Теплопроводность свинец: Плотность свинца, теплопроводность и удельная теплоемкость свинца Pb

Содержание

Плотность свинца, теплопроводность и удельная теплоемкость свинца Pb

В таблице приведены физические свойства свинца: плотность свинца d, удельная теплоемкость Cp, температуропроводность a, теплопроводность λ, удельное электрическое сопротивление ρ в зависимости от температуры (при отрицательных и положительных температурах — в интервале от -223 до 1000°С).

Плотность свинца зависит от температуры — при нагревании этого металла его плотность снижается. Уменьшение плотности свинца объясняется увеличением его объема при росте температуры. Плотность свинца равна 11340 кг/м3 при температуре 27°С. Это довольно высокая величина, сравнимая, например, с плотностью технеция Tc и тория Th.

Плотность свинца намного больше плотности таких металлов, как олово (7260 кг/м3), алюминий (2700 кг/м3), хром (7150 кг/м3) и других распространенных металлов. Однако свинец не самый тяжелый металл. Если, к примеру, положить кусочек свинца в чашку с ртутью или с расплавленным таллием Tl, то он будет плавать на их поверхности.

Свинец начинает плавиться при температуре 327,7°С. При переходе его в жидкое состояние плотность свинца снижается скачкообразно и при температуре 1000 К (727°С) плотность жидкого свинца составляет уже 10198 кг/м3.

Удельная теплоемкость свинца равна 127,5 Дж/(кг·град) при комнатной температуре и при нагревании его до температуры плавления — увеличивается. Например, удельная теплоемкость свинца при температуре 280°С составляет величину около 140 Дж/(кг·град). Теплоемкость свинца в жидком состоянии при нагревании, наоборот — уменьшается и при температуре более 1000 К также равна 140 Дж/(кг·град).

Теплофизические свойства свинца в зависимости от температуры
t, °С → -223 -173 -73 27 127 227 327 327,7 527 727
d, кг/м3 11531 11435 11340 11245 11152 11059 10686 10430 10198
Cp, Дж/(кг·град) 103 116,8 123,2 127,5 132,8 137,6 142,1 146,4 143,3 140,1
λ, Вт/(м·град) 43,6 39,2 36,5 35,1 34,1 32,9 31,6 15,5 19,0 21,4
a·106, м2 35,7 29,1 24,3 24,3 22,8 21,5 20,1 9,9 12,7 15,0
ρ·108, Ом·м 2,88 6,35 13,64 21,35 29,84 38,33 47,93 93,6 102,9 112,2

Среди множества распространенных металлов свинец обладает относительно невысокой удельной теплоемкостью при комнатной температуре. Для примера, теплоемкость стали равна 440…550, чугуна — 370…550, меди — 385, никеля — 444 Дж/(кг·град). Следует отметить, что теплоемкость тяжелых металлов в общем случае не высока. Отмечается такая зависимость: чем плотнее металл, тем ниже его удельная теплоемкость.

Температуропроводность твердого свинца при его нагревании уменьшается, а жидкого — увеличивается. Теплопроводность свинца равна 35,1 Вт/(м·град) при комнатной температуре. Свинец при нормальной температуре имеет довольно низкую теплопроводность — почти в 7 раз меньше теплопроводности алюминия и в 11 раз ниже теплопроводности меди. Зависимость теплопроводности свинца от температуры следующая: при его нагревании до температуры плавления теплопроводность свинца уменьшается, а теплопроводность жидкого свинца при повышении температуры — растет.

Источник:
В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.

Теплопроводность разных материалов

Теплопроводность — способность материала передавать теплоту. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м 2 при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(м К) или Вт/(м градус Цельсия).

Теплопроводность зависит от средней плотности и химико-минерального состава материала, его структуры, пористости, влажности и средней температуры материала. Чем больше пористость (меньше средняя плотность), тем ниже теплопроводность материала. С увеличением влажности материала теплопроводность резко увеличивается, т.е. снижаются показатели теплоизоляционных свойств материала.

Теплопроводность некоторых материалов, Вт/(м*k)

Хорошие проводники тепла

Серебро 407
Медь 384
Золото 308
Алюминий 209
Латунь 111
Платина 70
Олово 65
Серый чугун 50
Бронза 47-58
Сталь 47
Свинец 35

Плохие проводники тепла

Ртуть 8,2
Котельная накипь ~3
Мрамор 2,8
Лёд (0°С) 2,23
Песчаник ~2
Фарфор ~1,4
Кварцевое стекло 1,36
Бетон 0,7-1,2
Стекло ~0,7
Кирпич ~0,7
Вода 0,58

Теплоизоляторы

Асбест 0,4-0,8
Поливинилхлорид ~0,17
Кожа ~0,15
Дерево 0,1-0,2
Древесный уголь 0,1-0,17
Пробка ~0,05
Стекловата ~0,05
Шамот 0,04
Пенопласт 0,04
Воздух 0,034
Перо 0,02
Вакуум 0,00

Теплопроводность химических элементов λ, Вт/(м·К)

TehTab.ru Инженерный справочник.

Технические таблицы

ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru: Технические таблицы главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… / / Теплопроводность. Коэффициенты теплопроводности.  / / Теплопроводность химических элементов λ, Вт/(м·К)

Теплопроводность химических элементов λ, Вт/(м·К):

















































Теплопроводность химических элементов λ, Вт/(м·К):
  200 К 300 К 400 К 600 К 800 К
Алюминий 237 237 240 230 220
Барий 19 18 = = =
Бериллий 300 200 160 126 106
Бор 55 27 17 11 10
Ванадий 31 30.7 31.3 33.3 36
Висмут 9.7 7.9 7.0 13 15
Вольфрам 185 174 159 137 125
Германий 97 60 43 27 20
Железо 94 80 70 55 43
Золото 323 317 311 298 284
Индий 90 82 75 43 (ж) 48 (ж)
Иод = 0.45 = = =
Иридий 153 147 144 138 132
Кадмий 99 97 95 88 42 (ж)
Калий 104 102 52 (ж) 44 (ж) 37 (ж)
Кальций 190 180 = = =
Кобальт 122 100 85 67 58
Кремний 260 150 99 62 42
Лантан 11.8 13.5 14.9 18 21
Литий 90 85 80 48 (ж) 54 (ж)
Магний 159 156 153 149 146
Медь 413 401 393 379 366
Молибден 143 138 134 126 118
Натрий 142 141 87 (ж) 76 (ж) 67 (ж)
Никель 107 91 80 66 68
Олово 73 67 62 32 (ж) 36 (ж)
Осмий 91 88 87 87 87
Платина 73 72 72 73 76
Ртуть 29 8.3 (ж) 9.8 (ж) 12 (ж) 13 (ж)
Свинец 37 35 34 31 19 (ж)
Сера (крист.) 0.36 0.27 0.13 (ж) 0.17 (ж) =
Сера (аморф.) 0.19 0.21 = = =
Серебро 430 429 425 412 396
Стронций 41 35 32 28 28
Сурьма 30 24 21 18 17
Тантал 58 58 58 59 59
Титан 25 22 20 19 20
Углерод (аморф.) 1.2 1.6 1.9 2.2 2.4
Углерод (алмаз) 1400 900 650 = =
Углерод (графит) 9.2 5.7 4.1 2.7 2.0
Уран 25 28 30 34 39
Фосфор (бел.) 0.31 0.24 0.18 (ж) 0.16 (ж) =
Фосфор (черн.) 18 12 = = =
Хром 111 94 91 81 71
Цезий 37 36 20 (ж) 21 (ж) 19 (ж)
Цинк 118 116 111 103 56 (ж)
Цирконий 25 23 22 21 22



Условные обозначения:

K — Кельвин
ж — жидкий
= — нет данных

↓Поиск на сайте TehTab.ru — Введите свой запрос в форму

Свинец






























Свинец

Атомный номер

82

Внешний вид простого вещества

Свойства атома

Атомная масса

(молярная масса)

207,2 а. е. м. (г/моль)

Радиус атома

175 пм

Энергия ионизации

(первый электрон)

715,2 (7,41) кДж/моль (эВ)

Электронная конфигурация

[Xe] 4f14 5d10 6s2 6p2

Химические свойства

Ковалентный радиус

147 пм

Радиус иона

(+4e) 84 (+2e) 120 пм

Электроотрицательность

(по Полингу)

1,8

Электродный потенциал

Pb←Pb2+ -0,126 В

Pb←Pb4+ 0,80 В

Степени окисления

4, 2

Термодинамические свойства простого вещества

Плотность

11,3415 г/см³

Молярная теплоёмкость

26,65[1]Дж/(K·моль)

Теплопроводность

35,3 Вт/(м·K)

Температура плавления

600,65 K

Теплота плавления

4,77 кДж/моль

Температура кипения

2 013 K

Теплота испарения

177,8 кДж/моль

Молярный объём

18,3 см³/моль

Кристаллическая решётка простого вещества

Структура решётки

кубическая гранецентрированая

Параметры решётки

4,950 Å

Отношение c/a

n/a

Температура Дебая

88,00 K






Pb

82

207,2

[Xe]4f145d106s26p2

Свинец


Свинец — элемент главной подгруппы четвёртой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 82. Обозначается символом Pb (лат. Plumbum). Простое вещество свинец (CAS-номер: 7439-92-1) — ковкий, сравнительно легкоплавкий металл серого цвета.


Происхождение слова «свинец» неясно. В большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом. Слово с тем же значением, но похожее по произношению на «свинец», встречается только в языках балтийской группы: švinas (литовский), svins (латышский).

Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber — водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей — Пьомбе, из которой по некоторым данным ухитрился бежать Казанова. Известен с глубокой древности. Изделия из этого металла (монеты, медальоны) использовались в Древнем Египте, свинцовые водопроводные трубы — в Древнем Риме. Указание на свинец как на определённый металл имеется в Ветхом Завете. Выплавка свинца была первым из известных человеку металлургических процессов. До 1990 г. большое количество свинца использовалось (вместе с сурьмой и оловом) для отливки типографских шрифтов, а также в виде тетраэтилсвинца — для повышения октанового числа моторного топлива.


Нахождение свинца в природе


Содержание в земной коре 1,6·10-3% по массе. Самородный свинец встречается редко, круг пород, в которых он установлен, достаточно широк: от осадочных пород до ультраосновных интрузивных пород. В основном встречается в виде сульфидов.


Получение свинца


Страны — крупнейшие производители свинца (включая вторичный свинец) на 2004 год (по данным ILZSG), в тыс. тонн:






ЕС

2200

США

1498

Китай

1256

Корея

219


Физические свойства свинца


Свинец имеет довольно низкую теплопроводность, она составляет 35,1 Вт/(м·К) при температуре 0°C. Металл мягкий, легко режется ножом. На поверхности он обычно покрыт более или менее толстой плёнкой оксидов, при разрезании открывается блестящая поверхность, которая на воздухе со временем тускнеет.


Плотность — 11,3415 г/см³ (при 20 °C)


Температура плавления — 327,4 °C


Температура кипения — 1740 °C


Химические свойства свинца


Электронная формула: KLMN5s25p65d106s26p2, в соответствии с чем он имеет степени окисления +2 и +4. Свинец не очень активен химически. На металлическом разрезе свинца виден металлический блеск, постепенно исчезающий из-за образования тонкой плёнки РbО.


С кислородом образует ряд соединений Рb2О, РbО, РbО2, Рb2О3, Рb3О4. Без кислорода вода при комнатной температуре не реагирует со свинцом, но при большой температуре получают оксида свинца и водород при взаимодействии свинца и горячего водяного пара.


Оксидам РbО и РbО2 соответствуют амфотерные гидрооксиды Рb(ОН)2 и Рb(ОН)4.


При реакции Mg2Pb и разбавленной HCl получается небольшое количество РbН4. Pbh5 — газозообразное вещество без запаха, которое очень легко разлагается на свинец и и водород. При большой температуре галогены образовывают со свинцом соединения вида РbХ2 (X — соответствующий галоген). Все эти соединения мало растворяются в воде. Могут быть получены галогениды и типа РbХ4. Свинец с азотом прямо не реагирует. Азид свинца Pb(N3)2 получают косвенным путём: взаимодействием растворов солей Рb (II) и соли NaN3. Сульфиды свинца можно получить при нагревании серы со свинцом, образуется сульфид PbS. Сульфид получают также пропусканием сероводорода в растворы солей Pb (II). В ряду напряжений Pb стоит левее водорода, но свинец не вытесняет водород из разбавленных HCl и h3SO4, из-за перенапряжения Н2 на Pb, а также на поверхности металла образуются плёнки трудно-растворимых хлорида РbCl2 и сульфата PbSO4, защищающие металл от дальнейшего действия кислот. Концентрированные кислоты типа h3SO4 и НCl при нагревании действуют на Pb и образуют с ним растворимые комплексные соединения состава Pb(HSO4)2 и Н2[РbCl4]. Азотная, а также некоторые органических кислоты (например, лимонная) растворяют свинец с получением солей Рb(II). По растворимости в воде соли свинца делятся на нерастворимые (напрммер, сульфат, карбонат, хромат, фосфат, молибдат и сульфид), малорастворимые (вроде, хлорид и фторид) и растворимые (к примеру,ацетат, нитрат и хлорат свинца). Соли Pb (IV) могут быть получены электролизом сильно подкисленных серной кислотой растворов солей Рb (II). Соли Pb (IV) присоединяют отрицательные ионы с образованием комплексных анионов, например, плюмбатов (РbО3)2- и (РbО4)4-, хлороплюмбатов (РbCl6)2-, гидроксоплюмбатов [Рb(ОН)6]2- и других. Концентрированные растворы едких щелочей при нагревании реагируют с Pb с выделением водорода и гидроксоплюмбитов типа Х2[Рb(ОН)4]. Еион (Ме=>Ме++e)=7,42 эВ.


Основные соединения свинца


Оксиды свинца


Оксиды свинца имеют преимущественно основный или амфотерный характер. Многие из них окрашены в красные, жёлтые, чёрные, коричневые цвета. На фотографии в начале статьи, на поверхности свинцовой отливки, в её центре видны цвета побежалости — это тонкая плёнка оксидов свинца, образовавшаяся из-за окисления горячего металла на воздухе.


Галогениды свинца


Халькогениды свинца


Халькогениды свинца — сульфид свинца, селенид свинца и теллурид свинца — представляют собой кристаллы чёрного цвета, которые являются узкозонными полупроводниками.


Соли свинца


Сульфат свинца

Нитрат свинца
Ацетат свинца — свинцовый сахар, относится к очень ядовитым веществам. Ацетат свинца, или свинцовый сахар, Pb(CH3COO)2·3H2O существует в виде бесцветных кристаллов или белого порошка, медленно выветривающегося с потерей гидратной воды. Соединение хорошо растворимо в воде. Оно обладает вяжущим действием, но так как содержит ионы ядовитого свинца, то применяется как наружное в ветеринарии. Ацетат применяют также в аналитической химии, крашении, ситценабивном деле, как наполнитель шёлка и для получения других соединений свинца. Основной ацетат свинца Pb(CH3COO)2·Pb(OH)2 — менее растворимый в воде белый порошок — используется для обесцвечивания органических растворов и очистки растворов сахара перед анализом.


Применение свинца


Свинец в народном хозяйстве


Нитрат свинца применяется для производства мощных смесевых взрывчатых веществ. Азид свинца применяется как наиболее широкоупотребляемый детонатор (инициирующее взрывчатое вещество). Перхлорат свинца используется для приготовления тяжелой жидкости (плотность 2,6 г/см³), используемой во флотационном обогащении руд, он иногда применяется в мощных смесевых взрывчатых веществах как окислитель. Фторид свинца самостоятельно, а так же совместно с фторидом висмута, меди, серебра применяется в качестве катодного материала в химических источниках тока. Висмутат свинца, сульфид свинца PbS, иодид свинца применяются в качестве катодного материала в литиевых аккумуляторных батареях. Хлорид свинца PbCl2 в качестве катодного материала в резервных источниках тока. Теллурид свинца PbTe широко применяется в качестве термоэлектрического материала (термо-э.д.с 350 мкВ/К), самый широкоприменяемый материал в производстве термоэлектрогенераторов и термоэлектрических холодильников. Двуокись свинца PbO2 широко применяется не только в свинцовом аккумуляторе, но так же на её основе производятся многие резервные химические источники тока, например — свинцово-хлорный элемент, свинцово-плавиковый элемент и др.

Свинцовые белила, основной карбонат Pb(OH)2•PbCO3, плотный белый порошок, — получается из свинца на воздухе под действием углекислого газа и уксусной кислоты. Использование свинцовых белил в качестве красящего пигмента теперь не так распространено, как ранее, из-за их разложения под действием сероводорода h3S. Свинцовые белила применяют также для производства шпатлевки, в технологии цемента и свинцовокарбонатной бумаги.

Арсенат и арсенит свинца применяют в технологии инсектицидов для уничтожения насекомых — вредителей сельского хозяйства (непарного шелкопряда и хлопкового долгоносика). Борат свинца Pb(BO2)2·h3O, нерастворимый белый порошок, используют для сушки картин и лаков, а вместе с другими металлами — в качестве покрытий стекла и фарфора. Хлорид свинца PbCl2, белый кристаллический порошок, растворим в горячей воде, растворах других хлоридов и особенно хлорида аммония Nh5Cl. Его применяют для приготовления мазей при обработке опухолей.

Хромат свинца PbCrO4 известен как хромовый желтый краситель, является важным пигментом для приготовления красок, для окраски фарфора и тканей. В промышленности хромат применяют в основном в производстве желтых пигментов. Нитрат свинца Pb(NO3)2 — белое кристаллическое вещество, хорошо растворимое в воде. Это вяжущее ограниченного применения. В промышленности его используют в спичечном производстве, крашении и набивке текстиля, окраске рогов и гравировке. Сульфат свинца Pb(SO4)2, нерастворимый в воде белый порошок, применяют как пигмент в аккумуляторах, литографии, в технологии набивных тканей.

Сульфид свинца PbS, чёрный нерастворимый в воде порошок, используют при обжиге глиняной посуды и для обнаружения ионов свинца.

Поскольку свинец хорошо поглощает γ-излучение, он используется для радиационной защиты в рентгеновских установках и в ядерных реакторах. Кроме того, свинец рассматривается в качестве теплоносителя в проектах перспективных ядерных реакторов на быстрых нейтронах.

Значительное применение находят сплавы свинца. Пьютер (сплав олова со свинцом), содержащий 85-90 %  Sn и 15-10 %  Pb, формуется, недорог и используется в производстве домашней утвари. Припой, содержащий 67 %  Pb и 33 %  Sn, применяют в электротехнике. Сплавы свинца с сурьмой используют в производстве пуль и типографского шрифта, а сплавы свинца, сурьмы и олова — для фигурного литья и подшипников. Сплавы свинца с сурьмой обычно применяют для оболочек кабелей и пластин электрических аккумуляторов. Соединения свинца используются в производстве красителей, красок, инсектицидов, стеклянных изделий и как добавки к бензину в виде тетраэтилсвинца (C2H5)4Pb (умеренно летучая жидкость, пары к-рой в малых концентрациях имеют сладковатый фруктовый запах, в больших-неприятный запах; Тпл =  130 °C, Ткип =  80°С/13 мм рт.ст.; плотн. 1,650 г/см³; nD2v =  1,5198; не раств. в воде, смешивается с орг. растворителями; высокотоксичен, легко проникает через кожу; ПДК =  0,005 мг/м³; ЛД50 =  12,7 мг/кг (крысы, перорально)) для повышения октанового числа.


Свинец в медицине


Экономические показатели


Цены на свинец в слитках (марка С1) в 2006 году составили в среднем 1,3—1,5 долл/кг.


Страны, крупнейшие потребители свинца в 2004 году, в тыс. тонн (по данным ILZSG):






Китай

1770

ЕС

1553

США

1273

Корея

286


Физиологическое действие


Свинец и его соединения токсичны. Попадая в организм, свинец накапливается в костях, вызывая их разрушение. ПДК в атмосферном воздухе соединений свинца 0,003 мг/м³, в воде 0,03 мг/л, почве 20,0 мг/кг. Выброс свинца в Мировой океан 430—650 тысяч т/год.

Удельная теплоемкость свинца — определение, особенности

Удельная теплоемкость свинца затрагивает не только физику, но и некоторые аспекты химии, биологии. Само понятие означает отношение тепловой емкости к массе или, проще говоря, теплоемкость единичной массы вещества. Международная система единиц (СИ) подразумевает использование различных символов для определения той или иной величины. Рассматриваемый термин измеряется по следующей схеме: Джоуль/(кг · К).

Свинец теплоемкость – частый запрос в интернете. В сегодняшней статье предлагаем поговорить о том, зачем нужна подобная информация, где и как ее применять, как измерить теплоту.

Свине (Pb)

Определение

Термин означает физическую величину, численно приравниваемую к количеству тепла, которое нужно передать телу массой 1 кг, чтобы температурный показатель изменился на 1 Кельвин. Обозначается понятие символом c и рассчитывается по формуле с = Q / (m · ΔT), где:

  • Q – тепло, полученное при реакции;
  • m – масса нагреваемого тела;
  • ΔT – различие стартовой и итоговой температуры.

Следует учитывать не только температурный режим, но и другие факторы, влияющие на результат. Это могут быть объем, давление и прочие особенности. Во внимание берут и условия изменения термодинамических и температурных характеристик.

Чем характеризуется теплота?

Теплообмен подразумевает увеличение внутренней энергии одних тел и ее уменьшение у других тел. Все это сопровождается отсутствием изменения механических действий и совершения работы. Однако внутренняя энергия нагревающего предмета снижается, а нагреваемого тела – повышается.

Как говорилось, процесс теплообмена обуславливается величиной тепла. Данное понятие обозначает изменение внутренней энергии предмета, которое происходит в конце теплообмена. Для расчета зачастую применяется физическая единица, называемая калорией.

Калория равняется объему тепла, нужного для нагревания грамма воды на 1° по Цельсию. Исследователи выяснили, что для этого следует выполнить работу, соответствующую 4,18 Дж. Это означает, что калория равна 4,18 Джоулей.

Так как теплота равняется изменению энергии внутри предмета, нужно сказать, что c отображает, насколько изменяется энергия одного кг предмета при его нагреве.

Удельная теплоемкость свинца

Чтобы понять, насколько отличается 82-й элемент от других металлов периодической системы химических элементов, разберем не только c, но и плотность, а также теплопроводность. Концентрация данного вещества напрямую зависит от степени подогрева: при нагреве показатель уменьшается. Факт обуславливается увеличением объема при повышении температуры. При температуре 27° плотность равняется 11 340 кг/м3. При более высокой степени подогрева значение уменьшится, при низкой – увеличится.

Материал начинает плавление при температурных условиях от 327,7° по Цельсию. Ниже приведена таблица, позволяющая оценить температуру плавления других металлов.

Алюминий 660°
Серебро 962°
Золото 1064°
Медь 1085°
Чугун 1200°

 

Это говорит о том, что 82-й элемент ПСХЭ является не самым прочным, по сравнению с остальными.

Его теплопроводность в твердом состоянии уменьшается, в жидком – повышается. Теплопроводность при комнатной температуре равна 35,1 Вт/(г · градус). По сравнению с алюминием или медью, компонент имеет достаточно низкий показатель. А зависимость пропуска тепла такая: при нагреве до состояния плавления значение понижается, а при охлаждении – повышается.

И, наконец, перейдем к количеству теплоты. При 27 градусах удельная теплоемкость свинца равна 127,5 Дж/(кг · град). В отличие от плотности, показатель увеличивается при нагревании. К примеру, c при температурных условиях составляет 280°C, что равняется примерно 140 Джоулей/(кг · градус). В жидком состоянии это число при нагреве уменьшается.

Особенности

Наряду с великим разнообразием известных металлов рассматриваемый элемент имеет относительно небольшую тепловую емкость при средней степени подогрева. Величина в отношении стали соответствует 440 – 550 Дж/(кг · град), чугуна – 370 – 550 Джоулей/(кг · градус), никеля – 440 Дж/(кг · град).

Отдельное внимание стоит уделить тому, что показатели тяжелых металлических компонентов не имеют высокого значения. А потому знаменитые физики выявили следующую зависимость

Свойства жидких металлов: плотность, теплопроводность, вязкость

Свойства жидких металлов

В таблице представлены теплофизические свойства жидких металлов в зависимости от температуры в диапазоне от 0 до 800°С. Даны следующие свойства: плотность металлов, теплопроводность,  удельная (массовая) теплоемкость, температуропроводность, кинематическая вязкость, число Прандтля.

Свойства указаны для таких жидких металлов и сплавов, как ртуть Hg, олово Sn, висмут Bi, свинец Pb, сплав висмут-свинец Bi-Pb, литий Li, натрий Na, калий K, сплав натрий-калий Na-K. Для каждого металла и сплава также указана его температура плавления и кипения.

Плотность жидких металлов, представленных в таблице, значительно различается. Металлом с минимальной плотностью является литий (литий — самый легкий металл среди существующих) — его плотность в жидком состоянии при температуре 200°С равна 515 кг/м3. Наиболее тяжелый из рассмотренных жидких металлов — это ртуть. Плотность ртути при 0°С равна 13590 кг/м3. Следует отметить, что плотность жидких металлов уменьшается при нагревании.

Теплопроводность жидких металлов увеличивается при повышении их температуры (за исключением натрия и калия, теплопроводность которых имеет обратную зависимость). Наиболее теплопроводный жидкий металл — это натрий. Теплопроводность жидкого натрия имеет величину 60…86 Вт/(м·град). В целом, щелочные металлы (литий, натрий и калий) обладают высокой теплопроводностью по сравнению с другими жидкими металлами.

Кинематическая вязкость и число Прандтля жидких металлов уменьшаются при нагревании. Теплоемкость и температуропроводность этих металлов — растет. Однако, удельная теплоемкость таких жидких металлов, как свинец, олово, висмут и сплава свинец-висмут не зависит от температуры и является постоянной величиной.

Динамическая вязкость жидких металлов

Представлены значения динамической вязкости жидких металлов в зависимости от температуры в интервале от 300 до 1800 К. Динамическая вязкость жидких металлов дана в размерности Па·с·103. Например, по данным таблицы, вязкость лития при 500 К равна 0,00053 Па·с. Указана вязкость следующих металлов в жидком состоянии: литий, натрий, калий, рубидий, цезий, ртуть, висмут, свинец, олово, цинк, сурьма.

Следует отметить, что из рассмотренных металлов наиболее вязким в жидкой фазе является цинк — его коэффициент динамической вязкости составляет величину 0,0033 Па·с при температуре 700 К. Металлом, обладающим минимальной вязкостью при этой температуре, является щелочной металл калий с вязкостью 0,0002 Па·с.

Источники:
1. Михеев М.А., Михеева И.М. Основы теплопередачи.
2. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.

Теплопроводность металлов и сплавов λ, Вт/(м·К)

TehTab.ru Инженерный справочник.

Технические таблицы

ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru: Технические таблицы главная страница  / / Техническая информация / / Физический справочник / / Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… / / Теплопроводность. Коэффициенты теплопроводности.  / / Теплопроводность металлов и сплавов λ, Вт/(м·К)


Теплопроводность металлов и сплавов λ, Вт/(м·К):






















Теплопроводность металлов и сплавов λ, Вт/(м·К):
  200 К 300 К 400 К 600 К 800 К
Алюминий 237 237 240 230 220
Бронза алюминиевая = 105 = 130 145
Ванадий 31 30.7 31.3 33.3 36
Вольфрам 185 174 159 137 125
Железо 94 80 70 55 43
Золото 323 317 311 298 284
Кобальт 122 100 85 67 58
Константан = 22 24 32 =
Латунь = 110 = 140 150
Медь 413 401 393 379 366
Молибден 143 138 134 126 118
Никель 107 91 80 66 68
Нихром = 12 = = 23
Олово 73 67 62 ж ж
Платина 73 72 72 73 76
Свинец 37 35 34 31 ж
Серебро 430 429 425 412 396
Титан 25 22 20 19 20
Хром 111 94 91 81 71
Цинк 118 116 111 103 ж



Условные обозначения:

K — Кельвин
ж — жидкий
= — нет данных

↓Поиск на сайте TehTab.ru — Введите свой запрос в форму

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.

TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Теплопроводность припоев | Охлаждение электроники

Пайка была основным методом установления механических и электрических соединений в электронике в течение многих лет и, вероятно, будет использоваться в этом виде в будущем. Хотя существует несколько физических свойств и характеристик припоев, которые представляют интерес для электронного сообщества в целом, одним из наиболее важных физических свойств для инженера-теплотехника является теплопроводность.

Исторически сплавы олова (Sn) и свинца (Pb) были предпочтительными припоями.К моменту публикации этой статьи 1 июля 2006 года, когда европейские страны будут соответствовать Директиве об ограничениях по опасным веществам (RoHS), будет пройдена, и электронное сообщество будет двигаться дальше по пути к бессвинцовой. Необходимость разработки бессвинцовых припоев привела к появлению нескольких сплавов-кандидатов, но получение данных о теплопроводности этих сплавов затруднено, особенно для хорошо документированных данных.

Необходимость последовательно создавать продукты привела к классификации припоев, которые используются для крепления кристаллов, к припоям межсоединений первого уровня.Припои, используемые для прикрепления упакованных компонентов к печатным платам, классифицируются как межсоединения второго уровня и имеют температуру плавления ниже, чем припои межсоединений первого уровня, так что упакованные детали могут быть прикреплены без оплавления припоя для прикрепления кристалла.

Таблица 1. Теплопроводность припоев

В таблице 1 приведена теплопроводность нескольких припоев, перечисленных в порядке уменьшения температуры плавления.Припои с одной указанной температурой плавления являются эвтектическими сплавами. В первом столбце перечислены составляющие элементы с указанием процентного содержания каждого элемента в скобках. Следует отметить, что элементы, составляющие до 5% сплава, могут варьироваться до ± 0,2%, в то время как элементы, составляющие более 5% сплава, могут варьироваться до ± 0,5% [1].

Припои, указанные в верхней части таблицы, с высокими температурами плавления, часто используются для крепления штампов в герметичных корпусах.Присоединение к этим припоям с более высокой температурой плавления обычно требует использования материалов подложки с коэффициентом теплового расширения, близким к полупроводнику, чтобы избежать чрезмерных напряжений при остывании сборки. Эвтектический припой золото-олово — один из широко используемых припоев для прикрепления штампа, который имеет много хороших характеристик, но является сравнительно дорогим.

Кандидатом на замену припоя олово-свинец (SnPb) является сплав олова (Sn), серебра (Ag) и меди (Cu), называемый SAC. Доступно несколько разновидностей этого сплава, но проводимость для всех из них составляет примерно 60 Вт / мК при 25 ° C.Некоторые данные могут быть найдены с отказом от ответственности, что это оценочная стоимость, но никаких подробностей о методе оценки не приводится. Следует отметить, что использование «правила смесей» для оценки теплопроводности припоя на основе чистой теплопроводности металлов составляющих элементов может привести к значительным ошибкам. Например, теплопроводность припоя AuSn (80/20) составляет 57 Вт / мК, что ниже, чем проводимость любого из основных металлов золота (315 Вт / мК) или олова (66 Вт / мК).Последнее замечание, требующее внимания при использовании этих значений в тепловом моделировании, заключается в том, что необходимо учитывать наличие пустот, если таковые имеются.

Ссылки

  1. IPC-J-STD-006 Test Methods Manual, www.ipc.org.
  2. Кинг, Дж. А., «Справочник по материалам для гибридной микроэлектроники», Artec House, Норвуд, Массачусетс, 1988.
  3. Билек, Дж. И др., «Теплопроводность расплавленных бессвинцовых припоев», Европейский симпозиум по микроэлектронике и упаковке, Июнь 2004 г., Чехия.
  4. Технический паспорт продукта AIM, www.aimsolder.com.
  5. Силиг, К. и Сураски, Д., «Состояние бессвинцовых припоев», Труды 50-й конференции по электронным компонентам и технологиям IEEE 2000, май 2000 г., Лас-Вегас, штат Невада.
  6. Технический паспорт продукции Indium Corporation, www.indium.com.

.

Теплопроводность элементов — Angstrom Sciences Справочник по теплопроводности

Теплопроводность элементов — Angstrom Sciences Справочник по теплопроводности

Перейти к навигации

Теплопроводность Имя Символ #
0,0000364 Вт / см · K Радон Rn 86
0.0000569 Вт / см · K Ксенон Xe 54
0,000089 Вт / см · K Хлор класс 17
0,0000949 Вт / см · K Криптон Кр 36
0,0001772 Вт / см · K Аргон Ar 18
0,0002598 Вт / см · K Азот N 7
0,0002674 Вт / см · K Кислород O 8
0.000279 Вт / см · K Фтор F ​​ 9
0,000493 Вт / см · K Неон Ne 10
0,00122 Вт / см · K Бром руб. 35
0,00152 Вт / см · K Гелий He 2
0,001815 Вт / см · K Водород H 1
0,00235 Вт / см · K фосфор P 15
0.00269 Вт / см · K Сера S 16
0,00449 Вт / см · K Йод I 53
0,017 Вт / см · K Астатин в 85
0,0204 Вт / см · K Селен SE 34
0,0235 Вт / см · K Теллур Te 52
0,063 Вт / см · K Нептуний Np 93
0.0674 Вт / см · K Плутоний Pu 94
0,0782 Вт / см · K Марганец Мн 25
0,0787 Вт / см · K Висмут Bi 83
0,0834 Вт / см · K Меркурий Hg 80
0,1 Вт / см · K Америций утра 95
0,1 Вт / см · K Калифорний Cf 98
0.1 Вт / см · K Нобелий 102
0,1 Вт / см · K Кюрий см 96
0,1 Вт / см · K Лоуренсий Lr 103
0,1 Вт / см · K Фермий Fm 100
0,1 Вт / см · K Эйнштейний Es 99
0,1 Вт / см · K Берклий Bk 97
0.1 Вт / см · K Менделевий Md 101
0,106 Вт / см · K Гадолиний Gd 64
0,107 Вт / см · K Диспрозий Dy 66
0,111 Вт / см · K Тербий Тб 65
0,114 Вт / см · K Церий CE 58
0,12 Вт / см · K Актиний Ac 89
0.125 Вт / см · K празеодим Пр 59
0,133 Вт / см · K Самарий см 62
0,135 Вт / см · K Лантан La 57
0,139 Вт / см · K Европий Eu 63
0,143 Вт / см · K Эрбий Er 68
0,15 Вт / см · K Франций Fr 87
0.158 Вт / см · K Скандий SC 21
0,162 Вт / см · K Гольмий Ho 67
0,164 Вт / см · K Лютеций Лю 71
0,165 Вт / см · K Неодим Nd 60
0,168 Вт / см · K Тулий ТМ 69
0,172 Вт / см · K Иттрий Y 39
0.179 Вт / см · K Прометий вечера 61
0,184 Вт / см · K Барий Ba 56
0,186 Вт / см · K Радий Ra 88
0,2 Вт / см · K Полоний Po 84
0,219 Вт / см · K Титан Ti 22
0,227 Вт / см · K Цирконий Zr 40
0.23 Вт / см · K Гафний Hf 72
0,23 Вт / см · K Резерфордий Rf 104
0,243 Вт / см · K Сурьма Сб 51
0,274 Вт / см · K Бор B 5
0,276 Вт / см · K Уран U 92
0,307 Вт / см · K Ванадий В 23
0.349 Вт / см · K Иттербий Yb 70
0,353 Вт / см · K Стронций Sr 38
0,353 Вт / см · K Свинец Пб 82
0,359 Вт / см · K Цезий CS 55
0,406 Вт / см · K Галлий Ga 31
0,461 Вт / см · K Таллий Tl 81
0.47 Вт / см · K Протактиний Па 91
0,479 Вт / см · K Рений Re 75
0,502 Вт / см · K Мышьяк как 33
0,506 Вт / см · K Технеций Tc 43
0,537 Вт / см · K Ниобий Nb 41
0,54 Вт / см · K торий Чт 90
0.575 Вт / см · K Тантал Ta 73
0,58 Вт / см · K Дубний Дб 105
0,582 Вт / см · K Рубидий руб. 37
0,599 Вт / см · K Германий Ge 32
0,666 Вт / см · K Олово Sn 50
0,716 Вт / см · K Платина Pt 78
0.718 Вт / см · K Палладий Pd 46
0,802 Вт / см · K Утюг Fe 26
0,816 Вт / см · K Индий В 49
0,847 Вт / см · K Литий Li 3
0,876 Вт / см · K Осмий Os 76
0,907 Вт / см · K Никель Ni 28
0.937 Вт / см · K Хром Cr 24
0,968 Вт / см · K Кадмий Кд 48
1 Вт / см · K Кобальт Co 27
1,024 Вт / см · K Калий К 19
1,16 Вт / см · K Цинк Zn 30
1,17 Вт / см · K Рутений Ру 44
1.29 Вт / см · K Углерод С 6
1,38 Вт / см · K Молибден Пн 42
1,41 Вт / см · K Натрий Na 11
1,47 Вт / см · K Иридий Ir 77
1,48 Вт / см · K Кремний Si 14
1,5 Вт / см · K Родий Rh 45
1.56 Вт / см · K Магний мг 12
1,74 Вт / см · K Вольфрам Вт 74
2,01 Вт / см · K Кальций Ca 20
2,01 Вт / см · K Бериллий Be 4
2,37 Вт / см · K Алюминий Al 13
3,17 Вт / см · K Золото Au 79
4.01 Вт / см · K Медь Cu 29
4,29 Вт / см · K Серебро Ag 47

,

Теплопроводность кремния

Самым важным материалом в полупроводниковой промышленности является кремний. При моделировании электротермических устройств или интерпретации методов быстрых переходных процессов для измерения теплового импеданса требуется теплопроводность кремния. Однако для термического анализа в установившемся режиме на уровне платы и системы точные значения не требуются, поскольку влияние кремния на общую производительность ограничено.

Примечательно, что теплопроводность (в Вт / мК), определенная в различных документах и ​​справочниках, сильно варьируется — 68,8, 83,7, 100, 125, 140, 153,46 !, 157 — и часто рекомендуется только одно значение при неизвестной температуре. В другом источнике указано значение 145 при 100 ° C для чистого материала и 98 для легированного материала. Данные, зависящие от температуры, подробно описанные в этой статье, показаны на приведенном ниже графике и могут быть отнесены к двум источникам, которые находятся в пределах 5% друг от друга.

Полезная формула для вычисления значений, лежащих между двумя кривыми:

k = 1.5 ( T /300) -4/3

Разработчикам, которые не хотят включать свойство, зависящее от температуры, следует использовать обоснованное предположение для определения средней температуры кремния и использовать уравнение для расчета соответствующей теплопроводности. стоимость. Опыт показал, что теплопроводность высоколегированного кремния может быть рассчитана как: 80% от «чистого» значения.

Ссылки

1. Selberherr S., Анализ и моделирование полупроводниковых приборов, Springer-Verag, NY, p. 119, 1984
2. Летурк П. и др., Новый подход к термическому анализу силовых устройств, IEEE Trans. Электронные устройства, т. ED24, стр. 1147-1156, 1987

.

высокая теплопроводность / проводя паста приведенного транзистора термопроводящая для промышленного используемого

P roduct Описание

Теплопроводящая паста для светодиодных транзисторов с высокой теплопроводностью (серия HY880)

32> 5.15 Теплопроводность! !!

Идеально подходит для всех кулеров ЦП и мощных светодиодов.

Серия HY880 оптимизирована для широкого диапазона линий связи между современными процессорами и высокопроизводительными радиаторами или решениями для воздушного и водяного охлаждения.

Приложение

Используется для ЦП и других электронных компонентов

Спецификация Позиции

03

0

1

0 HY880

HY881

Блок

Цвет

Серый

Серый

50002

Теплопроводность

15

> 5,6

Вт / мK

Тепловое сопротивление

<0,004

<0,002

° C-дюйм2 / Вт

03

000 Плотность

> 3,25

> 2,5

г / см3

Вязкость

90,000

90,000

03

03

03

300 ± 10

350 ± 10

1/10 мм

Испарение

0.001

0,001

%

Обрезка

0,05

0,05

%

%

Пиковая температура

-30 ~ 280

-30 ~ 280

° C

-50 ~ 340

-50 ~ 300

° C

Упаковка и отгрузка

Наша служба 1

Гарантийный срок: 5 лет

2. Экспресс-сервис от двери до двери

3. Оплата: T / T Pay-pal Western Union

4. OEM и ODM

5. Обмен и возврат товаров

(вы должны предоставить фотографии или видео или данные испытаний, чтобы подтвердить, что это проблема наших продуктов)

О нас

Мы, Shenzhen Halnziye Electronics Co., Ltd., являемся старшим производителем термопаста в Китае В течение многих лет нашей основной продукцией являются составы для теплоотвода, штукатурка для радиатора, поток радиатора и тепловая прокладка, наши продукты широко используются в процессорах и VGA, светодиодах, IC и т. Основными рынками сбыта являются ЕС, Северная Америка, северо-Восточной Азии, Юго-Восточной Азии и т.д., я полагаю, вы найдете то, что вы хотите сделать заказ с наилучшей производительности затрат.

FAQ

1> Время выполнения:

Меньше или равно 1000 шт. В течение 3 рабочих дней; другое количество зависит от организации нашего завода.

2> Срок доставки: 3 ~ 5, работа экспресс-доставкой от двери до двери и из аэропорта в аэропорт, если на корабле, это зависит от расписания и пункта назначения.

3> На все электронные письма ответят в течение 12 часов. Если вы не получили наш ответ, отправьте его еще раз, и мы ответим как можно скорее.

4> Любой другой вопрос, не стесняйтесь обращаться к нам

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *