Однако разница в энергоэффективности варьируется между моделями. Ноутбуки с более высоким энергопотреблением могут приблизиться к настольным компьютерам с низким энергопотреблением при аналогичном энергопотреблении, но ноутбуки почти всегда потребляют гораздо меньше энергии. Пиковая мощность портативных компьютеров может составлять всего 60 Вт, тогда как у обычных настольных компьютеров максимальная потребляемая мощность составляет около 175 Вт.Настольные компьютеры часто включают блоки питания с максимальными возможностями, выходящими далеко за пределы потребностей системы, на 300 Вт или выше, тогда как ноутбуки содержат блоки питания меньшего размера от 30 до 90 Вт. В качестве дополнительного бонуса ноутбуки на 20 процентов более энергоэффективны при работе от адаптера переменного тока, а не от аккумулятора.

Измерение энергопотребления

Ватт-час, сокращенно Wh, является полезной формой измерения при сравнении энергопотребления с течением времени, измеряя среднюю мощность, потребляемую устройством в течение часа.Измерение среднего потребления энергии важно при сравнении компьютеров, потому что устройства не используют постоянный уровень энергии. Например, компьютер, который простаивает на рабочем столе, будет потреблять меньше энергии, чем тот, который использует всю свою вычислительную мощность для выполнения задачи.

Преимущества батареи

Ноутбуки выигрывают в области энергоэффективности и потребления даже при подключении к электрической розетке благодаря конструкции с батарейным питанием. Производители часто рекламируют, как долго портативные компьютеры могут работать от аккумулятора, как аргумент в пользу продажи — ноутбук не будет очень полезен в качестве решения для мобильных вычислений, если его нужно подключать каждые 15 минут.Продлить срок службы батареи можно двумя способами: либо добавить к ноутбуку более крупную, тяжелую и емкую батарею, либо заставить оборудование ноутбука потреблять меньше энергии и использовать эту энергию более эффективно.

Меньший потенциал означает меньшее потребление

Ноутбуки обладают меньшим потенциалом максимального энергопотребления, поскольку они оснащены меньшими блоками питания. Производительный настольный ПК может потреблять 400 Втч при полной нагрузке с более мощным блоком питания, тогда как производительность ноутбука может быть ограничена 90 Втч из-за его меньшего блока питания.Ноутбуки часто включают в себя значительно более медленные процессоры и компоненты по сравнению с одноименными компонентами настольных компьютеров, поэтому выполнение процессов может занять больше времени. Помимо более эффективных процессоров, ноутбуки могут иметь более энергоэффективные графические процессоры для снижения энергопотребления.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *