Тепло и электропроводность железа: Железо теплопроводность и электропроводность

Содержание

Железо теплопроводность и электропроводность

  • 5 — 9 классы
  • Химия
  • 8 баллов

свойства железа и серы (агр.состояние. теплопроводность электропроводность . запах

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Коэффициент теплопроводности металлов при температура, °С

От чего зависит показатель теплопроводности

Изучая способность передачи тепла металлическими изделиями выявлено, что теплопроводность зависит от:

  • вида металла;
  • химического состава;
  • пористости;
  • размеров.

Металлы имеют различное строение кристаллической решетки, а это может изменить теплопроводность материала. Так, например, у стали и алюминия, особенности строения микрочастиц влияют по-разному на скорость передачи тепловой энергии через них.

Коэффициент теплопроводности может иметь различные значения для одного и того же металла при изменении температуры воздействия. Это связано с тем, что у разных металлов градус плавления отличается, а значит, при других параметрах окружающей среды, свойства материалов также будут отличаться, а это отразится на теплопроводности.

Методы измерения

Для измерения теплопроводности металлов используют два метода: стационарный и нестационарный. Первый характеризуется достижением постоянной величины изменившейся температуры на контролируемой поверхности, а второй – при частичном изменении таковой.

Стационарное измерение проводится опытным путем, требует большого количества времени, а также применения исследуемого металла в виде заготовок правильной формы, с плоскими поверхностями. Образец располагают между нагретой и охлажденной поверхностью, а после прикосновения плоскостей, измеряют время, за которое заготовка может увеличить температуру прохладной опоры на один градус по Кельвину. Когда рассчитывают теплопроводность, обязательно учитывают размеры исследуемого образца.

Нестационарную методику исследований используют в редких случаях из-за того, что результат, зачастую, бывает необъективным. В наши дни никто, кроме ученых, не занимается измерением коэффициента, все используют, давно выведенные опытным путем, значения для различных материалов. Это обусловлено постоянством данного параметра при сохранении химического состава изделия.

Теплопроводность стали, меди, алюминия, никеля и их сплавов

Обычное железо и цветные металлы имеют разное строение молекул и атомов. Это позволяет им отличаться друг от друга не только механическими, но и свойствами теплопроводности, что, в свою очередь, влияет на применение тех или иных металлов в различных отраслях хозяйства.

Сталь имеет коэффициент теплопроводности, при температуре окружающей среды 0 град. (С), равный 63, а при увеличении градуса до 600, он снижается до 21 Вт/м*град. Алюминий, в таких же условиях, наоборот – увеличит значение от 202 до 422 Вт/м*град. Сплавы из алюминия, будут также повышать теплопроводность, по мере увеличения температуры. Только величина коэффициента будет на порядок ниже, в зависимости от количества примесей, и колебаться в пределах от 100 до 180 единиц.

Медь, при изменении температуры в тех же пределах, будет уменьшать теплопроводность от 393 до 354 Вт/м*град. При этом, медь содержащие сплавы латуни будут иметь такие же свойства, как и алюминиевые, а значение теплопроводности будет изменяться от 100 до 200 единиц, в зависимости от количества цинка и других примесей в составе сплава латуни.

Коэффициент теплопроводности чистого никеля считается низким, он будет менять свое значение от 67 до 57 Вт/м*град. Сплавы с содержанием никеля, будут также иметь коэффициент с пониженным значением, который, благодаря содержанию железа и цинка, колеблется от 20 до 50 Вт/м*град. А наличие хрома, позволит понизить теплопроводность в металлах до 12 единиц, с небольшим увеличением этой величины, при нагреве.

Применение

Агрегатное состояние материалов имеет отличительную структуру строения молекул и атомов. Именно это оказывает большое влияние на металлические изделия и их свойства, в зависимости от назначения.

Отличающийся химический состав узлов и деталей из железа, позволяет обладать различной теплопроводностью. Это связано со структурой таких металлов как чугун, сталь, медь и алюминий. Пористость чугунных изделий способствует медленному нагреванию, а плотность медной структуры – наоборот, ускоряет процесс теплоотдачи. Эти свойства используют для быстрого отвода тепла или постепенного нагревания продукции инертного назначения. Примером использования свойств металлических изделий является:

  • кухонная посуда с различными свойствами;
  • оборудование для пайки труб;
  • утюги;
  • подшипники качения и скольжения;
  • сантехническое оборудование для подогрева воды;
  • приборы отопления.

Медные трубки широко используют в радиаторах автомобильных систем охлаждения и кондиционеров, применяемых в быту. Чугунные батареи сохраняют тепло в квартире, даже при непостоянной подаче теплоносителя требуемой температуры. А радиаторы из алюминия, способствуют быстрой передаче тепла отапливаемому помещению.

При возникновении высокой температуры, в результате трения металлических поверхностей, также важно учитывать теплопроводность изделия. В любом редукторе или другом механическом оборудовании, способность отводить тепло, позволит деталям механизма сохранить прочность и не быть подвергнутыми разрушению, в процессе эксплуатации. Знание свойств теплопередачи различных материалов, позволит грамотно применить те или иные сплавы из цветных или черных металлов.

В таблице приведена плотность железа d, а также значения его удельной теплоемкости Cp, температуропроводности a, коэффициента теплопроводности λ, удельного электрического сопротивления ρ, функции Лоренца L/L при различных температурах — в диапазоне от 100 до 2000 К.

Свойства железа существенно зависят от температуры: при нагревании этого металла его плотность, теплопроводность и температуропроводность уменьшаются, а значение удельной теплоемкости железа растет.

Плотность железа равна 7870 кг/м 3 при комнатной температуре. При нагревании железа его плотность снижается. Поскольку железо является основным элементом в составе стали, то плотность железа определяет и значение плотности стали. Зависимость плотности железа от температуры слабая — при его нагревании плотность металла снижается и принимает минимальное значение 7040 кг/м 3 при температуре плавления, равной 1810 К или 1537°С.

Удельная теплоемкость железа, по данным таблицы, имеет значение 450 Дж/(кг·град) при температуре 27°С. В зависимости от структуры удельная теплоемкость твердого железа при увеличении температуры изменяется по-разному. По значениям в таблице видны характерный максимум теплоемкости железа вблизи Tc и скачки при структурных переходах и при плавлении.

В расплавленном состоянии свойства железа претерпевают изменения. Так, плотность жидкого железа уменьшается и становиться равной 7040 кг/м 3 . Удельная теплоемкость железа в расплавленном состоянии имеет величину 835 Дж/(кг·град), а теплопроводность железа снижается до значения 39 Вт/(м·град). При этом удельное электрическое сопротивление этого металла увеличивается и при 2000 К принимает значение 138·10 -8 Ом·м.

Теплопроводность железа при комнатной температуре равна 80 Вт/(м·град). С ростом температуры теплопроводность железа снижается — она имеет отрицательный температурный коэффициент в области температуры 100-1042 К, а затем начинает слабо расти. Минимальное значение теплопроводности железа составляет 25,4 Вт/(м·град) вблизи точки Кюри. При β-γ переходе наблюдается слабое изменение теплопроводности, которое также имеет место и при γ-δ переходе.

Теплопроводность железа резко падает по мере увеличения количества примесей, особенно кремния и серы. Наивысшей теплопроводностью обладает очень чистое электролитическое железо — его теплопроводность при 27°С равна 95 Вт/(м·град).

Зависимость коэффициента теплопроводности железа от температуры также определяется степенью чистоты этого металла. Чем железо чище, тем выше его теплопроводность и тем больше по абсолютной величине она снижается с повышением температуры.

«>

Обладает ли железо теплопроводностью и электропроводностью. О теплопроводности меди и ее сплавов

– первый по значимости и распространенности конструкционный материал. Известен он с глубокой древности, а свойства его таковы, что когда железо научились выплавлять в значимом количестве, металл вытеснил все остальные сплавы. Наступил век железа и, судя по , время это закончится нескоро. Данная статья расскажет вам, какова удельная плотность железа, какая у него температура плавления в чистом виде.

Железо – типичный металл, причем химически активный. Вещество вступает в реакцию при нормальной температуре, а нагрев или повышение влажности значительно увеличивают его реакционноспособность. Железо корродирует на воздухе, горит в атмосфере чистого кислорода, а в виде мелкой пыли способно воспламениться и на воздухе.

Чистому железу присуща ковкость, однако в таком виде металл встречается очень редко. На деле под железом подразумевают сплав с небольшими долями примесей – до 0,8%, которому присущи мягкость и ковкость чистого вещества. Значение для народного хозяйства имеет сплавы с углеродом – сталь, чугун, нержавеющая сталь.

Железу присущ полиморфизм: выделяют целых 4 модификации, отличающиеся структурой и параметрами решетки:

  • α-Fe – существует от нуля до +769 С. Имеет объемно-центрированную кубическую решетку и является ферромагнетиком, то есть, сохраняет намагниченность в отсутствие внешнего магнитного поля. +769 С – точки Кюри для металла;
  • от +769 до +917 С появляется β-Fe. От α-фазы она отличается лишь параметрами решетки. Практически все физические свойства при этом сохраняются за исключением магнитных: железо становится парамагнетиком, то есть, способность намагничиваться оно утрачивает и втягивается в магнитное поле. Металловедение β-фазу как отдельную модификацию не рассматривает. Поскольку переход не влияет на значимые физические характеристики;
  • в диапазоне от 917 до 1394 С существует γ-модификация, которой присуща гранецентрированная кубическая решетка;
  • при температуре выше +1394 С появляется δ-фаза, для которой характерна объемно-центрированная кубическая решетка.

При высоком давлении, а также при легировании металла некоторыми добавками образуется ε- фаза с гексагонической плотноупакованной решеткой.

Температура фазовых переходов заметно изменяется при легировании тем же углеродом. Собственно, сама способность железа образовать столько модификаций служит основой обработки стали в разных температурных режимах. Без таких переходов металл не получил бы столь широкого распространения.

Теперь настал черед свойств металла железа.

О структуре железа рассказывает этот видеосюжет:

Свойства и характеристики металла

Железо – достаточно легкий, умеренно тугоплавкий металл, серебристо-серого цвета. Легко реагирует с разбавленными кислотами и поэтому считается элементом средней активности. На воздухе – сухом, металл постепенно покрывается пленкой оксида, которая препятствует дальнейшей реакции.

Но при самой небольшой влажности вместо пленки появляется ржавчина – рыхлая и неоднородная по составу. Ржавчина дальнейшей коррозии железа не препятствует. Однако физические свойства металла, а, главное, его сплавов с углеродом таковы, что, несмотря на низкую коррозийную стойкость, использование железа более чем оправдано.

Масса и плотность

Молекулярная масса железа составляет 55,8, что указывает на относительную легкость вещества. А какая же у железа плотность? Такой показатель определяется фазовой модификацией:

  • α-Fe – 7,87 г/куб. см при 20 С, и 7,67 г/куб. см при 600 С;
  • γ-фаза отличается еще более низкой плотностью – 7,59 г/куб см при 1000С;
  • плотность δ-фазы составляет 7,409 г/куб см.

С повышением температуры плотность железа закономерно падает.

А теперь давайте узнаем, какова температура плавления железа по Цельсию, сравнивая ее, например, с или чугуном.

Температурный диапазон

Металл относится к умеренно тугоплавким, что означает сравнительно невысокую температуру изменения агрегатного состояния:

  • температура плавления – 1539 С;
  • температура кипения – 2862 С;
  • температура Кюри, то есть, утраты способности к намагничиванию – 719 С.

Стоит иметь в виду, что когда говорят о температуре плавления или кипения, имеют дело с δ-фазой вещества.

Данное видео поведает вам о физических и химических свойствах железа:

Механические характеристики

Железо и его сплавы настолько распространены, что хотя и стали использоваться позже чем, например, и , стали своеобразными эталонами. Когда сравнивают металлы, указывают на железо: крепче, чем сталь, мягче железа в 2 раза и так далее.

Характеристики приводятся для металла, включающего малые доли примесей:

  • твердость по шкале Мооса – 4–5;
  • твердость по Бринеллю – 350–450 Мн/кв. м. Причем у химически чистого железа твердость выше – 588–686;

Показатели прочности исключительно сильно зависят от количества и характера примесей. Эта величина регламентируется ГОСТом для каждой марки сплава или чистого метала. Так, предел прочности на сжатие для нелегированной стали составляет 400–550 МПа. При закалке этой марки предел прочности при растяжении увеличивается до 700 МПа.

  • ударная вязкость металла составляет 300 Мн/кв м;
  • предел текучести –100 Мн/кв. м.

О том, что надо для определения удельной теплоемкости железа, узнаем далее.

Теплоемкость и теплопроводность

Как и всякий металл, железо проводит тепло, хотя показатели его в этой области невысоки: по теплопроводности металл уступает алюминию – в 2 раза меньше, и – в 5 раз.

Теплопроводность при 25 С составляет 74,04 вт/(м·К). Величина зависит от температуры;

  • при 100 к теплопроводность составляет 132 [Вт/(м.К)];
  • при 300 К – 80,3 [Вт/(м.К)];
  • при 400 – 69,4 [Вт/(м.К)];
  • а при 1500 – 31,8 [Вт/(м.К)].
  • Коэффициент температурного расширения при 20 С – 11,7·10-6.
  • Теплоемкость металла определяется его фазовой структурой и довольно сложно зависит от температуры. С повышением до 250 С, теплоемкость медленно увеличивается, затем резко возрастает до достижения точки Кюри, а потом начинается снижаться.
  • Удельная теплоемкость в температурном диапазоне от 0 до 1000С составляет 640,57 дж/(кг·К).

Электропроводность

Железо проводит ток, но далеко не так хорошо, как медь и серебро. Удельное электрическое сопротивление металла при нормальных условиях – 9,7·10-8 ом·м.

Поскольку железо является ферромагнетиком, его показатели в этой области более значимы:

  • магнитная индукция насыщения составляет 2,18 Тл;
  • магнитная проницаемость – 1,45.106.

Токсичность

Металл не представляет опасности для человеческого организма.
стали и изготовления изделий из железа могут быть опасными, но только за счет высоких температур и тех добавок, которые используют при производстве различных сплавов. Отходы железа – металлолом, представляют опасность для окружающей среды, но вполне умеренную, поскольку металл ржавеет на воздухе.

Железо не обладает биологической инертностью, поэтому как материал для протезирования не используется. Однако в человеческом организме этот элемент играет одну из важнейших ролей: нарушение в усвоении железа или недостаточное количество последнего в рационе гарантирует в лучшем случае анемию.

Усваивается железо с большим трудом – 5–10% от всего количества, поступаемого в организм, или 10–20%, если наблюдается его недостаток.

  • Обычная суточная потребность в железе составляет 10 мг для мужчин и 20 мг для женщин.
  • Токсическая доза – 200 мг/сутки.
  • Летальная – 7–35 г. Получить такое количество железа практически невозможно, поэтому отравление железом встречается крайне редко.

Железо – металл, чьи физические характеристики, в частности, прочность, можно существенно изменить, прибегая к механической обработке или добавке очень небольшого количества легирующих элементов. Эта особенность в сочетании с доступностью и легкостью добычи металла делает железо самым востребованным конструкционным материалом.

Еще больше о свойствах железа расскажет специалистка в видео ниже:

Теплопроводность представляет собой физическую величину, которая определяет способность материалов проводить тепло. Иными словами, теплопроводность представляет собой способность субстанций передавать кинетическую энергию атомов и молекул другим субстанциям, находящиеся в непосредственном контакте с ними. В СИ эта величина измеряется во Вт/(К*м) (Ватт на Кельвин-метр), что эквивалентно Дж/(с*м*К) (Джоуль на секунду-Кельвин-метр).

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия

Свойства металлов. DjVu

ФPAГMEHT УЧЕБНИКА (…) Мы уже знаем, что в пространственной решётке металлических кристаллов находятся положительно заряженные атомы металлов — ионы. Они более или менее прочно удерживаются на своих местах. Вокруг ионов беспорядочно движутся свободные электроны. Их можно представить в виде «электронного газа», омывающего кристаллическую решётку. Свободные электроны легко перемещаются внутри решётки и служат хорошими переносчиками тепловой энергии от нагретых слоёв металла к холодным.

      Высокую теплопроводность металла всегда легко обнаружить. Прикоснитесь в холодную погоду рукой к стене деревянного дома и к железной ограде: железо на ощупь всегда гораздо холоднее, чем дерево, так как железо быстро отводит тепло от руки, а дерево — в сотни раз медленнее. Лучше всех других металлов проводят тепло серебро и золото, затем идут медь, алюминий, вольфрам, магний, цинк и другие. Самые плохие металлические проводники тепла — свинец и ртуть.

      Теплопроводность измеряют количеством тепла, которое проходит по металлическому стержню сечением в 1 квадратный сантиметр за 1 минуту. Если теплопроводность серебра условно принять за 100, то теплопроводность меди будет 90, алюминия 27, железа 15, свинца 12, ртути 2, а теплопроводность дерева всего 0,05.

      Чем больше теплопроводность металла, тем быстрее и равномернее он нагревается.

      Благодаря своей высокой теплопроводности металлы широко используются в тех случаях, когда необходимо быстрое нагревание или охлаждение. Паровые котлы, аппараты, в которых протекают различные химические процессы при высоких температурах, батареи центрального отопления, радиаторы автомобилей — всё это делается из металлов. Аппараты, которые должны отдавать или поглощать много тепла, чаще всего изготовляются из хороших проводников тепла — меди, алюминия.

      Самые лучшие проводники электричества — металлы. Хорошей электропроводностью металлы опять-таки обязаны свободным электронам.

      Когда мы присоединяем лампочку, плитку или какой-нибудь другой электрический прибор к источнику тока, в проводах, в нити лампочки, в спирали плитки мгновенно возникают большие изменения: электроны теряют прежнюю полную свободу движения и устремляются к положительному полюсу источника тока. Такой направленный поток электронов и есть электрический ток в металлах.

      Поток электронов движется по металлу не беспрепятственно — он встречает на своём пути ионы. Движение отдельных электронов тормозится. Электроны передают часть своей энергии ионам, благодаря чему скорость колебательного движения ионов увеличивается. Это приводит к тому, что проводник нагревается.

      Ионы разных металлов оказывают движению электронов неодинаковое сопротивление. Если сопротивление мало, металл нагревается током слабо, если же сопротивление велико, металл может раскалиться. Медные провода, подводящие ток к электрической плитке, почти не нагреваются, так как электрическое сопротивление меди ничтожно. А нихромовая спираль плитки раскаляется докрасна. Ещё сильнее нагревается вольфрамовая нить электрической лампочки.

      Наиболее высокой электропроводностью отличаются серебро и медь, затем следуют золото, хром, алюминий, марганец, вольфрам и т. д. Плохо проводят ток железо, ртуть и титан. Если электропроводность серебра принять за 100, то электропроводность меди равна 94, алюминия— 55, железа и ртути — 2, а титана — лишь 0,3.

      Серебро — металл дорогой и в электротехнике используется мало, но медь применяется для изготовления проводов, кабелей, шин и других электротехнических изделий в громадных количествах. Электропроводность алюминия в 1,7 раза меньше, чем у меди, и поэтому алюминий применяется в электротехнике реже, чем медь.

      Серебро, медь, золото, хром, алюминий, свинец, ртуть. Мы видели, что в таком же приблизительно порядке стоят металлы и в ряду с постепенно убывающей теплопроводностью (см. стр. 33).

      Наилучшие проводники электрического тока, как правило, являются и наилучшими проводниками тепла. Между теплопроводностью и электропроводностью металлов существует определённая связь, и чем выше электропроводность металла, тем обычно выше и его теплопроводность.

      Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Это объясняется следующим образом. Атомы элементов, составляющих примеси, вклиниваются в кристаллическую решётку металла и нарушают её правильность. В результате решётка становится более серьёзной преградой для электронного потока.

      Если в меди присутствуют ничтожные количества примесей — десятые и даже сотые доли процента — электропроводность её уже сильно понижается. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05% примесей. И наоборот, в тех случаях, когда необходим материал с высоким сопротивлением— для реостатов), для различных нагревательных приборов, применяются сплавы — нихром, никелин, константан и другие.

      Электропроводность металла зависит также и от характера его обработки. После прокатки, волочения и обработки резанием электропроводность металла понижается. Это связано с искажением кристаллической решётки при обработке, с образованием в ней дефектов, которые тормозят движение свободных электронов.

      Очень интересна зависимость электропроводности металлов от температуры. Мы уже знаем, что при нагревании размах и скорость колебаний ионов в кристаллической решётке металла увеличиваются. В связи с этим должно возрастать и сопротивление ионов электронному потоку. И действительно, чем выше температура, тем выше сопротивление проводника току. При температурах плавления сопротивление большинства металлов увеличивается в полтора-два раза.

      При охлаждении происходит-обратное явление: беспорядочное колебательное движение ионов в узлах решётки уменьшается, сопротивление потоку электронов понижается и электропроводность увеличивается.

      Исследуя свойства металлов при глубоком (очень сильном) охлаждении, учёные обнаружили замечательное явление: вблизи абсолютного нуля, то-есть при температурах около минус 273,16°, металлы полностью утрачивают электрическое сопротивление. Они становятся «идеальными проводниками»: в замкнутом металлическом кольце ток не ослабевает долгое время, хотя кольцо уже не соединено с источником тока! Это явление названо сверхпроводимостью. Оно наблюдается у алюминия, цинка, олова, свинца и некоторых других металлов. Эти металлы становятся сверхпроводниками при температурах ниже минус 263°.

      Как объяснить сверхпроводимость? Почему одни металлы достигают состояния идеальной проводимости, а другие нет? На эти вопросы пока ещё нет ответа. Явление сверхпроводимости имеет громадное значение для теории строения металлов, и в настоящее время его изучают советские учёные. Работы академика Ландау и члена-корреспондента Академии наук СССР А. И. Шаль-никова в этой области удостоены Сталинских премий.

      МАГНИТНЫЕ СВОЙСТВА

      Известна железная руда — магнитный железняк. Куски магнитного железняка обладают замечательным свойством притягивать к себе железные и стальные предметы. Это — естественные магниты. Лёгкая стрелка, сделанная из магнитного железняка, всегда поворачивается одним и тем же концом к северному полюсу Земли. Этот конец магнита условились считать северным полюсом, а противоположный ему — южным.

      Если железный или стальной стержень привести в соприкосновение с магнитом, стержень сам становится магнитом, сам будет притягивать железные опилки, стальные гвозди. Говорят, что стержень намагничивается.

      Намагничиваться способны все металлы, но в разной степени. Очень сильно намагничиваются только четыре чистых металла — железо, кобальт, никель и редкий металл гадолиний. Хорошо намагничиваются также сталь, чугун и некоторые сплавы, не содержащие в своём составе железа, например сплав никеля и кобальта. Все эти металлы и сплавы называют ферромагнитными (от латинского слова «феррум» — железо).

      Совсем слабо притягиваются к магниту алюминий, платина, хром, титан, ванадий, марганец. Намагничиваются они так незначительно, что без специальных приборов обнаружить их магнитные свойства нельзя. Эти металлы получили название парамагнитных (греческое слово «пара» означает около, возле).

Клуб интеллектуалов Newsland – комментарии, дискуссии и обсуждения новости.

Эти два явления очень похожи друг на друга и в какой-то степени связаны между собой.

Отличие же состоит в том, что при электропроводности НЕ происходит переноса вещества.

Для того чтобы лучше понять суть этих явлений, представим себе «общество» атомов. Если в этом обществе атомы охотно делятся друг с другом пищей (энергией), то такое вещество обладает хорошей теплопроводностью. Если же вместо пищи они дают друг другу знания – как добыть пищу («не рыбу, а удочку»), то это похоже на электропроводность, без переноса вещества.

В обществе, в котором охотно делятся пищей, как правило,  охотно делятся и знаниями. Т.е. теплопроводность, как правило, означает и хорошую электропроводность.

Металлы являются проводниками, неметаллы ими не являются. Что их отличает?

Металлы находятся в левой части периодической таблицы. Это значит, что они обладают ядром и очень простой структурой электронного облака. Чем правее находится элемент, тем сложнее его электронная структура, и тем больше неметаллических свойств проявляет элемент.

Становится понятно, почему неметаллы являются плохими проводниками. Они как бы думают: «Мне бы в себе сначала разобраться, где уж мне других поучать?» Их «цель» направлена на то, чтобы достичь целостности и перейти на следующий уровень развития.

Металлы же являются целостными, и даже чувствуют «избыток понимания», которым спешат поделиться.

Чем еще отличается теплопроводность от электропроводности? Последняя имеет направленность (от одного полюса к другому). Теплопроводность не имеет направления.

Металлы ощущаются кожей как прохладные или раскаленные. Они либо активно забирают, либо активно отдают тепло.

Неметаллы ощущаются как нейтральные по своей температуре. Они не забирают, но и не отдают тепло. И это связано с их «характером», с их внутренней сложностью, которая обеспечивает им внутреннюю «широту кругозора». В отличие от металлов, которые имеют всегда четко направленный, но ограниченный «характер».

Конечно, всё это лишь человеческие эмоции и ассоциации, которые облегчают понимание информационных (волновых) свойств различных веществ.

Электропроводность и теплопроводность металлов — Справочник химика 21





    Металлы образуются из атомов электроположительных элементов. В сплавах определенные места в решетке могут быть заняты либо атомами отдельного компонента, либо различными видами атомов. Высокая электропроводность и теплопроводность металлов обусловлены движением свободных электронов через пространственную решетку. [c.583]










    Электропроводность и теплопроводность металлов [c.218]

    Электропроводность и теплопроводность металлов объясняются подвижностью электронов неполностью заполненных зон, обусловленной тем, что в этих зонах к уровням, занятым электронами, вплотную примыкают свободные уровни, на которые могут переходить (возбуждаться) электроны. [c.91]

    Предположение о том, что электроны в металле свободно перемещаются и в отсутствие электрического поля, подтверждается рядом экспериментальных фактов. Так, обнаруживается универсальная связь между электропроводностью и теплопроводностью металлов. Теплопроводность металлов значительно выше, чем теплопроводность изоляторов найдено, что отношение электропроводности и теплопроводности, по крайней мере при средних температурах, является универсальной функцией температуры и не зависит от природы металла (закон Видемана — Франца). Это указывает на общность механизма обоих процессов перенос тепла, как и перенос электричества, осуществляется за счет движения свободных электронов следовательно, свободные электроны в металле имеются и в отсутствие электрического поля. Факт существования в металлах свободно перемещающихся электронов подтверждается также явлением термоэлектронной эмиссии (испускание электронов нагретыми металлами). Следует отметить, что распределение скоростей электронов в металле, как показывает опыт, является максвелловым. Таким образом, наличие в металлах электронного газа можно считать экспериментально подтвержденным. Предположив, что электронный газ в металле обладает свойствами классического идеального газа, Друде дал теоретическое истолкование наблюдаемой на опыте зависимости между теплопроводностью и электропроводностью. Был объяснен ряд термоэлектрических явлений. Правда, возникли расхождения между теоретическими и экспериментальными значениями теплоемкости металлов. Согласно классическому закону равнораспределения энергии электронный газ должен давать вклад в теплоемкость металла, равный 3/2 Я а а 1 моль свободных электронов (если металл одновалентный, это вклад на 1 моль вещества). Однако экспериментально установлено, что вклад электронов в теплоемкость практически равен нулю. Это противоречие нашло объяснение наос- [c.183]










    Табл. 2 показывает также, что электропроводность и теплопроводность металлов не слишком сильно (не более, чем в 2,5 раза) меняются при плавлении. Подобные же результаты были получены [9] для Fe, Со и Ni, у которых отношения Ятв/иж составляют соответственно 1,07, 1,11 и 1,14. Мало изменяются при плавлении и магнитные восприимчивости N1 и Со (9]. [c.14]

    Чрезвычайно высокие по сравнению с другими типами кристаллов значения электропроводности и теплопроводности металлов указывают на высокую подвижность и большую свободу электронов в их пространственной структуре. С точки зрения строения атомов типич- [c.79]

    В металле число атомных орбиталей, участвующих в образовании отдельной молекулярной орбитали, чрезвычайно велико, поскольку каждая атомная орбиталь перекрывается сразу с несколькими другими. Поэтому число возникающих молекулярных орбиталей тоже оказывается очень большим. На рис. 22.20 схематически показано, что происходит при увеличении числа атомных орбиталей, перекрыванием которых создаются молекулярные орбитали. Разность энергий между самой высокой и самой низкой по энергии молекулярными орбиталями не превышает величины, характерной для обычной ковалентной связи, но число молекулярных орбиталей с энергиями, попадающими в этот диапазон, оказывается очень большим. Таким образом, взаимодействие всех валентных орбиталей атомов металла с валентными орбиталями соседних атомов приводит к образованию огромного числа чрезвычайно близко расположенных друг к другу по энергии молекулярных орбиталей, делокализованных по всей кристаллической решетке металла. Различия в энергии между отдельными орбиталями атомов металла настолько незначительны, что для всех практических целей можно считать, будто соответствующие уровни энергии образуют непрерывную зону разрешенных энергетических состояний, как показано на рис. 22.20. Валентные электроны металла неполностью заполняют эту зону. Можно упрощенно представить себе энергетическую зону металла как сосуд, частично наполненный электронами. Такое неполное заселение разрешенных уровней энергии электронами как раз и обусловливает характерные свойства металлов. Электронам, заселяющим орбитали самых верхних заполненных уровней, требуется очень небольшая избыточная энергия, чтобы возбудиться и перейти на орбитали более высоких незанятых уровней. При наличии любого источника возбуждения, как, например, внешнее электрическое поле или приток тепловой энергии, электроны возбуждаются и переходят на прежде незанятые энергетические уровни и таким образом могут свободно перемещаться по всей кристаллической решетке, что и обусловливает высокие электропроводность и теплопроводность металла. [c.361]

    Металлы характеризуются специфическим блеском, высокой электропроводностью, теплопроводностью и пластичностью. В то же время пары металлов — такие же диэлектрики, как и инертные газы, и отличаются от последних сравнительно малой энергией ионизации. Большая электропроводность и теплопроводность металлов, их термоэлектронная эмиссия обусловливается наличием свободных электронов. Считают, что при сближении атомов в процессе формирования металла происходит делокализация валентных электронов. Металл рассматривается как система правильно расположенных в пространстве положительных ионов и перемещающихся среди них делокализованных электронов. Эти электроны компенсируют силы отталкивания между ионами и связывают их в единую кристаллическую решетку. Металлы отличаются большой прочностью связи, мерой которой служит теплота сублимации, т. е. энергия, которую необходимо затратить для разделения твердого металла на изолированные атомы. Значение этой энергии достигает 836 кДж/моль. [c.167]

    Закон зависимости плотности тока термоэлектронной эмиссии от температуры теоретически установил и экспериментально проверил Ричардсон [148]. Он дал два теоретических вывода этой зависимости. Первый вывод основан на представлениях электронной теории металлов, созданной для объяснения явлений электропроводности и теплопроводности металлов, контактной разности потенциалов, эффекта Холла и т. д. Согласно этой теории, в металлах, кроме электронов, крепко связанных с атомами, [c.77]

 &ensp

Железо. Описание, свойства, происхождение и применение металла

Чистое железо (99,97%), очищенное методом электролиза

Чистое железо (99,97%), очищенное методом электролиза

Железо — ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).

СТРУКТУРА


Две модификации кристаллической решетки железа

Две модификации кристаллической решетки железа

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С —а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С — аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) — д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА


Железная руда

Железная руда

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа — это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая — 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа — хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА


Железо — один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

Железо

Железо

В земной коре железо распространено достаточно широко — на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало — в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe2O4, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe3(PO4)2·8H2O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10−5-1·10−8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe2O3) и магнетита (FeO·Fe2O3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ


Самородное железо

Самородное железо

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe1-xS) и когенит (Fe3C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO)n. В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ


Кольцо из железа

Кольцо из железа

Железо — один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов — важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов — например, никелевых.
Магнитная окись железа (магнетит) — важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.


Железо (англ. Iron) — Fe

Молекулярный вес55.85 г/моль
Происхождение названиявозможно англо-саксонского происхождения
IMA статусдействителен, описан впервые до 1959 (до IMA)

КЛАССИФИКАЦИЯ


Hey’s CIM Ref1.57

Strunz (8-ое издание)1/A.07-10
Nickel-Strunz (10-ое издание)1.AE.05
Dana (7-ое издание)1.1.17.1

ФИЗИЧЕСКИЕ СВОЙСТВА


Цвет минералажелезно-черный
Цвет чертысерый
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнесовершенная по {001}
Твердость (шкала Мооса)4,5
Изломв зазубринах
Прочностьковкий
Плотность (измеренная)7.3 — 7.87 г/см3
Радиоактивность (GRapi)0
Магнетизмферромагнетик

ОПТИЧЕСКИЕ СВОЙСТВА


Типизотропный
Цвет в отраженном светебелый
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


Точечная группаm3m (4/m 3 2/m) — изометрический — гексаоктаэдральный
Пространственная группаIm3m (I4/m 3 2/m)
Сингониякубическая
Параметры ячейкиa = 2.8664Å
Двойникование(111) также в пластинчатых массах {112}
Морфологияв маленьких пузырьках

Интересные статьи:

mineralpro.ru  

13.07.2016  

22 Электро- и теплопроводность металлов и сплавов » СтудИзба

1.1.   Электро- и теплопроводность металлов и сплавов

Электропроводность металлов

Классическая электронная теория металлов представляет твердый проводник в виде системы, состоящей из узлов кристаллической ионной решетки, внутри которой находится электронный газ из коллективизированных свободных валентных электронов. К электронному газу применялись представления и законы обычных газов. Это привело к выводу законов Ома и Джоуля – Ленца, позволило описать и объяснить ранее обнаруженные экспериментальным путем основные законы электропроводности и потерь электрической энергии в металлах.

Однако исчерпывающее объяснение явлений электропроводности оказалось возможным на основе квантовой механики. В соответствии с квантово–механическими представлениями причиной наличия электрического сопротивления твердых тел является не столкновение свободных электронов с атомами решетки (как в классической теории Друде), а рассеяние их на дефектах решетки, вызывающих нарушение периодичности потенциала. Идеально правильная, бездефектная неподвижная решетка не способна рассеивать свободные носители заряда и поэтому должна обладать нулевым сопротивлением.

Подвижность и длина свободного пробега электронов в твердом теле зависят от структуры материала. Чистые металлы с наиболее правильной кристаллической решеткой характеризуются наименьшими значениями удельного сопротивления r. Примеси, искажая решетку, приводят к увеличению r. С позиций квантовой механики рассеяние электронных волн происходит на дефектах кристаллической решетки, которые соизмеримы с расстоянием порядка четверти длины волны электрона; нарушения меньших размеров не вызывают заметного рассеяния волн де Бройля. В металлическом проводнике, где длина волны электрона порядка 5 Å, микродефекты создают значительное рассеяние, уменьшающее подвижность электронов и длину свободного пробега, и, следовательно, приводят к росту r.

Так как в металлах концентрация электронного газа n практически не зависит от температуры (Т), то зависимость удельного сопротивления r (и обратной величины удельной электропроводности s) от температуры полностью определяется температурной зависимостью подвижности (m) и пропорциональной ей длины свободного пробега электронов (l).

Вследствие усиления колебаний узлов кристаллической решетки с ростом температуры появляется все больше и больше препятствий на пути направленного движения свободных электронов под действием электрического поля, т.е. уменьшается среднестатистическая длина свободного пробега l, уменьшается подвижность электронов и, как следствие, уменьшается удельная проводимость металлов и возрастает удельное сопротивление (рис. 3.14).

Рис. 3.14. Зависимость удельного сопротивления металлов и сплавов от температуры: 1 – железо; 2 – электротехническая сталь с содержанием 4 % Si; 3 – сплав Fe-Ni-Cr

Удельное сопротивление сплавов

Как указывалось, примеси и нарушения правильной структуры металлов ведут к увеличению их удельного сопротивления.

Значительное возрастание r наблюдается при сплавлении двух металлов в том случае, если они образуют твердый раствор, т.е. создают при отвердевании совместную кристаллизацию, и атомы одного металла входят в кристаллическую решетку другого.

Зависимость удельного сопротивления сплава двух металлов, образующих твердый раствор, от процентного содержания каждого из них представлена на рис. 3.15 (кривая а). Кривая имеет максимум, соответствующий некоторому соотношению содержания компонентов в сплаве; при уменьшении содержания каждого из них r падает, приближаясь к соответствующим значениям r чистых металлов. Обычно наблюдается определенная закономерность и в изменении ТКr (ТК – температурный коэффициент): относительно высокими значениями ТКr обладают чистые металлы, а у сплавов ТКr меньше и даже может приобретать небольшие по абсолютной величине отрицательные значения (рис. 3.15, кривая б). Это объясняется тем, что у сплавов изменение r вызывается не только изменением подвижности носителей заряда, но в некоторых случаях и возрастанием концентрации носителей при повышении температуры.

Рис. 3.15. Зависимость r (а) и ТКr (б) сплавов системы Cu-Ni от состава (в процентах по массе)

Теплопроводность

Тепло через металл передается в основном теми же свободными электронами, которые определяют и электропроводность металлов; количество их в единице объема металла весьма велико. Поэтому, как правило, коэффициент теплопроводности h металлов много больше, чем у диэлектриков. Очевидно, что при прочих равных условиях чем больше удельная электрическая проводимость s металла, тем больше его коэффициент теплопроводности h. При повышении температуры, когда подвижность электронов в металле и соответственно его удельная проводимость s уменьшаются, отношение коэффициента теплопроводности металла к его удельной электрической проводимости h/s должно возрастать. Математически это выражается законом Видемана – Франца – Лорентца:

                                          h/s = L0T,                                               (3.1)

где Т – абсолютная температура, К; L0 – число Лорентца, равное

                                         .                                              (3.2)

Подстановка в (3.2) значений постоянной Больцмана k = 1,38×10-23 Дж/К и заряда электрона e = -1,6×10-19 Кл дает  L0 = 2,45×10-8 В22.

Закон Видемана – Франца – Лорентца для большинства металлов хорошо подтверждается при температурах, близких к нормальной или несколько повышенных.

Проверим справедливость этого закона для меди при нормальной температуре. Подставляя в формулу (3.1) параметры меди: s = 57×106 См/м и  h= 390 Вт/(м×К), получаем (при Т = 293 К) L0 = 2,54×10-8 В22, что весьма близко к теоретическому значению. При нормальной температуре для алюминия L0 = 2,1×10-8, для свинца и олова – 2,5×10-8, для железа – 2,9×10-8 В22.

Однако в области низких температур коэффициент при Т в уравнении (3.1) уже не остается неизменным: так, для меди при охлаждении он проходит через минимум, а при приближении к абсолютному нулю вновь близок к теоретическому значению L0.

Как теплопроводность связана с электрической проводимостью

Поскольку точное определение теплопроводности является сложной задачей (часто не признаваемой ни разработчиками, ни поставщиками), методы, основанные на измерении другого физического свойства, однозначно связанного с теплопроводностью, очень сложные.

Один из таких методов основан на так называемом законе Видемана-Франца, который связывает теплопроводность с электропроводностью в соответствии с:

k / = L�T

, где k — теплопроводность в Вт / mK, T — абсолютная температура в K, — электрическая проводимость в -1 м -1 , а L — число Лоренца, равное 2.45 10 -8 Вт / К 2 .

Очевидно, что существует огромная разница между измерением электропроводности и измерением теплопроводности. Это соотношение справедливо только для материалов с более или менее свободно движущимися электронами; другими словами, металлы (хотя бы при комнатной температуре). Закон Видемана-Франца основан на аргументах, полученных из кинетической теории газов, применяемой к физике твердого тела, и был сформулирован около 150 лет назад.

Свободные электроны в решетке металла взаимодействуют с колебаниями решетки (называемыми «фононами»), тем самым набирая энергию. При приложении электрического поля электроны переносят эту энергию и, следовательно, переносят как электрический заряд, так и тепло. Очевидно прямая связь должна существовать.

Однако фононы также переносят тепло (это единственный механизм переноса в изоляторах). Только в тех случаях, когда вклад электронов намного выше, чем вклад фононов, закон Видемана-Франца выполняется достаточно хорошо.Это справедливо для всех чистых металлов, но для полупроводников (и, возможно, также для некоторых сплавов) Закон не действует.

В этом столетии теория была улучшена с помощью квантовой механики, и интересно отметить, что обе теории генерируют примерно одинаковое значение числа Лоренца. Однако это чистая случайность. Два члена в формулировке кинетического газа оказались далекими от правильного значения, но, как оказалось, они компенсируют друг друга.

Источник: Данные о физических свойствах для инженера-проектировщика, изд.Beaton & Hewitt, Hemisphere, 1989

В приведенной выше таблице представлены экспериментальные значения L для ряда чистых металлов.

За исключением вольфрама, соответствие теоретическому значению довольно хорошее; конечно для практического применения. Я не знаю, доступны ли данные для других электронных проводников, представляющих практический интерес, таких как сплавы и гидриды, нитриды и карбиды переходных металлов, таких как вольфрам и титан, и я был бы признателен за любые комментарии читателей, указывающих на дополнительные данные.

.Библиотека

TLP Введение в термическую и электрическую проводимость

Щелкните здесь, чтобы просмотреть актуальные (непечатаемые) страницы TLP

Примечание. Пакеты обучения и обучения DoITPoMS предназначены для интерактивного использования на компьютере! Эта версия TLP для печати предоставляется для удобства, но не отображает все содержимое TLP. Например, отсутствуют какие-либо видеоролики и ответы на вопросы. Форматирование (разрывы страниц и т. Д.) Печатной версии непредсказуемо и сильно зависит от вашего браузера.

Содержание

  • Цели
  • Перед тем, как начать
  • Введение
  • Введение в проводимость
  • Металлы: модель электропроводности по Друде
  • Факторы, влияющие на электропроводность
  • Металлы теплопроводности
  • Электропроводность: неметаллы
  • Неметаллы: тепловые фононы
  • Приложения
  • Сводка
  • вопросов
  • Дальше

Цели

По завершении этого пакета TLP вам необходимо:

  • Понимать основные механизмы и модели теплопроводности и электропроводности металлов и неметаллов.
  • Помните о некоторых факторах, которые влияют на оба типа проводимости.
  • Знайте некоторые области применения обоих типов проводников и изоляторов.

Перед тем, как начать

Этот TLP является введением, поэтому никаких специальных знаний не требуется. Однако есть и другие TLP, которые охватывают более сложные темы, такие как полупроводники, ссылки на которые приведены в разделе для дальнейшего чтения.

Введение

Электропроводность охватывает невероятно большой порядок величин (30!) От изоляторов до металлов и даже может быть бесконечным в сверхпроводниках.Знание того, как управлять им, привело к компьютерной революции и постоянно увеличивающейся миниатюризации

Теплопроводность, хотя для известных материалов она составляет всего около 10 порядков величины, по-прежнему имеет решающее значение для многих важных технологических достижений, от реактивных турбин и космических путешествий до USB-холодильников для напитков.

Чтобы по-настоящему оценить эти достижения, важно понимать, как возникает проводимость в материалах. Существуют простые модели, которые можно использовать для прогнозирования поведения многих материалов; между теплопроводностью и электропроводностью в металлах существуют близкие параллели, в то время как механизмы проводимости в неметаллах совершенно разные.

Введение в проводимость

Электропроводность

Важно не запутаться в проводимости, проводимости, сопротивлении и удельном сопротивлении.

Свойства материалов: электропроводность σ и удельное электрическое сопротивление ρ

Электропроводность материала определяется как количество электрического заряда, переносимого в единицу времени через единицу площади под действием единичного градиента потенциала: J = σ E

где J — плотность тока (ток на единицу площади), а E — градиент потенциала.Это еще один способ выражения закона Ома, который чаще выражается как \ (V = I R \).

Для изотропного материала:

\ [\ sigma = \ frac 1 \ rho \]

Единицы измерения удельного электрического сопротивления — омметр ( Ом · м ), а для проводимости — обратная величина ( Ом, -1 м, -1 ). Для фактического образца длиной l и площадью поперечного сечения A сопротивление R рассчитывается по формуле:

\ [R = \ rho \ frac l A \]

Электрические сигналы распространяются со скоростью, близкой к скорости света, хотя , а не означает, что сами электроны движутся так быстро.Вместо этого типичная дрейфовая скорость электронов (их средняя скорость) намного ниже: менее 1 мм с -1 . Это подробно описано в разделе моделей Друде.

Еще одно уместное напоминание о потенциале и токе: ток — это поток электронов, а потенциал — это движущая сила, заставляющая их течь. Обладая достаточным потенциалом, электроны могут переносить заряд через любой материал, включая вакуум (см. ЭЛТ), хотя они бессильны без какого-либо чистого тока.

Лучшие электрические проводники (кроме сверхпроводников) — это чистая медь и чистое серебро с удельным сопротивлением 16,78 и 15,87 нОм соответственно. Для сравнения, полистирол имеет удельное сопротивление до 10 28 нОм, что на 27 порядков отличается!

Теплопроводность:

Чтобы понять теплопроводность материалов, важно знать концепцию теплопередачи, которая представляет собой движение тепловой энергии от более горячего тела к более холодному.Это происходит при нескольких обстоятельствах:

  • Когда объект имеет температуру, отличную от окружающей его температуры;
  • Когда объект имеет температуру, отличную от температуры другого объекта, контактирующего с ним;
  • Когда внутри объекта существует температурный градиент.

Направление теплопередачи определяется вторым законом термодинамики, который гласит, что энтропия изолированной системы, которая не находится в тепловом равновесии, будет со временем увеличиваться, приближаясь к максимальному значению в состоянии равновесия.Это означает, что передача тепла всегда происходит от тела с более высокой температурой к телу с более низкой температурой и будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.

Передача тепловой энергии происходит только через 3 режима: теплопроводность, конвекция и излучение. Каждый режим имеет свой механизм и скорость передачи тепла, и, таким образом, в любой конкретной ситуации скорость передачи тепла зависит от того, насколько преобладает определенный режим.

Проводимость включает передачу тепловой энергии за счет комбинации диффузии электронов и фононных колебаний — применимо к твердым телам.

Конвекция включает передачу тепловой энергии в движущейся среде — горячий газ / жидкость движется через более холодную среду (обычно из-за разницы в плотности).

Излучение включает передачу тепловой энергии электромагнитным излучением. Солнце — хороший пример передачи энергии через (близкий) вакуум.

Этот TLP фокусируется на проводимости в кристаллических твердых телах.

Теплопроводность, Κ, — это свойство материала, которое указывает на способность проводить тепло.Первый закон Фурье определяет тепловой поток, пропорциональный разнице температур, площади поверхности и длине образца:

\ [H = \ frac {\ Delta Q} {\ Delta t} = \ kappa A \ frac {\ Delta T} {l} \]

где ΔQ / Δt — скорость теплопередачи, A — площадь поверхности, а l — длина.

Лучшие металлические теплопроводники — это чистая медь и серебро. При комнатной температуре технически чистая медь обычно имеет проводимость около 360 Вт · м -1 K -1 (хотя теплопроводность монокристалла меди была измерена при 12 200 Вт · м -1 K -1 при температура 20.8 К). В металлах движение электронов доминирует над теплопроводностью.

Объемный материал с самой высокой теплопроводностью (помимо сверхтекучего гелия II), что, возможно, удивительно, является неметаллом: чистый монокристаллический алмаз, который имеет теплопроводность при комнатной температуре около 2200 Вт · м -1 K -1 . Высокая проводимость используется даже для проверки подлинности алмаза. Прочные ковалентные связи внутри молекулы ответственны за высокую проводимость, хотя свободных электронов нет, тепло передается фононами.Большинство природных алмазов также содержат атомы бора, которые заменяют атомы углерода в кристаллической матрице, которые также обладают высокой теплопроводностью.

Металлы: модель электропроводности Друде

Из-за квантово-механической природы электронов полное моделирование движения электронов в твердом теле (т. Е. Проводимости) потребует рассмотрения не только всех остовов положительных ионов, взаимодействующих с каждым электроном , но также каждого электрона с каждым другим электроном .Даже с продвинутыми моделями это быстро становится слишком сложным для адекватного моделирования материала макроскопического масштаба.

Модель Друде значительно упрощает ситуацию за счет использования классической механики и рассматривает твердое тело как фиксированный массив ядер в «море» несвязанных электронов. Кроме того, электроны движутся по прямым линиям, не взаимодействуют друг с другом и случайным образом рассеиваются ядрами.

Вместо моделирования всей решетки используются два статистически полученных числа:
τ , среднее время между столкновениями (время рассеяния ), и
l , среднее расстояние, пройденное между столкновениями (среднее значение свободного пространства путь )

Под действием поля E электроны испытывают силу –e E, и, таким образом, ускорение от F = m a

Для электрона, выходящего из столкновения со скоростью v 0 , скорость после времени t определяется как:

\ [v = v_ {0} — \ frac {eEt} {m} \]

Конечно, если электроны рассеиваются случайным образом при каждом столкновении, v 0 будет нулем.{2} \ tau E} {m} \]

Проводимость σ = n e μ, где μ — подвижность , которая определяется как

\ [\ mu = \ frac {| v |} {E} = \ frac {eE \ tau} {mE} = \ frac {e \ tau} {m} \]

Конечный результат всех этих математических расчетов — разумное приближение к проводимости ряда одновалентных металлов. При комнатной температуре, используя кинетическую теорию газов для оценки скорости дрейфа, модель Друде дает σ ~ 10 6 Ом -1 м -1 .Это примерно правильный порядок величины для многих одновалентных металлов, таких как натрий ( σ ~ 2,13 × 10 5 Ом -1 м -1 ).

Модель Друде можно визуализировать с помощью следующего моделирования. В отсутствие приложенного поля видно, что электроны перемещаются беспорядочно. Используйте ползунок, чтобы применить поле, чтобы увидеть его влияние на движение электронов.

Примечание. Для этой анимации требуется Adobe Flash Player 8 и более поздних версий, который можно загрузить здесь.

Однако важно отметить, что для неметаллов, многовалентных металлов и полупроводников модель Друде с треском проваливается. Чтобы иметь возможность более точно предсказать проводимость этих материалов, требуются квантово-механические модели, такие как модель почти свободных электронов. Это выходит за рамки настоящего TLP

.

Сверхпроводники также не объясняются такими простыми моделями, хотя дополнительную информацию можно найти на сайте Superconductivity TLP.

Факторы, влияющие на электропроводность

Электропроводность большинства металлических проводников (не полупроводников!) Легко определить.Есть три важных случая:

Чистые и почти чистые металлы

Для чистых металлов при температуре около комнатной удельное сопротивление линейно зависит от температуры.

\ [\ rho_2 = \ rho_1 [1 + \ alpha (T_2 — T_1)] \]

Однако при низких температурах проводимость перестает быть линейной (сверхпроводники рассматриваются отдельно), а удельное сопротивление зависит от температуры по правилу Маттизена:

\ [\ rho (T) = {\ rho _ {{\ rm {defect}}}} + {\ rho _ {{\ rm {Thermal}}}} \]

Сопротивление при низких температурах (\ ({\ rho _ {{\ rm {defect}}}} \)) зависит от концентрации дефектов решетки, таких как дислокации, границы зерен, вакансии и межузельные атомы.Следовательно, оно ниже в отожженных металлических образцах с крупными кристаллами и выше в сплавах и закаленных металлах. Вы можете подумать, что при более высоких температурах электроны будут иметь больше энергии, чтобы двигаться через материал, поэтому, возможно, довольно удивительно, что удельное сопротивление увеличивается (а, следовательно, и проводимость уменьшается) с увеличением температуры. Причина этого в том, что с повышением температуры электроны чаще рассеиваются на колебаниях решетки или фононах, что вызывает увеличение удельного сопротивления.Этот вклад в удельное сопротивление описывается термином ρ термического .

Температурная зависимость проводимости чистых металлов схематично проиллюстрирована в следующем моделировании. Используйте ползунок, чтобы изменить температуру, чтобы увидеть, как это влияет на движение электронов через решетку. Вы также можете ввести межузельные атомы, щелкнув мышью внутри решетки.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно скачать здесь.

Сплавы — твердый раствор

Как и раньше, добавление примеси (в данном случае другого элемента) снижает проводимость. Для твердого раствора изменение удельного сопротивления в зависимости от состава определяется правилом Нордхайма:

\ [\ rho = \ chi _ {\ alpha} \ rho _ {\ alpha} + \ chi _ {\ beta} \ rho _ {\ beta} + C \ chi _ {\ alpha} \ chi _ {\ beta} \]

, где C — постоянная, а CA и CB — атомные доли металлов A и B, удельные сопротивления которых равны ρA и ρB соответственно.2 \]

, где ΔZ — разность валентностей растворенного вещества и растворителя.

Таким образом, растворенные атомы с более высоким (или более низким) зарядом, чем решетка, будут иметь большее влияние на удельное сопротивление.

Сплавы — многофазные

Для сплава, в котором есть две или более различных фаз, вклады просто линейно влияют на общее удельное сопротивление (хотя влияние многих границ зерен немного увеличивает удельное сопротивление).

\ [\ rho = \ chi_ \ alpha \ rho_ \ alpha + \ chi_ \ beta \ rho_ \ beta \]

Следующая анимация иллюстрирует правило Маттейзена, правило Нордхейма и правило смешения.

Примечание. Для этой анимации требуется Adobe Flash Player 8 и более поздних версий, который можно загрузить здесь.

Металлы теплопроводности

Металлы обычно имеют относительно высокую концентрацию свободных электронов проводимости, и они могут передавать тепло при движении через решетку. Фононная проводимость также имеет место, но эффект перекрывается электронной проводимостью.

Следующая симуляция показывает, как электроны могут проводить тепло, сталкиваясь с ядрами и передавая тепловую энергию.Нажмите кнопку «источник», чтобы приложить источник тепла к одной стороне образца. График покажет температурный градиент внутри образца, и вы также можете применить радиатор к противоположной стороне образца, используя кнопку «сток».

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно скачать здесь.

Закон Видеманна-Франца

Поскольку преобладающий метод теплопроводности у металлов одинаковый для теплопроводности и электропроводности (т.{- 2}} \]

Этот закон можно объяснить тем фактом, что свободные электроны в металле участвуют в механизмах переноса тепла и электричества. Теплопроводность увеличивается со средней скоростью электронов, так как это увеличивает прямой перенос энергии. Однако электрическая проводимость уменьшается с увеличением скорости частицы, поскольку столкновения отвлекают электроны от прямого переноса заряда.

Электропроводность: неметаллы

Хотя модель Друде достаточно хорошо работает для одновалентных металлов, она не предсказывает свойства полупроводников, сверхпроводников или неметаллических проводников.

Сверхпроводники и полупроводники лучше всего объясняются в их собственных TLP.

Ионная проводимость

Для некоторых материалов нет чистого движения электронов, но они по-прежнему проводят электричество.

Это механизм ионной проводимости, при котором некоторые заряженные ионы могут перемещаться через объемную решетку (посредством обычных механизмов диффузии, за исключением движущей силы электрического поля).

Такие ионные проводники используются в твердооксидных топливных элементах, хотя, например, для оксида циркония, стабилизированного оксидом иттрия (YZT), рабочие температуры находятся в диапазоне от 500 до 1000 ° C.Поскольку они действуют по механизму, подобному диффузии, более высокие температуры приводят к более высокой проводимости, что противоположно тому, что предсказывала бы простая модель Друде.

Напряжение пробоя

Существует важный и потенциально смертельный механизм, с помощью которого изолятор может стать проводящим. В воздухе это обычно распознается как молния. Следует отметить, что механизм может ионизировать «изолятор», временно делая его более проводящим.

Газы обычно ионизируются в бытовых осветительных приборах.Наиболее распространены люминесцентные лампы и неоновые лампы.

Для первоначального возбуждения паров ртути в свете люминесцентной лампы необходим всплеск напряжения, превышающий напряжение пробоя. Это можно заметить при включении такой лампы, как внезапное возгорание с соответствующим всплеском радиопомех. Неисправная трубка может не полностью ионизироваться, что приводит к слабому свечению на концах.

Под высоким напряжением может проводиться даже оргстекло. Временно ионизированный путь непрозрачен при охлаждении, что в данном случае дает фигуру Лихтенберга. Изображение «Фигура Лихтенберга» от Берт Хикман

Более подробная информация доступна на странице Dielectrics TLP, посвященной поломке

.

Неметаллы: тепловые фононы

Как упоминалось ранее, металлы имеют два режима теплопроводности: на основе электронов и на основе фононов. Для неметаллов имеется относительно мало свободных электронов, поэтому доминирует фононный метод.

Тепло можно рассматривать как меру энергии колебаний атомов в материале.Как и все вещи в атомном масштабе, здесь есть квантово-механические соображения; энергия каждой вибрации квантована (и пропорциональна частоте). Фонон — это квант колебательной энергии, и за счет комбинации (суперпозиции) многих фононов тепло наблюдается макроскопически.

Энергия данного колебания решетки в жесткой кристаллической решетке квантована в квазичастицу, называемую фононом . Это аналог фотона в электромагнитной волне; тепловые колебания в кристаллах можно описать как термически возбужденные фононы, которые можно отнести к термически возбужденным фотонам.Фононы являются основным фактором, определяющим электрическую и теплопроводность материала.

Фонон — это квантово-механическая адаптация нормальных модальных колебаний в классической механике. Ключевым свойством фононов является дуальность волна-частица; нормальные моды имеют волновые явления в классической механике, но приобретают поведение, подобное частицам в квантовой механике.

Энергия фонона пропорциональна его угловой частоте ω:

\ [\ varepsilon = (n + \ frac {1} {2}) \ hbar \ omega \]

с квантовым числом n .Член \ (\ frac {1} {2} \ hbar \ omega \) — это энергия нулевой точки моды. Это определяется как минимально возможная энергия, которой обладает система, и является энергией основного состояния.

Если твердое тело имеет более одного типа атомов в элементарной ячейке, будет два возможных типа фононов: «акустические» и «оптические» фононы. Частота акустических фононов примерно равна частоте звука, а частота оптических фононов близка к частоте инфракрасного света. Их называют оптическими, поскольку в ионных кристаллах они легко возбуждаются электромагнитным излучением.

Если кристаллическая решетка имеет нулевую температуру, она находится в основном состоянии и не содержит фононов. Когда решетка нагревается и поддерживается при ненулевой температуре, ее энергия не является постоянной, а колеблется случайным образом около некоторого среднего значения. Эти флуктуации энергии вызваны случайными колебаниями решетки, которую можно рассматривать как газ фононов. Поскольку температура решетки порождает эти фононы, их иногда называют тепловыми фононами . Тепловые фононы могут создаваться или разрушаться случайными колебаниями энергии.

Принято считать, что фононы тоже имеют импульс и, следовательно, могут проводить энергию через решетку. В отличие от электронов, существует чистое движение фононов — от более горячей части решетки к более холодной, где они разрушаются. Электроны должны сохранять нейтральность заряда в решетке, поэтому нет чистого движения электронов во время теплопроводности.

Следующая симуляция показывает схематические оптические и акустические фононы в двумерной решетке и дает возможность анимировать двумерный волновой вектор, определяемый щелчком внутри зеленого поля.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно скачать здесь.

Рассеяние Umklapp

Когда два фонона сталкиваются, образующийся фонон имеет векторную сумму их импульсов. Способ обработки частиц, движущихся в решетке квантово-механически, в рамках схемы редуцированных зон (которая выходит за рамки данной TLP, но более подробно исследуется в TLP зон Бриллюэна), приводит к концептуально странному эффекту. Если импульс слишком велик (за пределами первой зоны Бриллюэна), то образующийся фонон движется почти в противоположном направлении.Это Umklapp scattering , и оно преобладает при более высоких температурах, снижая теплопроводность при повышении температуры.

Приложения

Кремниевые чипы

Поскольку электрические свойства меняются в зависимости от микроструктуры, был разработан тип компьютерной памяти, называемый памятью с произвольным доступом с фазовым переходом (PC-RAM). Используемый материал представляет собой халькогенид, обозначаемый как GST (Ge 2 Sb 2 Te 5 ).

Аморфное состояние является полупроводником, а в (поли) кристаллической форме — металлическим.Нагревание выше точки стеклования, но ниже температуры плавления приводит к кристаллизации ранее полупроводниковой аморфной ячейки. Точно так же полностью расплавленная, а затем быстрое охлаждение клетка оставляет ее в металлическом кристаллическом состоянии.

Это изменение удельного сопротивления в зависимости от микроструктуры имеет решающее значение для работы таких устройств. Варьируя условия нагрева, различная пропорция каждой ячейки GST может быть кристаллической и аморфной — правило смеси применяется, поскольку фактически это две фазы.Это позволяет использовать несколько различимых уровней сопротивления для каждой ячейки, увеличивая плотность хранения и снижая стоимость мегабайта.

Наиболее распространенной проблемой кремниевых устройств является рассеивание тепла.

Современный процессор имеет расчетную тепловую мощность более 70 Вт (Intel i7 3770, процесс 22 нм). Охладитель должен отводить указанное количество тепла с поверхности кристалла, которое обычно составляет менее 10 см. 2 . Обычно радиаторы имеют медный блок, прикрепленный к корпусу микропроцессора с помощью термопасты и давления.Основная часть радиатора обычно делается из гораздо более дешевого алюминия, хотя для интерфейса необходима высокая теплопроводность меди. Термопаста, хотя и является лучшим проводником тепла, чем воздух, намного хуже, чем большинство металлов, поэтому ее используют только в качестве тонкого слоя для замены воздушных зазоров.

Электропроводность — не самый эффективный метод отвода тепла к отдельному радиатору, поэтому можно использовать конвекцию и скрытую теплоту испарения. Тепловые трубки, обычно сделанные из меди, заполнены жидкостью с низкой температурой кипения, которая кипит на горячем конце и конденсируется на холодном конце трубы.Это гораздо более быстрый способ передачи тепла на большие расстояния.

Космос

Теплоизоляторы находят множество применений, и их развитие было связано с попытками улучшить объемные механические свойства при сохранении изоляционных свойств (т.е. не пропускать тепло, но не плавиться)

Особенно известное применение теплоизоляции — это (ныне списанные) плитки космических челноков, которые отвечают за защиту челнока во время его повторного входа в атмосферу.Они такие хорошие изоляторы, что снаружи они могут раскалиться докрасна, а внутри шаттла астронавты живы.

Одним из лучших теплоизоляторов является кремнеземный аэрогель.

Аэрогель — это твердотельный материал с чрезвычайно низкой плотностью, сделанный из геля, в котором жидкая фаза геля заменена газом. В результате получается твердое тело чрезвычайно низкой плотности, что делает его эффективным теплоизолятором.

Одно применение аэрогелей — это легкий коллектор микрометеоритов, использовался аэрогель.Хотя он очень легкий, он достаточно силен, чтобы улавливать микрометеоры.

Спички остаются холодными в миллиметрах от паяльной лампы, большой массив аэрогелевых кирпичей готов к запуску в космос, а образовавшаяся космическая пыль фотографируется по возвращении на Землю

Aerogels могут изготавливаться из различных материалов, но имеют универсальную структуру. (аморфные «нано-пены» с открытыми ячейками). Однако чаще всего используется силикат. Аэрогели кремнезема были впервые открыты в 1931 году.

Аэрогели обладают экстремальной структурой и экстремальными физическими свойствами. Высокопористый характер структуры аэрогеля обеспечивает низкую плотность. Процент открытого пространства в структуре аэрогеля составляет около 94% для геля плотностью 100 кг · м 3 .

Аэрогели — хорошие теплоизоляторы, поскольку они исключают три метода передачи тепла (конвекцию, теплопроводность и излучение). Они являются хорошими конвективными изоляторами из-за того, что воздух не может циркулировать по решетке.Кремнеземный аэрогель является особенно хорошим проводящим изолятором, потому что кремнезем плохо проводит тепло — металлический аэрогель, с другой стороны, был бы менее эффективным изолятором. Углеродный аэрогель является эффективным радиационным изолятором, потому что углерод способен поглощать инфракрасное излучение, которое передает тепло. Следовательно, для максимальной теплоизоляции лучший аэрогель — это кремнезем, легированный углеродом.

Трансмиссия

Одно из самых масштабных применений электрических проводников — передача энергии.

К сожалению, свойства, которые желательны для прочного кабеля, кажутся противоположными свойствам хорошего проводника.

Алюминиевые сплавы могут быть очень прочными из-за своей плотности, но, следуя правилу Нордхейма, они намного хуже проводят.

Существует огромное множество сталей, но, опять же, межузельные атомы углерода увеличивают сопротивление по сравнению с чистым железом. Это означает, что необходим кабель большего диаметра, который из-за плотности стали оказывается очень тяжелым и дорогим.Более тяжелый кабель также означает, что мы должны построить дополнительные пилоны, что составляет большую часть стоимости.

Медь, хотя и подходит для домашней электропроводки, является плотной и все более дорогой.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно скачать здесь.

Для большинства воздушных силовых кабелей решением является использование двух материалов — стальной жилы, окруженной множеством отдельных алюминиевых жил. Это позволяет получить легкие, высокопрочные кабели с приемлемой проводимостью.

Сверхпроводники были испытаны для передачи энергии, но только под землей, и при значительно более высокой стоимости (и эффективности!).

Термоэлектрический эффект

Термоэлектрический эффект — это прямое преобразование разницы температур в электрическое напряжение и наоборот. Проще говоря, термоэлектрическое устройство создает напряжение, когда на каждой стороне устройства разная температура. Он также может работать «в обратном направлении», поэтому, когда на него подается напряжение, создается разница температур.Этот эффект можно использовать для выработки электричества, измерения температуры, охлаждения объектов или их нагрева. Поскольку знак приложенного напряжения определяет направление нагрева и охлаждения, термоэлектрические устройства представляют собой очень удобные регуляторы температуры.

Эффект Пельтье заключается в том, что когда (постоянный) ток течет через переход металл-полупроводник, тепло либо поглощается, либо выделяется. Это связано с тем, что средняя энергия электронов в двух материалах различается, и эту разницу составляет тепло.

Для более полного понимания требуется знание зонной структуры, более подробно рассмотренной в TLP по полупроводникам.

Примечание. Для этой анимации требуется Adobe Flash Player 10 и более поздних версий, который можно скачать здесь.

Резюме

Мы рассмотрели основы электрической и теплопроводности, а также некоторые из наиболее распространенных приложений. Вы должны понимать роль электронов и фононов в теплопроводности, а также то, как взаимодействия между ними приводят к изменению электропроводности в зависимости от температуры.Вы должны понимать, что металлы имеют больше механизмов теплопередачи, чем их неметаллические аналоги, что объясняет, почему они имеют более высокую теплопроводность. Кроме того, этот TLP должен был затронуть некоторые из основных применений тепловых и электрических проводников и изоляторов. Наконец, установлена ​​связь между теплопроводностью и электропроводностью металлов, в том числе закон Видемана-Франца.

Суммируя факторы, влияющие на проводимость:

  • Температура — при повышении температуры увеличивается средняя энергия, приходящаяся на один фонон, и, благодаря механизму рассеяния переброса, теплопроводность уменьшается.Фононы также больше рассеивают электроны.
  • Плотность электронов (в металлах) — если электроны являются проводниками, большее количество (валентных) электронов обычно приводит к лучшей проводимости.
  • Легирование — межузельные частицы рассеивают электроны и снижают проводимость. Фазовые границы, примеси, дислокации и т. Д. Снижают проводимость даже при низкой температуре.

вопросов

Быстрые вопросы

Вы сможете без особых трудностей ответить на эти вопросы после изучения данного TLP.Если нет, то вам следует пройти через это снова!

  1. Для фононов нормальные моды

  2. Каким образом кристаллические решетки влияют на электроны, исходя из предположений модели свободных электронов?

  3. Разброс Umklapp:

  4. Что из следующего верно в соответствии с законом Видемана-Франца?

  5. Какие из следующих утверждений об электропроводности почти чистых материалов верны?

  6. Какой из них является правильным с точки зрения электропроводности от лучшей к худшей (предполагается, что это чистые материалы)?

    Nb 3 Sn при 4K, Ag при 300K, Au при 300K, Nb 3 Sn при 300K, Cu при 300K.
    b Ag при 300K, Cu при 300K, Nb 3 Sn при 4K, Au при 300K, Nb 3 Sn при 300K.
    с Nb 3 Sn при 4K, Ag при 300K, Cu при 300K, Au при 300K, Nb 3 Sn при 300K.
    d Nb 3 Sn при 300K, Cu при 300K, Ag при 300K, Au при 300K, Nb 3 Sn при 4K.
    e Nb 3 Sn при 4K, Cu при 300K, Nb 3 Sn при 300K, Ag при 300K, Au при 300K.

Далее

Книги

Курс химии A NST IB и / или курс физики NST IB также более подробно рассматривают проведение.

Сайты

Академический консультант: Джесс Гвинн (Кембриджский университет)
Разработка контента: Эндрю Витти
Фотография и видео:
Веб-разработка: Лианн Саллоус и Дэвид Брук

DoITPoMS финансируется Великобританией
Центр материаловедения и кафедра
материаловедения и металлургии, Кембриджский университет

,

Есть ли связь между электропроводностью и теплопроводностью?

На вопрос:

Дарелл Хейс

Ответ

Для металлов существует взаимосвязь, известная как закон Видемана-Франца. Металлы
хорошие электрические проводники, потому что в них много бесплатных зарядов. Свобода
заряды обычно представляют собой отрицательные электроны, но в некоторых металлах, например, в вольфраме, они
положительные дыры.«В целях обсуждения предположим, что у нас есть заряды свободных электронов.

Когда существует разница напряжений между двумя точками в металле, возникает электрическое
поле, которое заставляет электроны двигаться, то есть вызывает ток. Конечно,
электроны сталкиваются с некоторыми из неподвижных атомов (фактически, «ионными ядрами») металла и
это фрикционное «сопротивление» их замедляет. Сопротивление зависит от
конкретный тип металла, с которым мы имеем дело. Например, трение в серебре намного меньше, чем
это в железе.Чем большее расстояние может пройти электрон, не наткнувшись на
ионного ядра, тем меньше сопротивление, т. е. больше электрическая
проводимость. Среднее расстояние, которое электрон может пройти без столкновения, называется
‘длина свободного пробега.’ Но есть еще один фактор. Электроны, которые свободны
чтобы реагировать на электрическое поле, иметь тепловую скорость, составляющую значительный процент от скорости
легкий, но поскольку они движутся беспорядочно с такой высокой скоростью, в среднем они никуда не движутся,
я.е., эта тепловая скорость сама по себе не создает тока.

Теплопроводность этого металла, как и электрическая проводимость, определяется
в основном за счет свободных электронов. Предположим теперь, что металл имеет разные температуры при
его концы. Электроны движутся немного быстрее на горячем конце и медленнее на холодном.
конец. Более быстрые электроны передают энергию более холодным, более медленные, сталкиваясь с
их, и, как и в случае с электропроводностью, чем больше длина свободного пробега, тем быстрее
энергия может передаваться, т.е.е., тем больше теплопроводность. Но скорость
также определяется очень высокой тепловой скоростью — чем выше скорость, тем быстрее
течет ли тепловая энергия (т. е. тем быстрее происходят столкновения). Фактически, тепловая
проводимость прямо пропорциональна произведению длины свободного пробега и теплового
скорость.

Тепловая и электрическая проводимость одинаковым образом зависят не только от среднего свободного
пути, но также и от других свойств, таких как масса электрона и даже количество свободных
электронов в единице объема.Но, как мы видели, они по-разному зависят от теплового
скорость электропроводности электронов обратно пропорциональна ей, а тепловая
электропроводность прямо пропорциональна ему. В итоге соотношение теплового к
Электропроводность зависит в первую очередь от квадрата тепловой скорости. Но это
квадрат пропорционален температуре, поэтому соотношение зависит от
температура, T, и две физические константы: постоянная Больцмана, k, и электронная
заряд, эл.В этом контексте постоянная Больцмана является мерой того, сколько кинетической энергии
электрон имеет на градус температуры.

В совокупности отношение теплопроводности к электрической проводимости составляет:

(pi 2 /3) * ((к / э) 2 ) * Т

значение постоянной T умножения составляет: 2,45×10 -8 Вт-ом-К-квадрат.

Ответил:

Фрэнк Манли, доктор философии, доцент физики, Роанок-колледж

.

Что такое теплопроводность?

What is heat conduction?

Диаграмма, показывающая передачу тепловой энергии через проводимость. Кредит: Безграничный

Тепло — интересный вид энергии. Он не только поддерживает жизнь, делает нас комфортными и помогает готовить пищу, но и понимание его свойств является ключом ко многим областям научных исследований. Например, знание того, как передается тепло и степень, в которой различные материалы могут обмениваться тепловой энергией, управляет всем: от обогревателей здания и понимания сезонных изменений до отправки кораблей в космос.

Тепло может передаваться только тремя способами: теплопроводностью, конвекцией и излучением. Из них кондукция, пожалуй, самая распространенная и регулярно встречается в природе. Короче говоря, это передача тепла посредством физического контакта. Это происходит, когда вы нажимаете рукой на оконное стекло, когда вы ставите кастрюлю с водой на активный элемент и когда вы кладете утюг в огонь.

Этот перенос происходит на молекулярном уровне — от одного тела к другому — когда тепловая энергия поглощается поверхностью и заставляет молекулы этой поверхности двигаться быстрее. В процессе они натыкаются на своих соседей и передают им энергию, процесс, который продолжается до тех пор, пока добавляется тепло.

Процесс теплопроводности зависит от четырех основных факторов: градиента температуры, поперечного сечения материалов, длины пути и свойств этих материалов.

Температурный градиент — это физическая величина, которая описывает, в каком направлении и с какой скоростью изменяется температура в определенном месте. Температура всегда течет от самого горячего источника к самому холодному, потому что холод — это не что иное, как отсутствие тепловой энергии. Этот переход между телами продолжается до тех пор, пока разница температур не исчезнет и не наступит состояние, известное как тепловое равновесие.

Поперечное сечение и длина пути также являются важными факторами. Чем больше размер материала, участвующего в переносе, тем больше тепла требуется для его нагрева.Кроме того, чем больше площадь поверхности подвергается воздействию открытого воздуха, тем больше вероятность потери тепла. Таким образом, более короткие объекты с меньшим поперечным сечением — лучший способ минимизировать потери тепловой энергии.

What is heat conduction?

Теплопроводность происходит через любой материал, представленный здесь прямоугольной полосой. Скорость переноса частично зависит от толщины материала (обозначение A). Кредит: Безграничный

И последнее, но не менее важное, это физические свойства используемых материалов.По сути, когда дело доходит до теплопроводности, не все вещества одинаковы. Металлы и камень считаются хорошими проводниками, поскольку они могут быстро передавать тепло, тогда как такие материалы, как дерево, бумага, воздух и ткань, являются плохими проводниками тепла.

Эти проводящие свойства оцениваются на основе «коэффициента», который измеряется относительно серебра.В этом отношении серебро имеет коэффициент теплопроводности 100, тогда как другие материалы имеют более низкий рейтинг. К ним относятся медь (92), железо (11), вода (0,12) и дерево (0,03). На противоположном конце спектра находится идеальный вакуум, который не может проводить тепло, и поэтому оценивается как нулевой.

Материалы, плохо проводящие тепло, называются изоляторами. Воздух с коэффициентом проводимости 0,006 является исключительным изолятором, так как он может удерживаться в замкнутом пространстве.Вот почему в искусственных изоляторах используются воздушные отсеки, такие как окна с двойным остеклением, которые используются для сокращения счетов за отопление. По сути, они действуют как буферы от потерь тепла.

Перо, мех и натуральные волокна являются примерами натуральных изоляторов. Эти материалы позволяют птицам, млекопитающим и людям оставаться в тепле. Морские каланы, например, живут в океанических водах, которые часто очень холодны, а их роскошный густой мех согревает их. Другие морские млекопитающие, такие как морские львы, киты и пингвины, полагаются на толстый слой жира (он же.жир) — очень плохой проводник — для предотвращения потери тепла через кожу.

Та же самая логика применяется к изоляции домов, зданий и даже космических кораблей. В этих случаях методы включают либо воздушные карманы между стенами, стекловолокно (которое задерживает воздух) или пену высокой плотности. Космические аппараты представляют собой особый случай, и в них используется изоляция в виде пены, армированного углеродного композитного материала и плиток из кварцевого волокна. Все они плохо проводят тепло и, следовательно, предотвращают потерю тепла в космосе, а также предотвращают попадание экстремальных температур, вызванных атмосферным входом, в кабину экипажа.

What is heat conduction?

Электропроводность, как показано при нагревании металлического стержня пламенем. Кредит: Высшее образование Томсона.

Законы, регулирующие теплопроводность, очень похожи на закон Ома, регулирующий электрическую проводимость. В этом случае хороший проводник — это материал, который позволяет электрическому току (то есть электронам) без особых проблем проходить через него. Электрический изолятор, напротив, представляет собой любой материал, внутренние электрические заряды которого не текут свободно, и поэтому очень трудно проводить электрический ток под действием электрического поля.

В большинстве случаев материалы, которые плохо проводят тепло, также плохо проводят электричество. Например, медь хорошо проводит тепло и электричество, поэтому медные провода так широко используются в производстве электроники. Золото и серебро еще лучше, и там, где цена не является проблемой, эти материалы также используются при строительстве электрических цепей.

И когда кто-то пытается «заземлить» заряд (т.е. нейтрализовать его), они отправляют его через физическое соединение с Землей, где заряд теряется. Это обычное дело для электрических цепей, в которых присутствует незащищенный металл, гарантирующий, что люди, случайно вступившие в контакт, не будут поражены электрическим током.

What is heat conduction?

Это вид носовой части космического корабля «Дискавери», построенного из жаропрочных углеродных композитов. Предоставлено: НАСА.

Изоляционные материалы, такие как резина на подошвах обуви, используются для обеспечения защиты людей, работающих с чувствительными материалами или вблизи источников электрического тока, от электрических разрядов.Другие изоляционные материалы, такие как стекло, полимеры или фарфор, обычно используются в линиях электропередач и высоковольтных передатчиках мощности, чтобы энергия передавалась в цепи (и ничего больше!)

Короче говоря, проводимость сводится к передаче тепла или электрического заряда. И то, и другое происходит в результате способности вещества позволять молекулам передавать энергию через них.


Разработан теплопроводящий пластик


Ссылка :
Что такое теплопроводность? (2014, 9 декабря)
получено 5 августа 2020
с https: // физ.орг / Новости / 2014-12-что-это-тепло-conduction.html

Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, никакие
часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *