Схема подключения термопары: Ошибка 404 | Техком-Автоматика

Содержание

Подключение термопары к микроконтроллеру

Подробности
Категория: Микроконтроллеры
Опубликовано 25.06.2016 14:25
Автор: Admin
Просмотров: 2105

В данной статье речь пойдет о подключении термопары к микроконтроллеру Atmega8. Термопара представляет собой два проводника из разных металлов спаянных в одной точке. В этой точке при разных температурах возникает термоэдс. Метталлы берутся такими чтобы зависимость термоэдс от температуры была наиболее линейна. Это снижает погрешность измерений и облегчает расчет температуры.

Термопары испольщуются там где нам нужно измерить высокую температуру до 2000 градусов. При таких температурах цифровые датчики сразу бы вышли из строя. Есть много разных видов теромопар, но наибольшей популярностью пользуются термопары типа K (хромель-алюминий), это связано с их практически линейным графиком изменения теромоэдс. Такие термопары устанавливаются в различные виды водонагревателей, паяльных станций, их используют в установках по плавке металла.

 График зависимости термоэдс от температуры для термопар типа K практически линейный на всем диапазоне температуры.

 

 Измеренно значение термоэдс нужно преобразовать в температуру. Преобразование осуществляется при помощи коэффициента который постояннен для всего диапазано измерения температуры.

 Для измерения термоэдс будем использовать АЦП (аналого-цифровой преобразователь). Для того чтобы подлючить термопару к микрокнтроллеру используется ОУ (операционный усилитель) который включается по неинвертирующей схеме. Дело в том что значение эдс очень мало и его необходимо усилить при помощи ОУ.\

 Для того чтобы найти отношение входного и выходного напряжения нужно воспользоваться формулой:

 Vout/Vin=1+(R2/R1)

От номинала сопротилений R1 и R2 которые выполняют функцию обратной связи, зависит отношение входного и выходного напряжения. Уселение сигнала должно выбирать исходя из выбранного ИОН — источника опорного напряжения. Например если в качестве ИОН выбрано напряжения в 5 В, а максимальный предел измеряемой температуры 1000 градусов, при такой температуре термоэдм состовит 41.3 мВ. Это напряжение необходимо будет преобразовать в 5 В на входе в АЦП. Т.е нам нужно чтобы при такой температуре на входе в АЦП было напряжение в 5 В. Коэффициент усиления получился равным 120.

Подключение термопары к микроконтроллеру

В результате получилась такой модуль:

Схема подключения двухстрочного дисплея к микрокнтроллеру

А так выглядит теомапара которая шла в комплекте с мультиметром

 

Код программы 

$regfile  = "m8def.dat"
$crystal = 8000000
Dim W As Integer

'подключение двухстрочного дисплея

Config Lcdpin=Pin,Rs=Portb.0,E=Portd.7,Db4=Portd.6,Db5=Portd.5,Db6=Portb.7,Db7=Portb.6
Config Lcd = 16 * 2
Cursor Off
Cls

'считывание значения с АЦП по прерыванию от таймера

Config Timer1 = Timer , Prescale = 64
On Timer1 Acp
'конфигурация АЦП

Config Adc = Single , Prescaler = Auto , Reference = Avcc

Enable Interrupts
Enable Timer1

Do

Cls
Rem Температура:
Lcd "Teјѕepaїypa:"
Lowerline
Lcd W

Waitms 200
Loop

'работа с АЦП

Acp:

Start Adc                                  'запуск АЦП
W = Getadc(1)
W = W / 1. 28                               'подгоняем замеры под действ. температуру
Return

End

 Число 1.28 бы подогнато опытным путем. В качестве эталонной температуры была температура кипения воды 100 градусов. Зная температуру и подгоняя коэффициент добиваемся аналогичных показаний на дисплее.

 

После того как выставил показания, измерил температуру в пламени зажигалки, прибор показал значение в 700 градусов. При комнатной температуре 25 градусов прибор почему то показывал 50.

Печатная плата для ОУ

Оригинал статьи

  • < Назад
  • Вперёд >
Добавить комментарий

Установка и подключение прибора Термодат-12К5

Установка и подключение прибора Термодат-12К5

Программа КИП и А

Монтаж прибора

Прибор предназначен для щитового монтажа. Прибор крепится к щиту с помощью двух крепежных скоб, входящих в комплект поставки. Размеры выреза в щите для монтажа 92х92 мм.

Следует обратить внимание на рабочую температуру в шкафу, она не должна превышать 50ºС.

Подключение датчиков температуры

Для обеспечения надежной работы прибора, следует обратить особое внимание на монтаж проводов от датчиков температуры.

  1. Провода от датчиков температуры должны иметь хорошую электрическую изоляцию и ни в коем случае не допускать электрических утечек между проводами и на землю и, тем более, попадания фазы на вход прибора.
  2. Провода от датчиков должны быть проложены на максимальном удалении от мощных силовых кабелей, во всяком случае, они не должны крепиться к силовым кабелям и не должны быть проложены в одном коробе с силовыми кабелями.
  3. Провода от датчиков должны иметь минимально возможную длину.

Подключение термопары Термопару следует подключать к прибору с помощью удлинительных термопарных проводов. Удлинительные термопарные провода должны быть изготовлены из тех же материалов, что и термопара. Например, одна жила из хромеля, вторая из алюмеля для термопары ХА. Подключать удлинительные провода к термопаре следует с учётом полярности (хромель к хромелю, алюмель к алюмелю для ХА). Подключать термопару или термопарные провода к прибору следует также с учётом полярности. Температура «холодных спаев» в приборе Термодат измеряется на клеммной колодке и автоматически учитывается при вычислении температуры.

Если у Вас возникли сомнения в правильности работы прибора или исправности термопары мы рекомендуем для проверки погрузить термопару в кипящую воду. Показания прибора не должны отличаться от 100 градусов более чем на 1…2 градуса.

Приборы Термодат имеют высокое входное сопротивление, поэтому сопротивление термопарных проводов и их длина не влияют на точность измерения. Однако, чем короче термопарные провода, тем меньше на них электрические наводки.

Во избежание использования неподходящих термопарных проводов или неправильного их подключения рекомендуем использовать термопары с неразъемными проводами нашего производства. Вы можете заказать термопару с любой длиной провода.

Подключение термосопротивления К прибору может быть подключено платиновое, медное или никелевое термосопротивление. Термосопротивление подключается по трехпроводной схеме. Все три провода должны находиться в одном кабеле. Провода должны быть медные, сечение не менее 0,5 мм2 (допускается 0,35 мм2 для коротких линий). Провода должны иметь одинаковую длину и сопротивление. Максимальное сопротивление каждого провода должно быть не более 20 Ом. При соблюдении этих условий сопротивление проводов автоматически учитывается и не влияет на точность измерения температуры.

Подключение датчиков с токовым выходом Для подключения датчиков с токовым выходом 0…20 мА или 4…20 мА необходимо установить шунт 2 Ома. Рекомендуем использовать Шунт Ш2 нашего производства.

Подключение исполнительных устройств

Реле, установленное в приборе, может коммутировать нагрузку до 7 А при ~ 220 В. Следует помнить, что ресурс работы контактов реле зависит от тока и типа нагрузки. Чем выше индуктивность нагрузки и чем выше ток, тем быстрее изнашиваются контакты реле. Реле можно использовать для включения нагрузки с малой индуктивностью (ТЭН, лампа накаливания) мощностью до 1,5 кВт.

Для включения мощной нагрузки обычно используются электромагнитные пускатели. Пускателями следует управлять с помощью реле прибора. Не рекомендуем устанавливать вторичные реле между пускателем и реле прибора. Индуктивность катушки промежуточных реле велика, эти реле разрушают контакты реле прибора значительно быстрее, чем пускатели.

Схемы подключения исполнительных устройств к выходам прибора

Типовая схема подключения прибора с тремя релейными выходами и одним транзисторным выходом

Схема подключения прибора с одним симисторным, одним транзисторным и двумя релейными выходами

Типовая схема подключения прибора с одним транзисторным, двумя релейными и аналоговым выходом

Меры безопасности

При эксплуатации прибора должны быть соблюдены «Правила технической эксплуатации электроустановок потребителей и правила техники безопасности при эксплуатации электроустановок потребителей». К монтажу и обслуживанию прибора допускаются лица, имеющие группу допуска по электробезопасности не ниже III. Контактные колодки должны быть защищены от случайных прикосновений к ним во время работы. Контакт на задней стенке прибора должен быть заземлен.

Условия хранения, транспортирования и утилизации

Прибор в упаковочной таре должен храниться в закрытых помещениях при температуре от -30 до 50ºС и значениях относительной влажности не более 90 % при 25ºС.

Прибор может транспортироваться всеми видами крытого наземного транспорта без ограничения расстояний и скорости движения. Прибор не содержит вредных веществ, драгоценных металлов и иных веществ, требующих специальных мер по утилизации.

Габаритные размеры прибора

Контактная информация

Приборостроительное предприятие

«Системы контроля»

Россия, 614031, г. Пермь, ул. Докучаева, 31А
многоканальный телефон, факс: (342) 213-99-49

http://www.termodat. ru   E-mail: [email protected]

 

Термопары и термосопротивления — Терморегуляторы Термодат — промышленные приборы нового поколения для измерения и регулирования температуры

Для измерения температуры служат первичные преобразователи температуры — термодатчики (термопреобразователи).

В промышленности, как правило, используются две разновидности датчиков температуры — термопары и термосопротивления. С приборами Термодат могут быть использованы термопары любого отечественного или иностранного производителя, при условии, что они имеют стандартную градуировку по ГОСТ Р 50342-92.

С приборами Термодат могут использоваться термосопротивления любого отечественного или иностранного производителя, при условии, что они имеют стандартную градуировку по ГОСТ Р 50353-92, при этом термосопротивления должны быть электрически изолированы от корпуса. Следует отметить, что приборы Термодат имеют универсальный вход, к которому также можно подключить пирометры (с градуировкой 20-РК15 и 21-РС20), а также другие датчики с унифицированным сигналом напряжения 0-50мВ или тока 0-20 мА (0-5мА, 4-20мА).

Термоэлектрические преобразователи (термопары)

Существует несколько типов термопар. Самые распространенные термопары — хромель-алюмель ХА(К) и хромель-копель ХК(L). Другие типы — платина-платинородий ПП(S и R), железо-константан ЖК(J), медь-константан МК(T), вольфрам-рений ВР и некоторые другие менее распространены. Приборы Термодат могут работать с термопарой любого типа. В памяти прибора прошиты градуировочные таблицы, тип градуировочной таблицы и соответствующее обозначение в меню указывается в паспорте прибора. Перед установкой прибора на оборудование следует установить тип используемой термопары. Тип термопары устанавливается в третьем уровне режима настройки приборов. В многоканальных приборах ко всем каналам должны быть подключены термопары одного типа.

Следует помнить, что термопара по принципу действия измеряет температуру между «горячим спаем» (рабочим спаем) и свободными концами («холодными спаями») термоэлектродов. Поэтому термопары следует подключать к прибору непосредственно, либо с помощью удлиннительных проводов, изготовленных из тех же термоэлектродных материалов. Температура «холодных спаев» в приборах Термодат измеряется в зоне подключения термопар (вблизи клеммной колодки) специальным термодатчиком и автоматически учитывается при вычислении температуры. Для достижения наибольшей точности и правильного измерения температуры холодных спаев, необходимо следить, чтобы в зоне контактной колодки отсутствовали большие градиенты температуры, конвективные потоки (обдув, ветер, сквозняки), а также лучистый нагрев от горячих тел. Если включить прибор Термодат, а вместо термопары к входу прибора подключить перемычку (закоротить вход), то прибор должен показать измеренную температуру в зоне контактной колодки (температуру «холодного спая»). Сразу после включения эта температура близка к температуре окружающей среды, а затем несколько повышается по мере саморазогрева прибора. Это нормальный процесс, так как задача термокомпенсационного датчика измерять не температуру окружающей среды, а температуру холодных спаев. При необходимости термокомпенсационный датчик можно подстроить. Подстройку следует выполнять в соответствии с инструкцией по калибровке.

Если у Вас возникли сомнения в правильности работы прибора, исправности термопары, компенсационного провода, в качестве первого теста мы рекомендуем погрузить термопару в кипящую воду. Показания прибора не должны отличаться от 100 градусов более чем на 1-2 градуса. Более тщательную проверку и настройку прибора Термодат можно выполнить в соответствии с инструкцией по калибровке.Приборы Термодат имеют высокое входное сопротивление, поэтому сопротивление термопары и компенсационных проводов и их длина в принципе не влияют на точность измерения. Однако, чем короче термопарные провода, тем меньше на них электрические наводки. В любом случае длина термопарных проводов не должна превышать 100м. Если требуется измерять температуру на больших расстояниях, то лучше использовать двухблочные системы с выносным блоком (приборы типа Термодат-22). В этих приборах связь между измерительным блоком и блоком индикации цифровая, расстояние межу ними может превышать 200м. Следует учитывать, что конструктивно термопары изготавливаются двух типов — изолированные или неизолированные от корпуса (горячий спай либо изолирован, либо приварен к защитному чехлу). Одноканальные приборы могут работать с любыми термопарами, а многоканальные — только с изолированными от корпуса термопарами.

Термосопротивления

К приборам Термодат могут быть подключены как медные (ТСМ) так и платиновые (ТСП) термосопротивления. При настройке прибора следует установить тип термосопротивления и его градуировку (сопротивление при 0°C) в третьем уровне режима настройки. Стандартные значения составляют 50 и 100 Ом (50М, 50П, 100М, 100П), однако могут быть установлены и другие значения. В многоканальных приборах ко всем каналам должны быть подключены термосопротивления одного типа.

Термосопротивления могут быть подключены к прибору Термодат как по трехпроводной, так и по двухпроводной схеме. Двухпроводная схема подключения дает удовлетворительные результаты, когда датчик удален на небольшое расстояние от прибора. Уточним наши слова. Предположим, Вы используете медное термосопротивление номиналом 100 Ом (градуировка 100М). Сопротивление этого датчика изменяется на dR=0,4%R=0,4Ом, при изменении температуры на один градус. Это означает, что если сопротивление проводов, соединяющих термодатчик с прибором, будет равно 0,4 Ом, ошибка измерения температуры будет равна одному градусу. В таблице приведены справочные значения сопротивлений медных проводов разного сечения, и допустимые длины проводов при двухпроводной схеме подключения.

Сечение подводящих проводов, мм²Сопротивление провода при 20°C, Ом/кмМаксимально допустимое удаление датчика, при котором ошибка, вызванная подводящими проводами при двухпроводной схеме подключения составляет один градус
М50, П50М100, П100
0,25822,5
0,5412,55
0,75273,57,1
1,020,5510
1,513,37,515
2,0101020
2,5812,525

При удалении термодатчика на большие расстояния следует применять трехпроводную схему подключения. Третий провод используется для измерения сопротивления подводящих проводов. Все три провода должны быть выполнены из одного и того же медного кабеля сечением не менее 0,5 мм² и иметь одинаковую длину (говоря точно, сопротивление проводов не должно отличаться друг от друга более чем на 0,2 Ом для ТСМ100 и более чем на 0,1 Ом для ТСМ50). Максимальная длина проводов не должна превышать 300м. Для работы с искрозащитными барьерами требуется четырехпроводная схема подключения термосопротивления. По специальному заказу приборы Термодат могут быть оборудованы входами для четырехпроводного подключения датчиков.

Для быстрой проверки работоспособности прибора, термодатчика, схемы подключения и настроек мы рекомендуем, как и в случае с термопарами, поместить подключенный датчик в кипящую воду или в тающий лед. Измеренная прибором температура не должна отличаться от 100°C (от 0°C) более, чем на 2°C. Прибор без датчика можно протестировать, подключив к входу вместо термосопротивления точный постоянный резистор номиналом 100 Ом (точность не хуже 0,5%). Установить тип термодатчика ТСМ или ТСП (роли не играет) и градуировку 100. После этого прибор должен показывать температуру 0±2°C. С помощью точного резистора аналогичным образом можно проверить качество длинной линии, подключив резистор вместо термосопротивления на длинной линии.

Диапазон измерения температуры, точность измерения и разрешение по температуре

Разрешение по температуре определяется последней значащей цифрой на индикаторе прибора и составляет 1°C для большинства моделей, работающих с термопарами. Для программных регуляторов температуры и части приборов, работающих с термосопротивлениями, разрешение составляет 0.1°C.

Разрешение по температуре следует отличать от точности измерения. Допускаемая относительная погрешность измерения приборов Термодат составляет 0,5% от нормирующего значения (класс точности 0,5). Под нормирующим значением принимается алгебраическая разность верхнего и нижнего пределов измерения. Максимальные диапазоны измерений температуры при работе с различными типами термодатчиков приведены в таблице. Из вышесказанного следует, что максимальная абсолютная погрешность измерения температуры приборов Термодат при работе с термопарой ХК (ХА) в диапазоне от -50 до 1100°C составляет 5,7°C. Погрешность измерения температуры приборами Термодат может быть уменьшена при их производстве путем уменьшения диапазона измерения. Так, например, при работе в диапазоне от 0 до 400°C погрешность составит 2°C. В этом случае, при выпуске и проведении поверки, в паспорте прибора должен указываться соответствующий диапазон измерений. Погрешность измерения темературы приборами Термодат не может быть меньше 2°C при работе с термопарами и меньше 0,5°C при работе с термосопротивлениями.

Тип термопреобразователяДиапазон измерения, °CОбозначение в меню настройки
Термопара ХА(К)-50 +11001
Термопара ХК(L)-50 +8002
Термопара МК(Т)-50 +400указывается в паспорте
Термопара ЖК(J)-50 +700указывается в паспорте
Термопара ПП (S)0 +1600указывается в паспорте
Термопара ПП (R)0 +1700указывается в паспорте
Термопара ПР (B)+300 +1800указывается в паспорте
Термопара ВР (А-1,А-2,А-3)+300 +2500указывается в паспорте
Термосопротивление ТСМ (М50, М100)-50 +200Cu
Термосопротивление ТСП (П50, П100)-50 +800Pt

Погрешность измерения температуры складывается из погрешности измерения электронного прибора и погрешности датчика температуры. Максимально допустимая погрешность используемого Вами датчика температуры должна быть указана в его паспорте или ГОСТе. Для термопар, например, погрешность измерения связана с возможными отклонениями от номинальной статической характеристики (НСХ). В соответствии с ГОСТ Р 50342-92, для термопар ХА(К) второго класса точности допустимые отклонения от НСХ составляют 2,5°C в диапазоне температур 0-330°C и 0,0075*t °C в диапазоне температур 330-1000°C. В случае, если требуется более высокая точность измерения, следует применять термопары более высокого класса точности, а также термопары из благородных металлов (ПП или ПР). Следует отметить, что точность измерения температуры зависит не только от прибора и термодатчика. Многое зависит от конструкции объекта измерения, от точки расположения термодатчика, от качества теплового контакта с измеряемой средой, от условий отвода тепла холодной монтажной частью термодатчика. То есть, задача измерения температуры является сложной инженерной задачей и должна решаться специалистами.

Время измерения

В большинстве задач регулирования температуры быстродействия измерительного прибора не имеет значения, так как характерные времена тепловых процессов велики. Приборы Термодат последовательно опрашивают все каналы и производят измерения. В каждом цикле измерения производится измерение температуры холодных спаев и опрос опорных каналов для самокалибровки и балансировки нуля. Время измерения по одному каналу для малоканальных одноблочных приборов составляет 200мс, с учетом усреднений и пауз после переключения коммутатора. Полный цикл измерения составляет 2 сек для одноканального прибора, 2,5 сек для двухканального и 3 сек для трехканального. Время полного цикла измерения для многоканальных приборов зависит от количества установленных каналов измерения N и может быть оценено по формуле: Т= (0.6 + 0.2N) секунд.

Цифровой фильтр

В условиях повышенных электромагнитных помех показания прибора могут быть неустойчивыми и колебаться в пределах 1-2 последних разрядов. Эти колебания не выходят за пределы погрешности измерения, однако, вызывают неудовлетворенность работой аппаратуры. Мы рекомендуем в таких условиях включить программный цифровой фильтр. Фильтр включается наладчиком оборудования во втором уровне режима настройки. Алгоритм обработки результатов измерения при включении цифрового фильтра предусматривает анализ результатов измерений, отсев случайных выбросов, специальное цифровое сглаживание сигнала. Фильтр существенно увеличивает соотношение сигнал/шум в приборе и, соответственно, стабильность показаний прибора. Однако при включении фильтрации сигнала увеличивается постоянная времени прибора. Если условия работы прибора благоприятные, устанавливать цифровую фильтрацию не следует.

Как подключить термопару к Arduino

Часто возникает необходимость заменить приборы контроля и регулировки температур на термопластавтоматах. Здесь можно сделать многоканальный прибор на базе Arduino.

Для подключения термопары к Arduino нужен усилитель. В интернете нашел схему усилителя для термопар на микросхеме LM358, собрал и настроил для работы с термопарой ТХК от — 40 до 400 градусов. В схему добавил датчик температуры DS18B20 для компенсации температуры холодного спая. Этот датчик должен находится поблизости холодного спая.

Программировал Arduino при помощи программы FLProg. C выхода усилителя сигнал поступает на аналоговый вход Arduino. При 100 градусах напряжение на выходе усилителя получается 0,35 вольта (получил при помощи регулировок подстроичным резистром), если температура холодного спая 24 градуса. Чтобы получить константу на каждый градус, я сделал так: 100-24=76 — это разница температуры между холодным спаем и температурой кипения воды. Напряжение 0,35 разделил на 76 и получил 0,0046. То есть на каждый градус на выходе усилителя напряжение увеличивается на 0,0046 вольта. Разрешение Arduino на входе — 1023. То есть, если разделить входное напряжение 5 вольт на 1023, получим константу 0,00488. Программировал следующим образом: входное число умножаем на 0,00488, получаем напряжение на входе, которое делим на константу 0,0046 и получаем температуру между горячим концом термопары и холодным спаем. Затем плюсуем температуру холодного спая и получаем истинную температуру. Опыты проводил кипяченой водой. Температура пара ровно 100 градусов.

На выходе термопары напряжение почти линейное. Точное значение около 100 градусов. На конце диапазона температур может быть расхождение в несколько градусов.

При повторе схемы надо учитывать, что эталонное напряжение взято от питания Arduino. Если значение различается от пять вольт, то для получении константы надо делить истинное напряжение питания на 1023.

DS18B20 имеет свой уникальный адрес в скетче, которые нужно заменить на ваш.

Скачать скетч Arduino file

Скачать скетч (файл расширения flp устанавливается на Arduino при помощи Flprog)

Схема усилителя термопары.

Эффект Зеебека.

Готовая плата усилителя термопары.

Оставьте комментарий:

Трехпроводная схема подключения термосопротивления | Сиб Контролс

Трехпроводное подключение RTD

Компромиссом между двухпроводной и четырехпроводной схемой подключения датчика температуры RTD является трехпроводная схема, которая выглядит следующим образом:

 

Вольтметр «A» измеряет сумму напряжений на RTD и на нижнем по схеме токоподводящем проводе. Вольтметр «B» измеряет падение напряжения только на верхнем по схеме проводе. Если оба провода будут иметь одинаковое сопротивление, то разница показаний вольтметра «А» и вольтметра «B» дадут падение напряжения на датчике RTD:

VRTD = Vmeter(A) − Vmeter(B)

Если сопротивления двух соединительных проводов точно идентичны (включая электрическое сопротивление любых соединений в контуре измерений), то рассчитанное напряжение будет точно соответствовать напряжению на датчике RTD, и ошибки за счет паразитного сопротивления соединительных проводов не будет. Но любая разница в сопротивлении проводов тут же скажется на точности измерений. Таким образом, мы видим, что схема RTD с тремя соединительными проводами уменьшает стоимость соединения (за счет экономии кабельной продукции по отношению к четырех проводной схеме соединений), однако применение данной схемы соединений, отрицательно сказывается на точности измерений.

Нужно понимать, что в реальном применении RTD с трехпроводной схемой соединений показывающие вольтметры не используются. На практике, при использовании RTD применяются аналоговые или цифровые схемы, которые определяют величины напряжений и выполняют необходимые расчеты, чтобы компенсировать падение напряжения на сопротивлении соединительных проводов. Вольтметры, показанные на схемах трех- и с четырехпроводных схемах, служат только для того, чтобы иллюстрировать фундаментальные понятия, а не демонстрировать практические схемотехнические решения. Практическая электронная схема для трехпроводной схемы подключения RTD показана на следующем рисунке:

 

Необходимо еще раз подчеркнуть фундаментальное ограничение любой трехпроводной цепи: компенсация сопротивления проводов возможна настолько, насколько точно сопротивления соединительных сигнальных проводов равны друг другу. Это накладывает ограничение на применяемый кабель. Обычно для подключения RTD используются инструментальные кабели, специально разработанные для данных целей.

принцип работы, устройство, типы и виды, проверка работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

Термопара принцип работы

Что такое термопара, принцип действия

Термопара – это устройство для измерения температур во всех отраслях науки и техники. 

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера.

Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом.

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Особенности устройства промышленной термопары

Термодатчики изготавливаются по большей части из неблагородных металлов. От воздействия внешней среды их закрывают трубой с фланцем, служащим для крепления прибора. Защитная арматура предохраняет проводники от влияния агрессивной среды и делается без шва. Материалом служит обычная (до 600ºС) или нержавеющая (до 1100ºС) сталь. Термоэлектроды изолируют друг от друга асбестом, фарфоровыми трубками или керамическими бусами.

Если терминал расположен близко, то провода термопары подключаются к нему напрямую, без дополнительных разъемов. При расположении измерительного прибора на удалении, при включении его в цепь свободные концы термопары размещаются в литой головке, прикрепленной к защитной трубе. Внутри располагаются латунные клеммники на фарфоровом основании для подключения компенсационных проводов, изготовленных из таких же материалов, что и термоэлектроды, но не обладающих точными и строго контролируемыми характеристиками. Они имеют меньшую стоимость и большую толщину. Их вводят в головку через штуцер с асбестовой прокладкой. Керамика служит для выравнивания температуры во всех местах соединения. Сверху располагается резьбовая защитная крышка с герметичным уплотнением.

На провода нельзя устанавливать обжимные оконцеватели, поскольку они могут ухудшить точность показаний. Из проволоки делают кольцо и зажимают его под винт.

Корректировка изменения температуры на клеммах может производиться электронным прибором, что повышает точность измерений.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

Чтобы лучше понять принцип работы термопары газового котла, стоит рассмотреть схему, представленную на рисунке.

Схема термопары

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

 

Как работает датчик пламени в газовом котле

Датчик ионизации пламени – прибор, который призван обеспечить безопасную работу газового котельного оборудования. Устройство следит за наличием огня, и при обнаружении отсутствия пламени автоматически отключает котел. Принцип работы датчика пламени газового котла предусматривает следующее:

  • функционал основан на образовании ионов и электронов при зажигании пламени. Образование ионного тока вызывает процесс притягивания ионов к электроду ионизации. Устройство подключается к датчику контроля горения;
  • если при проверке датчиком контроля горения обнаруживается образование достаточного уровня ионов, это означает, что котел работает в штатном режиме. В случае снижения уровня ионов датчик блокирует работу котельного оборудования.

К ключевым причинам срабатывания датчика ионизации относят загрязнение клапана и некорректное соотношение уровня «газ-воздух». Также это происходит при оседании большого количества пыли на устройстве розжига.

Основные типы термопар для газового котла

При изготовлении термоэлектрических преобразователей применяют сплавы благородных и неблагородных металлов. Для конкретных диапазонов рабочих температур используют определенные группы сплавов.

В зависимости от металлических пар, применяемых при изготовлении, приборы делятся на несколько типов.

Для работы котельного оборудования на газовом топливе чаще всего используют следующие типы устройств:

  • термопара типа E. Заводская маркировка ТХКн, представляет собой пластины из хромеля и константана. Прибор предназначен для температурного диапазона от 0°C и до +600°C;
  • тип J. Предусматривает композицию из железа и константана, маркировка ТЖК. Используется для рабочих температур в пределах от -100°C и до +1200°C;
  • тип Kс маркировкой ТХА, изготавливается на основе пластин из хромеля и алюмеля. Температурный диапазон применения термопары типа Kзначительный – от -200°C и до +1350°C;
  • тип Lс маркировкой ТХК. Элементы конструкции представляют собой хромель и копель. Устройство предназначено для температур от -200°C и до +850°C.

Термопара для газового котла типа J

Следующие образцы продукции находят применение в сфере тяжелой промышленности:

  • тип Sс маркировкой ТПП10 представляет собой композицию платинородий-платина. Применяется в установках при температурном режиме до +1700°C;
  • тип Bс маркировкой ТПР состоит из композиции пластин платинородий-платинородий. Продукт предназначен для температурного диапазона от -100°C и до +1800°C.

Также изготавливаются и другие варианты аналогичных приборов из сплавов благородных металлов, которые актуальны в тяжелой промышленности и литейном производстве.

Термопара в системе газового контроля

При эксплуатации газового оборудования требуется энергонезависимая автоматика, что способствует оперативному перекрытию подачи газа в случае, если внезапно погаснет пламя. В современных отопительных котлах с газовой горелкой предусмотрена система газ-контроль, которая включает в себя электромагнитный клапан и термопару. К составным элементам электроклапана относятся:

  • сердечник с обмоткой;
  • колпачок;
  • возвратная пружина;
  • якорь;
  • резинка, перекрывающая подачу газа.

При нажатии на кнопку подачи газа, шток заглубляется внутрь катушки и заряжается пружина. По регламенту клапан подачи следует удерживать около 30 секунд, чтобы термопара прогрелась, и на концах образовалось напряжение для удержания клапана внутри катушки. Термопара начинает остывать, если гаснет горелка. Что дальше происходит:

  • это сопровождается уменьшением напряжения на концах термопары;
  • возвратная сила пружины превышает электромагнитную силу, которая удерживает шток внутри катушки;
  • клапан возвращается в исходное положение и перекрывается подача газа.

В этом заключается работа термопары в газовом котле. Система газ-контроль на термопаре отличается высокой надежностью, в том числе и благодаря тому, что она способна функционировать без подключения к энергосети.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Электромонтаж промышленных термопар: основные советы и предложения

Одна вещь, которую я узнал в этой отрасли: несмотря на то, что существуют стандарты для цветовых кодов и типов термопар, самое основное правило для установки (в США, когда вы подключаете термопару, КРАСНЫЙ всегда отрицательный) — это не интуитивно понятный для всех, кто когда-либо делал электропроводку.

Довольно легко определить, когда вы сделали что-то неправильно: вы подключаете термопару непосредственно к прибору, и по мере того, как процесс становится более горячим, показания говорят о том, что она остывает.По мере того, как ваш процесс остывает, показания показывают повышение температуры. Если поменять местами проводку в распределительной коробке, она будет считываться в правильном направлении, но будут ошибки из-за ложных соединений.

Вот несколько основных схем подключения из справочного раздела каталога Lesman с правилами, которым необходимо следовать, и некоторыми предложениями по выбору правильного провода термопары.

Перечислены три основные схемы подключения термопар:

  1. Как подключить одну термопару к одному прибору
  2. Как подключить одну термопару к двум разным приемным приборам
  3. Как подключить несколько термопар к одному прибору через переключатель

Как видите, ни одна из диаграмм не является действительно сложной, но есть некоторые правила, которым нужно следовать, чтобы сделать это правильно.

  • В Соединенных Штатах, когда вы подключаете провода термопары к приборам, КРАСНЫЙ всегда отрицательный . Другой провод с цветовой кодировкой всегда положительный.
  • Подберите провод термопары к типу термопары, которую вы используете.
  • Используйте провод термопары для изготовления элементов термопар или для подключения термопар к приборам. Удлинительный провод термопары должен использоваться ТОЛЬКО для подключения термопар к приборам , а медный провод никогда не должен использоваться.
  • Если вы подключаете термопару к переключателю или распределительной коробке, контакты НЕ должны быть такими же, как материалы термопары. Просто знайте, что любая разница температур между положительным и отрицательным контактами станет ошибкой в ​​сигнале.
  • Не прокладывайте провода термопары в кабелепроводах, по которым проходит силовая проводка. И не прокладывайте кабелепровод с выводами термопары параллельно шинам электропитания или тяжелому силовому кабелепроводу. Скрестите их под прямым углом.

Есть также несколько советов, которые следует учитывать при покупке провода для термопары.Он начинается с подбора типа провода к типу термопары, но для достижения наилучших характеристик также учитывайте следующее:

  • При покупке провода для термопары выбирайте изоляцию провода, совместимую с окружающей средой вашего применения. Для применений, требующих влагостойкости, используйте тефлон, ПВХ, каптон или тефзель. Для высокотемпературных применений используйте стекловолокно, стекловидный кремнезем и керамическое волокно.
  • Если выводной провод будет часто изгибаться, используйте многожильный провод для подключения термопар.
  • Чтобы обеспечить защиту проводки от физического воздействия, используйте металлическую оплетку и гибкую броню.
  • Для подключения датчиков к компьютерам и защиты от паразитных сигналов ЭМП используйте провода с алюминиевыми пластинами из майлара и заземляющие провода.
Статьи по теме
Сопутствующие товары

Нравится:

Нравится Загрузка …

Связанные

промышленные термопары, проводка tc, проводка датчика температуры, температура, входы температуры, измерение температуры, датчики температуры, термопара, удлинительный провод термопары, провод термопары, схема подключения, подключение термопар


Эта запись была опубликована 30 мая 2012 г., 10:10 и находится в разделах «Конфигурация», «Установка», «Измерение», «Температура», «Термопары», «Устранение неполадок».Вы можете следить за любыми ответами на эту запись через RSS 2.0.

Вы можете оставить отзыв или откликнуться со своего сайта.

Два способа измерения температуры с помощью термопар: простота, точность и гибкость

Введение

Термопара — это простой и широко используемый компонент для измерения температуры. В этой статье дается общий обзор термопар, описываются общие проблемы, возникающие при их проектировании, и предлагаются два решения по преобразованию сигналов.Первое решение сочетает в себе компенсацию холодного спая и преобразование сигнала в одной аналоговой ИС для удобства и простоты использования; Второе решение отделяет компенсацию холодного спая от обработки сигнала, чтобы обеспечить измерение температуры на цифровом выходе с большей гибкостью и точностью.

Теория термопар

Термопара, показанная на рисунке 1, состоит из двух проводов из разнородных металлов, соединенных вместе на одном конце, называемых измерением («горячий») спай.Другой конец, где провода не соединены, подключается к дорожкам схемы преобразования сигнала, обычно сделанным из меди. Этот спай между металлами термопары и медными дорожками называется эталонным («холодным») спаем. *

Рисунок 1. Термопара.

* Мы используем термины «измерительный спай» и «эталонный спай», а не более традиционные «горячий спай» и «холодный спай». Традиционная система именования может сбивать с толку, потому что во многих приложениях измерительный спай может быть холоднее эталонного спая.

Напряжение, создаваемое на эталонном спаях, зависит от температуры как на измерительном, так и в эталонном спайах. Поскольку термопара является дифференциальным устройством, а не устройством для измерения абсолютной температуры, для получения точных абсолютных показаний температуры необходимо знать температуру эталонного спая. Этот процесс известен как компенсация холодного спая (компенсация холодного спая).

Термопары

стали промышленным стандартом для экономичного измерения широкого диапазона температур с разумной точностью.Они используются во множестве применений при температуре примерно до + 2500 ° C в котлах, водонагревателях, духовках и авиационных двигателях — и это лишь некоторые из них. Самой популярной термопарой является тип K , состоящий из Chromel ® и Alumel ® (никелевые сплавы с товарными знаками, содержащие хрома и алюминия , марганец и кремний, соответственно) с диапазоном измерения — От 200 ° C до + 1250 ° C.

Зачем нужна термопара?

Преимущества
  • Температурный диапазон: Большинство практических температурных диапазонов, от криогенных до выхлопных газов реактивных двигателей, можно обслуживать с помощью термопар.В зависимости от используемой металлической проволоки термопара может измерять температуру в диапазоне от –200 ° C до + 2500 ° C.
  • Надежность: термопары — это надежные устройства, устойчивые к ударам и вибрации, и пригодные для использования во взрывоопасных средах.
  • Быстрый отклик. Поскольку термопары маленькие и обладают низкой теплоемкостью, они быстро реагируют на изменения температуры, особенно если чувствительный спай обнажен. Они могут реагировать на быстро меняющиеся температуры в течение нескольких сотен миллисекунд.
  • Без самонагрева: поскольку термопарам не требуется мощность возбуждения, они не склонны к самонагреву и искробезопасны.
Недостатки
  • Комплексное преобразование сигнала: требуется существенное преобразование сигнала для преобразования напряжения термопары в пригодное для использования значение температуры. Традиционно преобразование сигнала требовало больших затрат времени на разработку, чтобы избежать ошибок, снижающих точность.
  • Точность: в дополнение к присущей термопарам неточности из-за их металлургических свойств, измерение термопары является настолько точным, насколько может быть измерена температура эталонного спая, обычно в пределах от 1 ° C до 2 ° C.
  • Восприимчивость к коррозии: поскольку термопары состоят из двух разнородных металлов, в некоторых средах коррозия со временем может привести к снижению точности. Следовательно, им может потребоваться защита; и уход и обслуживание имеют важное значение.
  • Восприимчивость к шуму: при измерении изменений сигнала микровольтного уровня могут возникнуть проблемы с шумом от паразитных электрических и магнитных полей. Скручивание пары проводов термопары может значительно уменьшить наводку магнитного поля. Использование экранированного кабеля или прокладки проводов в металлическом кабелепроводе и ограждении может уменьшить наводку электрического поля.Измерительный прибор должен обеспечивать фильтрацию сигнала аппаратно или программно с сильным подавлением частоты сети (50 Гц / 60 Гц) и ее гармоник.

Трудности измерения с помощью термопар

Преобразовать напряжение, генерируемое термопарой, в точное показание температуры непросто по многим причинам: сигнал напряжения мал, зависимость температуры от напряжения нелинейная, требуется компенсация холодного спая, а термопары могут создавать проблемы с заземлением.Давайте рассмотрим эти вопросы по порядку.

Сигнал напряжения небольшой: Наиболее распространенными типами термопар являются J, K и T. При комнатной температуре их напряжение изменяется на 52 мкВ / ° C, 41 мкВ / ° C и 41 мкВ / ° C соответственно. Другие, менее распространенные типы имеют еще меньшее изменение напряжения с температурой. Этот слабый сигнал требует каскада с высоким коэффициентом усиления перед аналого-цифровым преобразованием. В таблице 1 сравниваются чувствительности различных типов термопар.

Таблица 1. Изменение напряжения в зависимости отПовышение температуры
(коэффициент Зеебека) для различных типов термопар при 25 ° C.

Термопара
Тип
Коэффициент Зеебека
(мкВ / ° C)
E 61
Дж 52
К 41
N 27
R 9
S 6
т 41

Поскольку сигнал напряжения мал, схема преобразования сигнала обычно требует усиления около 100 или около того — довольно простое преобразование сигнала.Что может быть труднее, так это отличить реальный сигнал от шума, улавливаемого выводами термопары. Провода термопары длинные и часто проходят в среде с электрическими помехами. Шум, улавливаемый проводами, может легко подавить крошечный сигнал термопары.

Для выделения сигнала из шума обычно комбинируют два подхода. Первый заключается в использовании усилителя с дифференциальным входом, такого как инструментальный усилитель, для усиления сигнала. Поскольку большая часть шума возникает на обоих проводах (, синфазный, ), дифференциальное измерение устраняет его.Второй — это фильтрация нижних частот, которая удаляет внеполосный шум. Фильтр нижних частот должен устранять как радиочастотные помехи (выше 1 МГц), которые могут вызвать выпрямление в усилителе, так и 50 Гц / 60 Гц (источник питания) гул . Важно установить фильтр радиопомех перед усилителем (или использовать усилитель с фильтрами на входах). Расположение фильтра 50/60 Гц часто не имеет решающего значения — его можно комбинировать с фильтром радиочастотных помех, помещенным между усилителем и АЦП, встроенным как часть сигма-дельта АЦП, или его можно запрограммировать в программном обеспечении. как усредняющий фильтр.

Компенсация холодного спая: Температура холодного спая термопары должна быть известна для получения точных показаний абсолютной температуры. Когда термопары были впервые использованы, это было сделано путем выдерживания контрольного спая в ледяной бане. На рисунке 2 изображена схема термопары, один конец которой находится при неизвестной температуре, а другой конец находится в ледяной бане (0 ° C). Этот метод использовался для исчерпывающей характеристики различных типов термопар, поэтому почти во всех таблицах термопар используется 0 ° C в качестве эталонной температуры.

Рис. 2. Базовая схема железо-константановой термопары.

Но держать эталонный спай термопары в ледяной бане нецелесообразно для большинства измерительных систем. Вместо этого в большинстве систем используется метод, называемый компенсацией холодного спая (также известный как компенсация холодного спая ). Температура эталонного спая измеряется другим термочувствительным устройством — обычно ИС, термистором, диодом или RTD (резистивным датчиком температуры). Затем значение напряжения термопары компенсируется, чтобы отразить температуру холодного спая.Важно, чтобы эталонный спай считывался как можно точнее — с помощью точного датчика температуры, поддерживающего ту же температуру, что и эталонный спай. Любая ошибка в считывании температуры холодного спая будет отображаться непосредственно в окончательном показании термопары.

Для измерения эталонной температуры доступны различные датчики:

  1. Термисторы: они обладают быстрым срабатыванием и компактным корпусом; но они требуют линеаризации и имеют ограниченную точность, особенно в широком диапазоне температур.Им также требуется ток для возбуждения, который может вызвать саморазогрев, что приведет к дрейфу. Общая точность системы в сочетании с формированием сигнала может быть низкой.
  2. Резистивные датчики температуры (RTD): RTD являются точными, стабильными и достаточно линейными, однако размер корпуса и стоимость ограничивают их использование для приложений управления технологическим процессом.
  3. Дистанционные термодиоды: диод используется для измерения температуры рядом с разъемом термопары. Микросхема кондиционирования преобразует напряжение на диоде, пропорциональное температуре, в аналоговый или цифровой выход.Его точность ограничена примерно ± 1 ° C.
  4. Встроенный датчик температуры: Встроенный датчик температуры, автономная ИС, которая измеряет температуру локально, должна быть осторожно установлена ​​рядом с эталонным спаем и может сочетать компенсацию холодного спая и формирование сигнала. Может быть достигнута точность с точностью до малых долей в 1 ° C.

Сигнал напряжения нелинейный: Наклон кривой отклика термопары изменяется в зависимости от температуры.Например, при 0 ° C выходной сигнал термопары типа T изменяется на 39 мкВ / ° C, но при 100 ° C крутизна увеличивается до 47 мкВ / ° C.

Есть три распространенных способа компенсации нелинейности термопары.

Выберите относительно плоский участок кривой и аппроксимируйте наклон как линейный в этой области — подход, который особенно хорошо работает для измерений в ограниченном диапазоне температур. Никаких сложных вычислений не требуется. Одна из причин популярности термопар K- и J-типа заключается в том, что они обе имеют большие диапазоны температур, для которых наклон приращения чувствительности (коэффициент Зеебека) остается довольно постоянным (см. Рисунок 3).

Рисунок 3. Изменение чувствительности термопары в зависимости от температуры. Обратите внимание, что коэффициент Зеебека K-типа примерно постоянен и составляет около 41 мкВ / ° C от 0 ° C до 1000 ° C.

Другой подход — сохранить в памяти справочную таблицу, которая сопоставляет каждый из набора напряжений термопары с соответствующей температурой. Затем используйте линейную интерполяцию между двумя ближайшими точками в таблице, чтобы получить другие значения температуры.

Третий подход заключается в использовании уравнений более высокого порядка, которые моделируют поведение термопары.Хотя этот метод является наиболее точным, он также требует больших вычислительных ресурсов. Для каждой термопары существует две системы уравнений. Один набор преобразует температуру в напряжение термопары (полезно для компенсации холодного спая). Другой набор преобразует напряжение термопары в температуру. Таблицы термопар и уравнения термопар более высокого порядка можно найти на http://srdata.nist.gov/its90/main/. Все таблицы и уравнения основаны на температуре холодного спая 0 ° C. Компенсацию холодного спая необходимо использовать, если он имеет любую другую температуру.

Требования к заземлению: Производители термопар изготавливают термопары как с изолированными, так и с заземленными наконечниками для измерительного спая (рисунок 4).

Рисунок 4. Типы измерительного спая термопары.

Устройство преобразования сигнала термопары должно быть спроектировано таким образом, чтобы избежать контуров заземления при измерении заземленной термопары, но также иметь путь для входных токов смещения усилителя при измерении изолированной термопары. Кроме того, если наконечник термопары заземлен, диапазон входного сигнала усилителя должен быть рассчитан таким образом, чтобы выдерживать любые различия в потенциале земли между наконечником термопары и заземлением измерительной системы (рисунок 5).

Рисунок 5. Варианты заземления при использовании наконечников разных типов.

Для неизолированных систем система формирования сигнала с двумя источниками питания обычно будет более надежной для типов заземленных и открытых наконечников. Благодаря широкому входному диапазону синфазного сигнала усилитель с двумя источниками питания может справиться с большим перепадом напряжения между землей печатной платы и землей на наконечнике термопары. Системы с однополярным питанием могут удовлетворительно работать во всех трех случаях, если синфазный диапазон усилителя имеет некоторую способность измерять под землей в конфигурации с однополярным питанием.Чтобы справиться с ограничением синфазного сигнала в некоторых системах с однополярным питанием, полезно смещение термопары до среднего напряжения. Это хорошо работает для изолированных наконечников термопар или если вся измерительная система изолирована. Однако это не рекомендуется для неизолированных систем, предназначенных для измерения заземленных или открытых термопар.

Практические решения с термопарами: Преобразование сигнала термопары сложнее, чем в других системах измерения температуры.Время, необходимое для разработки и отладки системы формирования сигнала, может увеличить время вывода продукта на рынок. Ошибки в формировании сигнала, особенно в секции компенсации холодного спая, могут привести к снижению точности. Следующие два решения устраняют эти проблемы.

В первом описывается простое аналоговое интегрированное аппаратное решение, сочетающее прямое измерение термопарой с компенсацией холодного спая с использованием одной ИС. Второе решение представляет собой программную схему компенсации холодного спая, обеспечивающую повышенную точность измерения термопар и гибкость в использовании многих типов термопар.

Измерительное решение 1: оптимизировано для простоты

На рисунке 6 показана схема измерения термопары К-типа. Он основан на использовании усилителя термопары AD8495, который разработан специально для измерения термопар типа K. Это аналоговое решение оптимизировано для минимального времени разработки: оно имеет прямую сигнальную цепочку и не требует программного кодирования.

Рис. 6. Измерительное решение 1: оптимизировано для простоты.

Как эта простая сигнальная цепочка удовлетворяет требованиям к формированию сигнала для термопар K-типа?

Масштабный коэффициент усиления и выхода: Малый сигнал термопары усиливается коэффициентом усиления AD8495, равным 122, в результате чего чувствительность выходного сигнала составляет 5 мВ / ° C (200 ° C / В).

Подавление шума: Высокочастотный синфазный и дифференциальный шум удаляется внешним фильтром радиопомех. Низкочастотный синфазный шум подавляется инструментальным усилителем AD8495. Любой оставшийся шум устраняется внешним постфильтром.

Компенсация холодного спая: AD8495, который включает датчик температуры для компенсации изменений температуры окружающей среды, должен быть размещен рядом с холодным спаем, чтобы поддерживать одинаковую температуру для точной компенсации холодного спая.

Коррекция нелинейности: AD8495 откалиброван для выдачи выходного сигнала 5 мВ / ° C на линейном участке кривой термопары типа K с погрешностью линейности менее 2 ° C в диапазоне от –25 ° C до + 400 ° Температурный диапазон C. Если требуются температуры за пределами этого диапазона, в примечании к применению AN-1087 компании Analog Devices описывается, как можно использовать справочную таблицу или уравнение в микропроцессоре для расширения диапазона температур.

Работа с изолированными, заземленными и незащищенными термопарами: На рисунке 5 показан резистор 1 МОм, подключенный к земле, что позволяет использовать все типы наконечников термопар.AD8495 был специально разработан, чтобы иметь возможность измерять несколько сотен милливольт под землей при использовании с одним источником питания, как показано на рисунке. Если ожидается больший перепад заземления, AD8495 также может работать с двумя источниками питания.

Подробнее об AD8495: На рисунке 7 показана блок-схема усилителя термопары AD8495. Усилители A1, A2 и A3 — и показанные резисторы — образуют инструментальный усилитель, который усиливает выходной сигнал термопары K-типа с коэффициентом усиления, подходящим для создания выходного напряжения 5 мВ / ° C.Внутри коробки с надписью «Компенсация реф. Перехода» находится датчик температуры окружающей среды. При постоянной температуре измерительного спая дифференциальное напряжение на термопаре будет уменьшаться, если температура опорного спая повысится по какой-либо причине. Если крошечный (3,2 мм × 3,2 мм × 1,2 мм) AD8495 находится в непосредственной близости от опорного перехода, схема компенсации опорного спая подает дополнительное напряжение в усилитель, так что выходное напряжение остается постоянным, таким образом компенсируя опорное напряжение. изменение температуры.

Рисунок 7. Функциональная блок-схема AD8495.

Таблица 2 обобщает производительность интегрированного аппаратного решения с использованием AD8495:

Таблица 2. Решение 1 (Рисунок 6) Сводная информация о производительности

Термопара Тип Диапазон измерения температуры спая Диапазон температур холодного спая Точность
при 25 ° C
Потребляемая мощность
К от –25 ° C до + 400 ° C

от 0 ° C до 50 ° C

± 3 ° C (класс А)

± 1 ° C (класс C)

1.25 мВт

Измерительное решение 2: оптимизировано для точности и гибкости

На рисунке 8 показана схема измерения термопары J-, K- или T-типа с высокой степенью точности. Эта схема включает высокоточный АЦП для измерения напряжения малосигнальной термопары и высокоточный датчик температуры для измерения температуры холодного спая. Оба устройства управляются через интерфейс SPI от внешнего микроконтроллера.

Рис. 8. Измерительное решение 2: оптимизировано для обеспечения точности и гибкости.

Как эта конфигурация удовлетворяет упомянутым ранее требованиям к формированию сигнала?

Удаление шума и усиление напряжения: AD7793, подробно показанный на рисунке 9 — высокоточный маломощный аналоговый входной каскад, используется для измерения напряжения термопары. Выход термопары фильтруется извне и подключается к набору дифференциальных входов AIN1 (+) и AIN1 (-). Затем сигнал направляется через мультиплексор, буфер и инструментальный усилитель, который усиливает небольшой сигнал термопары, и на АЦП, который преобразует сигнал в цифровой.

Рисунок 9. Функциональная блок-схема AD7793.

Компенсация температуры холодного спая: ADT7320 (подробно показан на Рисунке 10), при размещении достаточно близко к опорному спайу, может точно измерять температуру холодного спая с точностью до ± 0,2 ° C, от –10 ° C до +85 ° C. Встроенный датчик температуры генерирует напряжение, пропорциональное абсолютной температуре, которое сравнивается с внутренним опорным напряжением и подается на прецизионный цифровой модулятор. Оцифрованный результат модулятора обновляет 16-битный регистр значения температуры.Затем регистр значения температуры может быть считан с микроконтроллера с использованием интерфейса SPI и объединен со считыванием температуры с АЦП для осуществления компенсации.

Рисунок 10. Функциональная блок-схема ADT7320.

Правильная нелинейность: ADT7320 обеспечивает отличную линейность во всем номинальном температурном диапазоне (от –40 ° C до + 125 ° C), не требуя корректировки или калибровки пользователем. Таким образом, его цифровой выход можно считать точным представлением состояния холодного спая.

Чтобы определить фактическую температуру термопары, это эталонное измерение температуры должно быть преобразовано в эквивалентное термоэлектрическое напряжение с помощью уравнений, предоставленных Национальным институтом стандартов и технологий (NIST). Затем это напряжение добавляется к напряжению термопары, измеренному AD7793; и суммирование затем переводится обратно в температуру термопары, снова с использованием уравнений NIST.

Ручка с изолированными и заземленными термопарами: На рисунке 8 показана термопара с оголенным наконечником.Это обеспечивает лучшее время отклика, но такая же конфигурация может также использоваться с термопарой с изолированным наконечником.

В таблице 3 приведены характеристики программного решения для измерения холодного спая с использованием данных NIST:

Таблица 3. Решение 2 (Рисунок 8) Сводная информация о производительности

Термопара Тип Диапазон измерения температуры спая Диапазон температур холодного спая Точность Потребляемая мощность
Дж, К, Т Полный диапазон

от –10 ° C до + 85 ° C

от –20 ° C до + 105 ° C

± 0.2 ° С

± 0,25 ° С

3 мВт

3 мВт

Заключение

Термопары обеспечивают надежное измерение температуры в довольно широком диапазоне температур, но они часто не являются первым выбором для измерения температуры из-за необходимого компромисса между расчетным временем и точностью. В этой статье предлагаются рентабельные способы решения этих проблем.

Первое решение концентрируется на уменьшении сложности измерения с помощью аппаратного метода компенсации аналогового эталонного спая. В результате получается прямая сигнальная цепочка без необходимости программирования программного обеспечения, основанная на интеграции, обеспечиваемой усилителем термопары AD8495, который выдает выходной сигнал 5 мВ / ° C, который может подаваться на аналоговый вход большого количества микроконтроллеров.

Второе решение обеспечивает высочайшую точность измерения, а также позволяет использовать различные типы термопар.Программный метод компенсации эталонного спая, он основан на высокоточном цифровом датчике температуры ADT7320, который обеспечивает гораздо более точное измерение компенсации эталонного спая, чем это было возможно до сих пор. ADT7320 поставляется полностью откалиброванным и рассчитанным на диапазон температур от –40 ° C до + 125 ° C. Полностью прозрачный, в отличие от традиционного измерения термистора или датчика RTD, он не требует дорогостоящего этапа калибровки после сборки платы, а также не потребляет ресурсы процессора или памяти с коэффициентами калибровки или процедурами линеаризации.Потребляя только микроватты энергии, он позволяет избежать проблем с саморазогревом, которые снижают точность традиционных решений резистивных датчиков.

Приложение

Использование уравнения NIST для преобразования температуры ADT7320 в напряжение

Компенсация холодного спая термопары основана на соотношении:

(1)

где:

Δ В = выходное напряжение термопары

В @ Дж 1 = напряжение, генерируемое на спайе термопары

В @ Дж 2 = напряжение, генерируемое на опорном спайе

Чтобы это соотношение компенсации было действительным, обе клеммы холодного спая должны поддерживаться при одинаковой температуре.Выравнивание температуры достигается с помощью изотермической клеммной колодки, которая позволяет выравнивать температуру обоих клемм при сохранении гальванической развязки.

После измерения температуры холодного спая ее необходимо преобразовать в эквивалентное термоэлектрическое напряжение, которое будет генерироваться переходом при измеренной температуре. В одном методе используется многочлен степенного ряда. Рассчитано термоэлектрическое напряжение:

(2)

где:

E = термоэлектрическое напряжение (микровольт)

a n = коэффициенты полинома, зависящие от типа термопары

T = температура (° C)

n = порядок полинома

NIST публикует таблицы полиномиальных коэффициентов для каждого типа термопар.В этих таблицах приведены списки коэффициентов, порядок (количество членов в полиноме), допустимые диапазоны температур для каждого списка коэффициентов и диапазон ошибок. Для некоторых типов термопар требуется более одной таблицы коэффициентов, чтобы охватить весь рабочий температурный диапазон. Таблицы полиномов степенных рядов перечислены в основном тексте.

Конструкция

, принцип работы и его применение

В 1821 году физик по имени Томас Зеебек обнаружил, что когда два разных металлических провода были соединены на обоих концах одного соединения в цепи при воздействии температуры на соединение, возникнет быть потоком тока через цепь, которая известна как электромагнитное поле (ЭМП).Энергия, производимая цепью, называется эффектом Зеебека. Используя эффект Томаса Зеебека в качестве ориентира, оба итальянских физика, а именно Леопольдо Нобили и Македонио Меллони, в 1826 году совместно разработали термоэлектрическую батарею, которая называется тепловым умножителем, она была основана на открытии термоэлектричества Зеебека путем объединения гальванометра как а также термобатарея для расчета излучения. Некоторые люди идентифицировали Нобили как первооткрывателя термопары.

Что такое термопара?

Термопару можно определить как своего рода датчик температуры, который используется для измерения температуры в одной конкретной точке в виде ЭДС или электрического тока. Этот датчик состоит из двух разнородных металлических проводов, соединенных вместе в одном стыке. На этом переходе можно измерить температуру, и изменение температуры металлической проволоки стимулирует напряжения.

Термопара

Величина ЭДС, генерируемая в устройстве, очень мала (милливольт), поэтому для расчета e.м.ф вырабатывается в схеме. Обычными устройствами, используемыми для расчета ЭДС, являются потенциометр уравновешивания напряжения и обычный гальванометр. Из этих двух балансировочный потенциометр используется физически или механически.

Принцип работы термопары

Принцип работы термопары в основном зависит от трех эффектов, а именно Зеебека, Пельтье и Томпсона.

См. Эффект Бека

Эффект этого типа возникает между двумя разнородными металлами.Когда тепло поступает к любому из металлических проводов, поток электронов переходит от горячего металлического провода к холодному. Следовательно, постоянный ток стимулирует цепь.

Эффект Пельтье

Этот эффект Пельтье противоположен эффекту Зеебека. Этот эффект утверждает, что разница температур может быть сформирована между любыми двумя разнородными проводниками путем применения изменения потенциала между ними.

Эффект Томпсона

Этот эффект заключается в том, что когда два несопоставимых металла соединяются вместе, и если они образуют два соединения, то напряжение вызывает общую длину проводника из-за градиента температуры.Это физическое слово, которое демонстрирует изменение скорости и направления температуры в определенном месте.

Конструкция термопары

Конструкция устройства показана ниже. Он состоит из двух разных металлических проводов, соединенных вместе на конце соединения. Соединение мыслит как измерительный конец. Конец соединения подразделяется на три типа: незаземленный, заземленный и открытый.

Конструкция термопары

Незаземленный переход

В этом типе спая проводники полностью отделены от защитной крышки.Область применения этого соединения в основном включает работы по установке высокого давления. Основное преимущество использования этой функции — уменьшение эффекта паразитного магнитного поля.

Заземленное соединение

В этом типе соединения металлические провода, а также защитная крышка соединяются вместе. Эта функция используется для измерения температуры в кислой атмосфере и обеспечивает устойчивость к шуму.

Открытое соединение

Открытое соединение применяется в областях, где требуется быстрое реагирование.Этот тип спая используется для измерения температуры газа. Металл, из которого изготовлен датчик температуры, в основном зависит от расчетного диапазона температуры.

Обычно термопара конструируется с двумя разными металлическими проводами, а именно железом и константаном, которые входят в детектирующий элемент, соединяясь в одном спайе, называемом горячим спаем. Он состоит из двух спайов, один спай подключается с помощью вольтметра или передатчика, где холодный спай, а второй спай связан в процессе, который называется горячим спаем.

Как работает термопара?

Схема термопары показана на рисунке ниже. Эта схема может быть построена из двух разных металлов, и они соединяются вместе путем образования двух переходов. Два металла соединены сваркой.

На приведенной выше диаграмме соединения обозначены P & Q, а температуры обозначены T1, & T2. Когда температуры спая отличаются друг от друга, в цепи генерируется электромагнитная сила.

Цепь термопары

Если температура на конце перехода превращается в эквивалент, то в цепи возникает эквивалент, а также обратная электромагнитная сила, и ток через нее не протекает. Точно так же температура на конце перехода становится несбалансированной, а затем в этой цепи индуцируется изменение потенциала.

Величина индукции электромагнитной силы в цепи зависит от материалов, используемых для изготовления термопар. Полный ток по цепи рассчитывается измерительными приборами.

Электромагнитная сила, индуцированная в цепи, рассчитывается по следующему уравнению:

E = a (∆Ө) + b (∆Ө) 2

Где ∆Ө — это также разница температур между горячим концом спая термопары. в качестве эталонного конца спая термопары a и b являются константами.

Типы термопар

In Прежде чем перейти к обсуждению типов термопар, необходимо учесть, что термопара должна быть защищена защитным кожухом для изоляции от атмосферных температур.Такое покрытие значительно минимизирует коррозионное воздействие на устройство.

Итак, существует множество типов термопар. Давайте рассмотрим их подробнее.

Тип K — также называется термопарой никель-хромового / никель-алюминиевого типа. Это наиболее часто используемый тип. Он отличается повышенной надежностью, точностью и недорого, а также может работать в расширенных диапазонах температур.

K Тип

Диапазон температур:

Провода для термопар — от -454F до 2300F (-270 0 C до 1260 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот тип K имеет уровень точности

Standard +/- 2.2C или +/- 0,75%, а специальные пределы составляют +/- 1,1C или 0,4%

Тип J — это смесь железа / константана. Это также наиболее часто используемый тип термопар. Он отличается повышенной надежностью, точностью и недорого. Это устройство может работать только в меньших диапазонах температур и имеет короткий срок службы при работе в высоком диапазоне температур.

J Тип

Диапазон температур:

Провода для термопар — от -346F до 1400F (-210 0 C до 760 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот тип J имеет уровень точности

Standard +/- 2.2C или +/- 0,75%, а специальные пределы составляют +/- 1,1C или 0,4%

Тип T — это смесь меди / константана. Термопара Т-типа обладает повышенной стабильностью и обычно применяется для приложений с более низкими температурами, таких как морозильные камеры со сверхнизкими температурами и криогенная техника.

T Тип Термопара

Диапазон температур:

Провода для термопар — от -454F до 700F (-270 0 C до 370 0 C)

Удлинительный провод (от 0 0 C до 200 0 C )

Этот тип T имеет уровень точности

Standard +/- 1.0C или +/- 0,75%, а специальные пределы составляют +/- 0,5C или 0,4%

Тип E — это смесь никель-хрома / константана. По сравнению с термопарами типов K и J, он обладает большей сигнальной способностью и повышенной точностью при работе при ≤ 1000F.

E Тип

Диапазон температур:

Провода для термопар — от -454F до 1600F (-270 0 C до 870 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот тип T имеет уровень точности

Standard +/- 1.7C или +/- 0,5%, а специальные пределы составляют +/- 1,0C или 0,4%.

Тип N — считается термопарой Nicrosil или Nisil. Уровни температуры и точности типа N аналогичны типу K. Но этот тип более дорогой, чем тип K.

N Тип

Диапазон температур:

Провода для термопар — от -454F до 2300F (-270 0 C). до 392 0 C)

Удлинительный провод (от 0 0 C до 200 0 C)

Этот T-образный тип имеет уровень точности

Standard +/- 2.2C или +/- 0,75%, а специальные пределы составляют +/- 1,1C или 0,4%.

Тип S — считается термопарой платина / родий или 10% / платина. Термопары типа S используются в высокотемпературных приложениях, например, в биотехнологических и фармацевтических организациях. Он даже используется для приложений с меньшим температурным диапазоном из-за его повышенной точности и стабильности.

S Тип

Диапазон температур:

Провода для термопар — от -58F до 2700F (-50 0 C до 1480 0 C)

Удлинительный провод (0 0 C до 200 0 C)

Этот тип T имеет уровень точности

Standard +/- 1.5C или +/- 0,25%, а специальные пределы составляют +/- 0,6C или 0,1%.

Тип R — считается термопарой платина / родий или 13% / платина. Термопары типа S используются в высокотемпературном диапазоне. Этот тип включает большее количество родия, чем тип S, что делает устройство более дорогим. Характеристики и производительность типов R и S почти одинаковы. Он даже используется для приложений с меньшим температурным диапазоном из-за его повышенной точности и стабильности.

R Тип

Диапазон температур:

Провода для термопар — от -58F до 2700F (-50 0 C до 1480 0 C)

Удлинительный провод (0 0 C до 200 0 C)

Этот T-тип имеет уровень точности

Стандартный +/- 1,5C или +/- 0,25%, а специальные пределы составляют +/- 0,6C или 0,1%

Тип B — Он рассматривается как 30% платино-родиевого или 60% платиново-родиевого термопары. Это широко используется в приложениях с более высокими температурами.Из всех вышеперечисленных типов тип B имеет самый высокий температурный предел. При повышенных температурах термопара типа B будет сохранять повышенную стабильность и точность.

Тип B Термопара

Диапазон температур:

Провода для термопар — от 32F до 3100F (0 0 C до 1700 0 C)

Удлинительный провод (0 0 C до 100 0 C)

Этот T-тип имеет уровень точности

Стандарт +/- 0,5%

Типы S, R и B считаются термопарами из благородных металлов.Они выбраны потому, что они могут работать даже в высокотемпературных диапазонах, обеспечивая высокую точность и длительный срок службы. Но по сравнению с типами из недрагоценных металлов они более дорогие.

При выборе термопары необходимо учитывать множество факторов, которые подходят для их применения.

  • Проверьте, какие диапазоны низких и высоких температур необходимы для вашего применения?
  • Какой бюджет использовать термопару?
  • Какой процент точности использовать?
  • В каких атмосферных условиях работает термопара, например, в инертных газах или окисляющих
  • Каков ожидаемый уровень отклика, что означает, насколько быстро устройство должно реагировать на изменения температуры?
  • Какой срок службы требуется?
  • Проверить перед работой, погружено ли устройство в воду и на какую глубину?
  • Будет ли использование термопары прерывистым или непрерывным?
  • Будет ли термопара подвергаться скручиванию или изгибу в течение всего срока службы устройства?

Как узнать, что у вас плохая термопара?

Чтобы узнать, правильно ли работает термопара, необходимо провести тестирование устройства.Прежде чем приступить к замене устройства, необходимо убедиться, что оно действительно работает или нет. Для этого вполне достаточно мультиметра и базовых знаний электроники. В основном существует три подхода к тестированию термопары с помощью мультиметра, и они описаны ниже:

Проверка сопротивления

Для выполнения этого теста устройство должно быть помещено в линию газового прибора, а необходимое оборудование — цифровой мультиметр и крокодил. клипы.

Процедура — Подсоедините зажимы типа «крокодил» к участкам мультиметра.Присоедините зажимы к обоим концам термопары, где один конец будет загнут в газовый клапан. Теперь включите мультиметр и запишите варианты считывания. Если мультиметр показывает малые значения сопротивления, значит, термопара в идеальном рабочем состоянии. Или, если показание составляет 40 Ом или более, значит, оно не в хорошем состоянии.

Тест на разрыв цепи

Используемое оборудование — зажимы «крокодил», зажигалка и цифровой мультиметр. Здесь вместо измерения сопротивления рассчитывается напряжение.Теперь зажигалкой нагрейте один конец термопары. Когда мультиметр показывает напряжение в диапазоне 25-30 мВ, значит, он исправен. Или же, когда напряжение близко к 20мВ, необходимо заменить устройство.

Тест замкнутой цепи

Используемое оборудование — зажимы типа «крокодил», адаптер термопары и цифровой мультиметр. Здесь адаптер помещается внутрь газового клапана, а затем термопара помещается на один край адаптера. Теперь включите мультиметр.Когда показание находится в диапазоне 12-15 мВ, устройство находится в исправном состоянии. Или же, когда показание напряжения падает ниже 12 мВ, это указывает на неисправное устройство.

Итак, используя описанные выше методы тестирования, можно узнать, исправна ли термопара.

В чем разница между термостатом и термопарой?

Различия между термостатом и термопарой:

имеет лучшую чувствительность

Характеристика Термопара Термостат
Диапазон температур от -454 до 328–172 50 0 302 0 F
Диапазон цен Меньше Высокая
Стабильность Обеспечивает меньшую стабильность Обеспечивает среднюю стабильность
Чувствительность Термопара
Линейность Умеренная Плохая
Стоимость системы Высокая Средняя

Преимущества и недостатки

К преимуществам термопар можно отнести следующие.

  • Высокая точность
  • Он прочный и может использоваться в суровых условиях, а также в условиях высокой вибрации.
  • Тепловая реакция быстрая
  • Рабочий диапазон температур широкий.
  • Широкий диапазон рабочих температур
  • Низкая стоимость и чрезвычайно стабильная

К недостаткам термопар можно отнести следующее.

  • Нелинейность
  • Наименьшая стабильность
  • Низкое напряжение
  • Требуется ссылка
  • Наименьшая чувствительность
  • Перекалибровка термопары жесткая

Приложения

Некоторые из применений термопар включают следующее.

  • Они используются в качестве датчиков температуры в термостатах в офисах, домах, офисах и на предприятиях.
  • Они используются в промышленности для контроля температуры металлов в чугуне, алюминии и металле.
  • Они используются в пищевой промышленности для криогенных и низкотемпературных применений. Термопары используются в качестве тепловых насосов для термоэлектрического охлаждения.
  • Используются для измерения температуры на химических заводах, нефтяных заводах.
  • Используются в газовых машинах для обнаружения пилотного пламени.
В чем разница между RTD и термопарой?

Еще одна важная вещь, которую следует учитывать в случае термопары, — это то, чем она отличается от устройства RTD. Итак, таблица объясняет различия между RTD и термопарой.

RTD Термопара
RTD широко подходит для измерения меньшего диапазона температур, который находится между (-200 0 C до 500 0 C) Термопара подходит для измерения более высокого диапазона температур, который находится между (-180 0 C до 2320 0 C)
Для минимального диапазона переключений он демонстрирует повышенную стабильность Они имеют минимальную стабильность, а также результаты не точен при многократном испытании
Он имеет большую точность, чем термопара Термопара имеет меньшую точность
Диапазон чувствительности больше и может даже рассчитывать минимальные изменения температуры изменения температуры
RTD-устройства имеют хорошее время отклика Therm Омопары обеспечивают более быстрый отклик, чем RTD
Выходной сигнал имеет линейную форму Выходной сигнал нелинейный по форме
Они более дорогие, чем термопары Они экономичны, чем RTD
Какова продолжительность жизни?

Срок службы термопары зависит от области применения, когда она используется.Таким образом, невозможно точно предсказать срок службы термопары. При правильном уходе за устройством он прослужит долго. В то время как при постоянном использовании они могут быть повреждены из-за эффекта старения.

Кроме того, из-за этого будет снижена выходная мощность и сигналы будут иметь низкую эффективность. Цена термопары тоже невысока. Таким образом, рекомендуется изменять термопару каждые 2-3 года. Это ответ на вопрос . Каков срок службы термопары ?

Итак, это все о термопаре.Наконец, исходя из приведенной выше информации, мы можем сделать вывод, что измерение выхода термопары может быть рассчитано с использованием таких методов, как мультиметр, потенциометр и усилитель с помощью выходных устройств. Основное назначение термопары — обеспечить последовательные и прямые измерения температуры в нескольких различных приложениях.

Как правильно установить термопары? Советы по установке термопар

Опубликовано 6 января 2020 г.

Термопары бывают разных стилей: от прямого погружения до защитной гильзы, портативных, поверхностного монтажа и многих других.У каждого есть свой способ реализации датчика, но следует помнить о нескольких вещах:

  • Помните, что единственная температура, которую измеряет термопара, — это ее собственная температура. Следовательно, цель состоит в том, чтобы довести измерительный спай термопары до той же температуры, что и объект или процесс, который вы хотите измерить.
  • Тепло всегда течет от горячего к холодному, а металлические провода, оболочки и корпуса проводят тепло. Следовательно, для получения точных измерений при погружении в воду важно, чтобы датчик был достаточно погружен, чтобы исключить передачу тепла вверх или вниз по проводам и корпусу.Это называется «проводимостью стержня» и зависит от процесса и условий окружающей среды.
  • Для поверхностных датчиков многие имеют монтажные отверстия для крепежа или клейкие поверхности для установки.
  • Некоторые термопары имеют монтажную резьбу или другие очевидные способы установки. С другой стороны, существует большой выбор компрессионных фитингов, вводов, кронштейнов и других принадлежностей для их монтажа в вашем технологическом процессе.

Электромонтаж термопар

У термопар есть положительный и отрицательный провода, поэтому при установке важно соблюдать полярность.Для термопар с цветовыми кодами ANSI / ASTM отрицательный провод всегда красный. В термопарах с цветовой кодировкой IEC отрицательный провод всегда белый.

При использовании удлинительного провода или соединителей необходимо использовать термопары того же типа, чтобы не создавать ошибки. Разъемы для термопар имеют полярность, указанную на корпусе разъема, и уникальные размеры контактов, обеспечивающие правильное соединение разъемов.

Если какое-либо соединение поменять местами, это приведет к ошибке измерения.

Подключение термопар к другим устройствам

При подключении термопар к другим устройствам необходимо соблюдать осторожность, чтобы обеспечить соблюдение правильной полярности. Термопары, изготовленные в соответствии с цветовыми кодами ANSI / ASTM, всегда имеют отрицательный провод как красный провод. Это противоположно нормальному электрическому стандарту положительного провода красного цвета. Кроме того, когда необходим удлинительный провод, для обеспечения точности необходимо использовать провод термопары.

Пересечение полярности и использование не термопарного провода в качестве удлинительного провода — две из наиболее распространенных причин ошибок при установке термопар.

Как использовать одну термопару для питания двух устройств

Если требуется более одного измерения, следует использовать двойные или несколько термопар. В сдвоенных термопарах в датчике содержатся отдельные измерительные цепи, поэтому каждый сигнал термопары не зависит от другого. Это гарантирует, что один измерительный сигнал не окажет отрицательного влияния на другой.

Передача сигнала

Сигналы термопар — это сигналы низкого напряжения, на которые легко влияет электромагнитный шум.Устройства высокого напряжения и электромагнитные излучатели, такие как двигатели и радиоприемники, могут попасть в сигнал термопары и подавить его. В случаях, когда необходимы длинные кабели или ожидаются электромагнитные помехи, можно использовать экранированный кабель для защиты сигнала термопары от этих источников.

Для многих лучшим вариантом является использование преобразователей температуры или кондиционеров сигнала. Эти устройства могут быть расположены рядом с датчиком и не только преобразуют сигнал низкого напряжения в сигнал 4-20 мА или другой более надежный сигнал, но также будут обеспечивать опорный переход.

Вопрос о том, какой длины может быть кабель термопары, больше зависит от возможностей измерительного прибора.

Диагностика ошибок считывания температуры с помощью термопар

При исследовании ошибок чтения есть несколько способов начать:

  • Термопары имеют положительный и отрицательный провода, поэтому при их подключении необходимо убедиться в правильности полярности соединений. Это также верно при добавлении удлинительных проводов в схему.Помните, что красный провод является отрицательным при использовании термопар с цветовой кодировкой ANSI / STM (белый для термопар с цветовой кодировкой IEC).
  • Если для подключения термопары к ее измерительному прибору используется удлинительный провод, необходимо использовать провод того же типа, иначе возникнут ошибки.
  • Для термопар требуется так называемый эталон холодного спая на приборной стороне цепи. Большинство приборов для термопар включают это, но если вы используете милливольтметр, это необходимо учитывать.
  • Электрический шум может вызвать ошибки измерения, особенно при использовании заземленных термопар.

Информация о продукте

Информация о продукте

Основы термопар и RTD

Термопары

Что такое термопары?

Термопары — это датчики температуры.Они работают по принципу, согласно которому соединение двух разнородных металлов (образующих замкнутую цепь) создает измеримое напряжение (электродвижущую силу), когда два конца термопары имеют разные температуры (см. Рисунок 1). Поскольку термопары имеют простую конструкцию и превосходную надежность, они используются в качестве промышленных датчиков температуры в широком диапазоне областей. Более того, подключение измерительного прибора (самописцы, РСУ, ПЛК и т. Д.) К одному концу цепи позволяет измерять разность потенциалов (электромагнитную силу) (см. Рисунок 2).

Существует много типов термопар для измерения различных температур. Обычно используемые типы с превосходными характеристиками стандартизированы стандартами JIS, IEC и другими. Ниже приведены типичные типы термопар (обычно представленные символами) и их особенности (преимущества и недостатки).

Термопары Преимущества и недостатки

Термопара состоит как минимум из двух металлов, соединенных вместе, чтобы образовать два спая.Один связан с телом, температуру которого нужно измерить; это горячий или измерительный спай. Другой переход связан с телом известной температуры; это холодный или опорный спай. Поэтому термопара измеряет неизвестную температуру тела относительно известной температуры другого тела.

  • Принцип работы

    Принцип работы термопары основан на трех эффектах, открытых Зеебеком, Пельтье и Томсоном.Они следующие:

    1) Эффект Зеебека: Эффект Зеебека утверждает, что когда два разных или разных металла соединяются вместе в двух стыках, на этих двух стыках создается электродвижущая сила (ЭДС). Количество генерируемой ЭДС различается для разных комбинаций металлов.

    2) Эффект Пельтье: Согласно эффекту Пельтье, когда два разнородных металла соединяются вместе, образуя два перехода, в цепи генерируется ЭДС из-за разной температуры двух переходов цепи.

    3) Эффект Томсона: Согласно эффекту Томсона, когда два разнородных металла соединяются вместе, образуя два соединения, в цепи существует потенциал из-за градиента температуры по всей длине проводников в цепи.

    В большинстве случаев ЭДС, предполагаемая эффектом Томсона, очень мала, и ею можно пренебречь, правильно подобрав металлы. Эффект Пельтье играет важную роль в принципе работы термопары.

Термопара: как это работает

Общая схема работы термопары показана на рисунке. Он состоит из двух разнородных металлов, A и B. Они соединены вместе, образуя два перехода, p и q, которые поддерживаются при температурах T 1 и T 2 соответственно. Помните, что термопара не может образоваться, если не будет двух спаев. Поскольку два перехода поддерживаются при разных температурах, в цепи генерируется ЭДС Пельтье, которая является функцией температур двух переходов.

Если температура обоих переходов одинакова, на обоих переходах будет генерироваться равная и противоположная ЭДС, а общий ток, протекающий через переход, равен нулю. Если поддерживать разные температуры в переходах, ЭДС не станет равной нулю, и по цепи будет протекать чистый ток. Полная ЭДС, протекающая через этот контур, зависит от металлов, используемых в контуре, а также от температуры двух переходов. Полная ЭДС или ток, протекающий по цепи, можно легко измерить с помощью подходящего устройства.

Устройство для измерения тока или ЭДС включается в цепь термопары. Он измеряет количество ЭДС, протекающей по цепи из-за двух стыков двух разнородных металлов, поддерживаемых при разных температурах. Показаны два спая термопары и устройство, используемое для измерения ЭДС (потенциометр).

Теперь температура эталонных спаев уже известна, а температура измерительного спая неизвестна.Выходной сигнал цепи термопары калибруется непосредственно по неизвестной температуре. Таким образом, выходное напряжение или ток, полученные от цепи термопары, напрямую дает значение неизвестной температуры.

Температурные датчики сопротивления

Что такое датчики температуры сопротивления?

Резистивные датчики температуры (RTD) — это датчики температуры. Они работают по принципу, согласно которому удельное сопротивление металла увеличивается пропорционально его температуре.

Платиновый RTD использует платину (Pt) в качестве резистивного термочувствительного элемента, который имеет хорошие температурные характеристики, является линейным и стабильным.

Среди различных типов датчиков температуры платиновые термометры сопротивления широко используются благодаря своей высокой точности. В частности, во всем мире пользуется популярностью Pt100 (значение сопротивления при 0 ° составляет 100 Ом). Никель и медь также используются для RTD. Термисторы используются в качестве резисторов.

Доступны три типа техники подключения : двухпроводная, трехпроводная и четырехпроводная.

Кроме того, измерительная схема на стороне измерительного прибора различается в зависимости от способа подключения. Рисунки, проиллюстрированные ниже, объясняют принципы трехпроводного метода, наиболее часто используемого в промышленных измерениях, и четырехпроводного метода, используемого для прецизионных измерений.

а) Принцип трехпроводной техники

Сопротивление проводов r1 и r2 идеально согласовано и, следовательно, компенсируется по мостовой схеме.Следовательно, поддержание низкого и равномерного сопротивления трех проводов позволяет выполнять измерения температуры с небольшими ошибками, даже если провода между Rt и измерительным прибором сделаны длиннее.

б) Принцип четырехпроводной техники

Постоянный ток проходит через r1 и r4, и напряжение измеряется на выводах RTD, что не зависит от сопротивления проводов в ваших измерениях. Таким образом, эта система позволяет точно измерять температуру.

Если резистивный датчик температуры четырехпроводной схемы подсоединен к измерительному прибору трехпроводной схемы, отключение одного из выводов термометра сопротивления при четырехпроводной схеме обеспечивает простую конфигурацию измерения температуры. В этом случае необходимо поддерживать низкое и равномерное сопротивление трех выводов так же, как и при трехпроводной технике. неиспользованный провод должен быть заделан (изолирован), чтобы избежать воздействия шума и других факторов.

Также читайте: Термопара: расчет температуры по милливольтам

Схема термопары.| Download Scientific Diagram

Термоэлектрический материал, также известный как материал для выработки термоэлектрической энергии, является функциональным материалом для преобразования тепла и энергии. Термоэлектрический модуль состоял из блока коллектора тепла, термоэлектрического элемента, блока рассеивания тепла и других основных компонентов, в основном для тепла и электрического охлаждения или других конкретных целей. Электроэнергия может вырабатываться термоэлектрическим модулем при достаточном естественном температурном градиенте и промышленном отходящем тепле и т. Д., и это пойдет на пользу социальной среде. По сравнению с электрическими холодильными машинами на эффекте Пельтье, холодильные машины с механическим сжатием не имели преимуществ, таких как малый размер, легкий вес, отсутствие каких-либо механических движущихся частей, работа без помех, отсутствие загрязнения, например, проблемы окружающей среды жидких или газообразных сред , и обладал точным контролем температуры, быстрым откликом, долгим сроком службы и другими преимуществами устройства. В настоящее время термоэлектрический охладитель (ТЭО) широко используется в маркетинге в медицине, косметике и других областях.В целом, рабочая температура термоэлектрического охладителя не позволяет использовать его при высоких температурах, а цена на ТЭО также относительно ниже. TEC выйдет из строя из-за плохого отвода тепла или из-за воздействия высокой температуры. Чтобы улучшить работоспособность ТЕС при более высоких температурах, в этом исследовании мы разработали три вида структуры ТЭО. После тщательной обработки ТЕС может работать в области более высоких температур в течение длительного времени; раньше исходный ТЕС применялся только при температуре до 200 ° C, но теперь он допускает температуру до 300 ° C, в то время как его выходная мощность увеличена на 15% или более, что выше, чем у исходного ТЕС.В настоящее время во всем мире продвигается защита окружающей среды, экологически чистая энергия и возобновляемые источники энергии, особенно когда источники отработанного тепла существуют во всех сферах жизни, трудно утилизировать до 88% низкотемпературного отработанного тепла больше, если мы сможем восстановить Отработанное тепло необходимо для производства электроэнергии из выхлопной трубы автомобилей или для обеспечения жизнедеятельности печи, барбекю, жареной пищи, других низкотемпературных отходов тепла и, таким образом, должно применяться надлежащим образом, и мы можем получить благоприятный экологический результат, который путем снизить выбросы парниковых газов углекислого газа.

Подключение сигналов термопары к устройству сбора данных

Включено в раздел

В этом документе представлены пошаговые инструкции по подключению и настройке вашего устройства NI DAQ для использования с термопарой. Прежде чем вы начнете использовать ваше оборудование DAQ, вы должны установить среду разработки приложений и программное обеспечение драйвера NI-DAQmx. Обратитесь к документу Установка LabVIEW и NI-DAQmx для получения дополнительной информации.

Основы измерения термопар

Термопары — наиболее часто используемые датчики температуры.Термопара создается, когда два разнородных металла соприкасаются и создают небольшое напряжение холостого хода, соответствующее температуре. Это термоэлектрическое напряжение известно как напряжение Зеебека и нелинейно по температуре.

Типы термопар

Термопары различаются по составу и диапазону точности:

Тип термопары

Положительный провод

Отрицательный провод

Диапазон температур (° C) для полиномиальных коэффициентов или для преобразования таблицы

Диапазон температур (° C) для коэффициентов обратного полинома

Дж

Утюг

Константан

-210 до 1200

-210 до 1200

К

Хромель

Алюмель

-270 до 1372

-200 до 1372

N

Никросил

Нисил

-270 до 1300

-200 до 1300

R

Платина-13% родий

Платина

-50 до 1768

-50 до 1768

S

Платина-10% родий

Платина

-50 до 1768

-50 до 1768

T

Медь

Константан

-270 до 400

от -200 до 400

B

Платина

Родий

0 до 1820

250 до 1820

E

Хромель

Константан

-270 до 1000

-200 до 1000

Таблица 1. Типы термопар

Компенсация холодного спая

Для термопар

требуется некоторая форма эталона температуры для компенсации нежелательных паразитных термопар. Паразитная термопара создается, когда вы подключаете термопару к измерительному оборудованию. Поскольку клеммы на оборудовании изготовлены из материала, отличного от материала провода термопары, на стыках, называемых холодными спаями, создается напряжение, которое изменяет выходное напряжение самой термопары.Вы можете измерить температуру в этом эталонном спайе с помощью датчика температуры прямого считывания, такого как термистор или датчик IC, а затем вычесть термоэлектрические вклады паразитных термопар. Этот процесс называется компенсацией холодного спая (CJC). Вы должны указать свой источник CJC или постоянное значение (обычно 25 ° C) при настройке измерения термопары в программном обеспечении.

Расположение выводов DAQ-устройства

Прежде чем подключать какие-либо сигналы, найдите распиновку вашего устройства.

  1. Откройте Measurement & Automation Explorer (MAX) и разверните «Устройства и интерфейсы».
  2. Щелкните правой кнопкой мыши имя устройства и выберите «Назначение выводов устройства».

Рис. 1. Справка по терминалам устройства

Следующие типы клемм соответствуют измерениям с помощью термопар:

  1. TC X (+/-) — Большая часть оборудования термопар NI относится к клеммам TC + и TC- для каждого канала дифференциальных измерений.
  2. AI X (+/-) — Некоторые устройства могут вместо этого ссылаться на AI x + и AI x -, где x относится к номеру канала.
  3. COM — Клемма общего заземления для всех каналов DI может быть изолирована от земли, в зависимости от вашего устройства.

Настройка измерения термопары

Вы можете использовать NI MAX для быстрой проверки точности вашей измерительной системы. Настройка. Используя глобальный виртуальный канал NI-DAQmx, вы можете настроить измерение термопары без какого-либо программирования.Виртуальный канал — это концепция архитектуры драйвера NI-DAQmx, используемая для представления набора настроек свойств устройства, которые могут включать в себя имя, физический канал, входные терминальные соединения, тип измерения или генерации и информацию о масштабировании.

Для начала выполните следующие действия:

  1. Открыв MAX, щелкните правой кнопкой мыши Data Neighborhood и выберите Create New.
  2. Выберите NI-DAQmx Global Virtual Channel и нажмите Next.
  3. Выберите Сбор сигналов »Аналоговый вход» Температура »Термопара

Рисунок 2. Создание виртуального канала NI-DAQmx

  1. Выберите ai0 или любой другой физический канал, который вы собираетесь подключить к термопаре. Физический канал — это терминал или вывод, на котором вы можете измерять или генерировать аналоговый или цифровой сигнал. Один физический канал может включать в себя более одной клеммы или вывода, как в случае входного канала дифференциальной термопары. В этом случае ai0 соответствует TC0 + и TC0- на схеме выводов NI-9211.

Рисунок 3. Физические каналы устройства

  1. Нажмите Далее и введите имя глобального виртуального канала или оставьте значение по умолчанию.
  2. Нажмите Finish, чтобы увидеть следующий экран в MAX:

Рисунок 4. Настройка канала термопары в MAX

  1. На вкладке настроек введите минимальное и максимальное значения температуры, которые вы ожидаете считывать с термопары (от 0 ° C до 100 ° C по умолчанию).
  2. Выберите тип термопары и CJC Source и CJC Value .

Подключение термопары к устройству

Следующим шагом является физическое подключение термопары к вашему DAQ-устройству.

  1. Щелкните вкладку Схема подключения в MAX, чтобы продолжить.

Рисунок 5. Схема подключения термопары

Каждый провод термопары имеет положительный и отрицательный вывод. Схема подключения показывает, какие контакты на вашем DAQ-устройстве должны быть подключены в соответствии с выбранным вами физическим каналом.Подключите положительный провод термопары к клемме TC +, а отрицательный провод термопары к клемме TC–. Если вы не уверены, какой из выводов термопары положительный, а какой отрицательный, проверьте документацию на термопару или катушку с проводом термопары.

Если вы используете экранированную термопару, подключите клемму COM вашего устройства к экрану, а экран — к опорному синфазному напряжению термопары. Синфазное опорное напряжение — это напряжение в пределах ± 1.2 В синфазного напряжения термопары. Если вы используете плавающую термопару или термопару в пределах ± 1,2 В от заземления, подключите COM и экран к заземлению. Методика заземления экрана может варьироваться в зависимости от области применения. См. Рисунок 6 для иллюстрации типичной конфигурации экрана.

Рисунок 6. Подключение экранированной термопары

Используйте глобальные виртуальные каналы NI-DAQmx для предварительного просмотра ваших измерений.

  1. Пока MAX открыт, снова щелкните вкладку NI-DAQmx Global Channel и нажмите кнопку Run. Значение температуры вашей термопары отображается в верхней части экрана.

Рисунок 7. Предварительный просмотр измерения термопары в MAX

Вы можете просмотреть сигнал в табличной форме или в виде графика, выбрав График в раскрывающемся списке Display Type . У вас также есть возможность сохранить ваш глобальный виртуальный канал NI-DAQmx, если вы захотите снова обратиться к этому экрану конфигурации в будущем.


Пред.

Подключение и настройка оборудования

Введение в LabVIEW

Следующие

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *