Теплый пол потребление электроэнергии: Сколько ватт потребляет электрический теплый пол в месяц на квадратный метр

Содержание

Теплый пол электрический сколько потребляет электричества: расчет, нюансы

Содержание статьи:

Теплый пол – вариант электрического обогрева помещения. В паспорте системы указывают ее энергопотребление на 1 кв. м. площади. Однако эта величина – расход энергии во включенном состоянии, а отопительная система работает циклами. Сколько потребляет электричества теплый пол, зависит от того, насколько учтены все нюансы установки и выбора.

Факторы, влияющие на потребление электроэнергии теплым полом

При правильном монтаже и расчете можно качественно нагреть дом и не переплатить

Электричество – дорогостоящий источник энергии, но эффективный. Если правильно подобрать систему отопления, можно обеспечить дом теплом и не тратить много денег на оплату счетов.

Вид системы

Различают несколько видов напольного электрообогревателя:

  • Греющий кабель – резистивный или зональный. Самый дешевый вариант. Аккумулирует некоторое количество тепла, после выключения пол остывает медленно. Схема укладки сложная: кабель можно размещать только на открытых участках, иначе он перегревается и выходит из строя. Такую модификацию устанавливают на балконах, лоджиях, в ваннах, где отопление требуется реже.
  • Термоматы – конвекционные и инфракрасные. Более экономичные и меньше потребляют электричества. Монтаж требует высокой квалификации. Укладывают термоматы под тонкое половое покрытие, помещают в стяжку или в слой плиточного клея.
  • ИК-пленка – нагрев только за счет ИК-излучения. При этом исчезает этап передачи тепла покрытию. Ик-пленка эффективнее. Ее монтируют в жилых помещениях, где приемлемую температуру нужно поддерживать постоянно.
  • Саморегулирующиеся – за счет включения углеродно-полимерного материала система саморегулируется. На холодном участке у кабеля падает сопротивление, через него проходит ток большей интенсивности и нагревает его. При нагреве сопротивление кабеля растет и ток ослабевает. Этот вариант разработан для промышленной сферы, дорог в производстве, но эффективнее, чем остальные модификации.

Меньший расход энергии и стоимость – не единственные факторы, по которым выбирают изделие. В помещения с низким потолком ставить кабельные обогреватели нерентабельно, здесь монтируют более дорогие ИК-пленки.

Внешние факторы

На расход электроэнергии влияет площадь окон и дверей, их количество

Факторы определяют величину теплопотерь. Чем они меньше, тем менее мощное можно ставить отопление, и тем меньше платить за электричество. Учитывают следующее:

  • Число окон и дверей – металлическая или стеклянная поверхность хорошо проводит тепло. Предупреждают потери, утепляя двери.
  • Уровень сопротивляемости теплопотерям – величину составляет показатель материала стены – кирпич, бетон, качество, толщина теплоизоляционного слоя, характеристики наружной и внутренней отделки. Недостаточная теплоизоляция сводит на нет преимущества теплого пола и приводит к лишним расходам.
  • Погодные условия – в сильные холода потребление закономерно увеличивается.
  • Число жильцов – чем больше людей живут в квартире, тем меньше работает теплый пол.

Инфракрасную пленку или греющий кабель можно установить не только на пол, но и на стены в кирпичном здании, каркасном или деревянном.

Характеристики пола

Чем шире шаг укладки, тем меньше потребление электроэнергии

На энергопотребление любого варианта теплого пола влияют его собственные показатели:

  • наличие терморегулятора – чем точнее регулируется температура, тем экономичнее система;
  • шаг укладки кабеля – чем он меньше, тем мощнее обогреватель, тем больше энергии он потребляет;
  • толщина напольного покрытия – ламината, плитки, или стяжки – чем она меньше, тем ниже расход электричества.

Ковер или ковролин снижает эффективность напольного обогревателя и заставляет его работать слишком активно. Материал затрудняет теплоотвод, что может привести к перегреву и порче кабеля. Допускается класть только маленькие декоративные коврики.

Подсчет потребления электрического пола

Отопление ЭТП эффективно, но слишком высокое потребление энергии делает его нерентабельным. Рассчитывают расходы, учитывая режим работы и тип напольного обогревателя, иначе данные будут недостоверными.

Расчет общей мощности

Расчет мощности с учетом сечения кабеля, шага укладки

Приблизительное вычисление производят так: умножают полезную площадь на мощность электрического теплого пола на 1 квадратный метр, указанную в паспорте изделия. Получают максимально возможный расход.

Однако напольный обогреватель работает не постоянно: в течение часа кабель нагревается 5–20 минут. Например, для площади в 12 кв. м. при мощности системы в 150 Вт/кв. м, максимальный расход составит 1,8 кВт в час. Но так как система работает лишь 10 минут в час, а 50 минут остывает, реальный расход составит всего 0,3 кВт за час.

Таким же образом влияет и температура. Максимальная температура кабельного пола – +65 С, ИК-пленки – +60 С. Столь высокий нагрев нужен редко. Рабочая температура составляет не более 30–35 С, то есть расход электроэнергии снижается еще на 40%.

Степень утепления как увеличивает, так и уменьшает расход электроэнергии:

  • для отопления жилых помещений требуется до 120 Вт/кв. м;
  • для ванной – 150 Вт/кв. м, так как это помещение нежилое;
  • на балконе или лоджии утепление самое слабое, на обогрев потребуется 200 Вт/кв. м.

Так как ванной и лоджией пользуются намного реже, чем спальней или кухней, реальный расход не так велик.

Поправка на работу с терморегулятором

Подключение термодатчика может снизить расходы

Терморегулятор включает и выключает обогрев в зависимости от показаний термодатчика. Когда температура воздуха в комнате превышает установленное значение, теплый пол отключается; когда падает – терморегулятор включает обогреватель. Цикличная работа экономит энергопотребление.

Электронный программируемый терморегулятор обеспечивает оптимальный режим обогрева. Настройки по умолчанию предполагают, что утром, пока все обитатели находятся дома, температуру нужно поддерживать на уровне 25 С. Если во время рабочего дня дом пустой, обогрев можно уменьшить до 15 С. Вечером, когда жильцы возвращаются домой, температуру вновь повышают. Ночью интенсивность нагрева уменьшается.

Расчет стоимости ресурсов

Рассчитать расходы не составляет труда. Полученную мощность системы для каждого помещения и с учетом графика работы умножают на величину тарифа, принятого в области. Реальный расход может отличаться, если при вычислениях какой-то из факторов был не учтен или если погодные условия оказались отличными от ожидаемых.

Как сократить затраты на ресурсы

Снизить расходы на оплату электричества можно, если учесть все нюансы работы теплого пола. При недостаточной теплоизоляции дома никакие ухищрения не помогут.

Правильная установка терморегулятора

Датчик и терморегулятор необходимо ставить в каждую комнату и настраивать отдельно

Сколько энергии потребляет теплый пол, зависит от типа и способа установки регулирующего устройства. Рекомендации следующие:

  • Настройки электронного устройства точны: температуру можно установить до 1 градуса. Это более экономичный режим работы.
  • Программируемый термодатчик снижает температуру в период, когда обитателей жилища нет дома. Таким образом можно сэкономить до 30% энергии.
  • Монтируют прибор в самом прохладном месте.
  • Терморегулятор ставят в каждую комнату, поскольку комфортная температура в ванной и спальне разные. Если обогрев в разных помещениях будет контролировать только один прибор, все помещения будут нагреваться одинаково, а это ведет к перерасходу.

Работу терморегулятора настраивают по датчику пола. Программируемый можно настроить на работу от 2 датчиков. В этом случае нагрев пола регулируется в зависимости от показателя датчика воздуха, а датчик пола служит ограничителем и не позволяет повысить температуру выше 28–30 С.

Обогрев полезной площади

Обогревать пол под мебелью или оборудованием нет нужды. Кабели или ИК-пленку укладывают только на открытые участки пола, где человек соприкасается с покрытием. Эту площадь называют полезной или активной.

Монтируют нагревательные элементы на расстоянии не менее 20 см от стены – размеры полезной площади уменьшаются и за счет соблюдения ограничения.

Многотарифный счетчик

Трехтарифный счетчик для снижения затрат в ночное и рабочее время

Двух- и трехтарифный счетчик учитывает количество потребленного электричества в зависимости от времени суток: днем, ночью, в период утреннего пика. Стоимость электричества в разное время суток отличается. 1 кВт ночной энергии стоит на 50–70% ниже, чем дневной. Утром и вечером цена самая высокая.

Многотарифный счетчик в сочетании с запрограммированной работой термодатчика снижает стоимость ночного обогрева за счет учета по другом тарифу и за счет снижения температуры.

Утепление строения

Теплоизоляция – главное условие меньшего расхода. Утеплению подлежат все элементы строения:

  • плохо сконструированные стены пропускают до 30%;
  • через неутепленный фундамент теряется 20% тепла;
  • холодная крыша, даже с учетом чердака пропускает до 25%;
  • окно в старой деревянной раме теряет до 25%;
  • через места входа внешних коммуникаций исчезает еще 5%;
  • вентиляция обеспечивает 15% потерь.

Плохо утепленное здание сберегает не более 30% тепла. В таких условиях расходы на обогрев огромны. Напротив, надежная теплоизоляция сохраняет тепло, как термос горячий чай. В средних широтах во время теплой зимы напольный обогреватель может заменять стандартную водную систему, при этом работая в режиме дополнительного отопления.

Снижение температуры помещения

Максимально допустимая температура нагрева пола высока – на выходе датчик воздуха может показать 30 С. Это очень много. По статистике температуру чаще выставляют в диапазоне от 23–25 С. На деле комфортная обстановка сохраняется и при более низких показателях – 21–22 С. Снижение нагрева всего на 1 градус уменьшает расходы на 5%.

Нюансы энергопотребления электрополов

При обогреве снизу температуру можно снизить – это экономит электроэнергию

Поверхность пола в системе выступает излучающей панелью, а теплый пол – нагревающими элементами. К кабелям и пленке, подается электричество, которое превращается в тепловую энергию. КПД всех вариантов обогревателя близко к 100%.

При одинаковых показателях мощности и энергопотребления реальный расход электричества отличается.

Кабельные полы работают по одному принципу: ток проходит через кабель, нагревая его, а последний передает тепло полу. Поскольку бетон – отличный проводник тепла, кабели удобнее и выгоднее всего устанавливать в толще бетонной стяжки.

Эффективность пленочного обогревателя выше. При прохождении тока элементы генерируют инфракрасное излучение. Нагревается при этом не столько пол, сколько предметы и объекты в комнате – мебель и люди. Фактическая температура в таком помещении может быть ниже, чем при обычной форме обогрева, но люди чувствуют себя так же комфортно, как и при более высокой температуре. Это позволяет устанавливать более низкий уровень нагрева и экономить электричество.

При монтаже электрических теплых полов дублируют датчики, снижая вероятность внезапного отказа системы.

Сколько потребляет теплый пол электроэнергии: расход энергопотребления

Теплые полы приносят в дом комфорт и уют. Многие используют их в своих квартирах и домах наряду с центральной системой отопления. Неоспоримым преимуществом теплого пола является возможность регулировки температуры. Однако прежде чем монтировать их, рекомендуется рассчитать расход электроэнергии.

От чего зависит энергопотребление?

Несмотря на то, что вода – самый дешевый и доступный ресурс, многие отдают предпочтение электрическому теплому полу. В первую очередь это связано с тем, что далеко не в каждом помещении возможно обустройство водяной системы обогрева пола. Она может увеличить гидравлические и тепловые потери, а также нагрузку на потолочные перекрытия за счет большого веса стяжки.

Виды систем теплого пола

Существует два типа полов с подогревом: водяные и электрические. В электрической системе максимальная температура нагрева достигает 65 °C. Этот факт исключает опасность возгорания материалов. При небольших теплопотерях с помощью термостата можно поддерживать оптимальную температуру для пола – 27 °C. Инфракрасные (пленочные) полы имеют меньшую мощность, но они более универсальны благодаря тому, что устанавливаются под любое напольное покрытие. У такого пола максимальная температура – 55 °C, а потребление энергии ниже, чем у других систем отопления.

Затраты денежных средств на покупку, установку и эксплуатацию систем теплых полов. Как видно, водяные теплые полы, несмотря на высокие затраты на установку системы в долгосрочной эксплуатации обходятся экономичнее, нежели электрические системы

Если серьезно подходить к вопросу, сколько энергии потребляет теплый пол, нужно определить потери тепла в комнате. Есть конкретные факторы, которые влияют на количество потребляемой энергии:

  • Теплоизоляция комнаты, в которой установлены теплые полы. Если из окон и дверей дует, а стены и пол очень холодные, то потребуется больше энергии на обогрев.
  • Климат места. В холодное время года расход энергии увеличивается.
  • Вид напольного покрытия. Например, плитку обычно стараются сделать теплее, что увеличивает потребление.
  • Особенности человека. Каждый сам определяет, сколько ему нужно тепла.
  • Количество людей, проживающих в квартире и их образ жизни. Если живет только один человек, и дома он бывает редко, то теплый пол включается редко, а, следовательно, потребление электроэнергии уменьшается.
  • Вид терморегулятора.
  • Состояние чернового пола и качественная установка теплого пола.
  • Расположение комнаты или квартиры. Если помещение находится в центральной части дома, то на его отопление потребуется меньше энергии.

График нагрева и потребления электроэнегрии инфракрасным теплым полом

Специалисты утверждают, что система «теплый пол» интенсивно потребляет электроэнергию на этапе разогрева, пока не будет достигнута установленная температура. Для поддержания выбранного режима система периодически включается и выключается. В общей сложности в течение часа пол работает 15 минут.

Как посчитать затраты?

Существует простой и доступный способ расчета расхода электроэнергии. Чтобы понять полноту потребления электричества теплым полом, необходимо исключить все остальные источники тепла: батареи, печки, конвекторы и пр. Тем самым можно увидеть, сколько максимально потребляется энергии.

Немаловажный момент в расчетах расхода – мощность. Средний показатель для инфракрасного теплого пола составляет 10-40 Вт/ч на м2.

Чтобы погрешности в расчете расхода свести к минимуму, необходимо выполнить определенные условия:

  1. Монтаж пола должен быть произведен должным образом, с четким соблюдением инструкции и требований, предъявляемых к полу и помещению.
  2. Эксплуатационные нагрузки на пол не должны превышать допустимых норм.
  3. Должен быть обустроен терморегулятор и выносной датчик температуры.

Также следует обладать минимальными знаниями: площадь обогрева, мощность выбранного вида изделия и тепловые потери.

Пример расчета энергопотребления

Примерно минута потребуется для увеличения температуры на два градуса, а остывает пол на два градуса за четыре минуты. Следовательно, включенным нагревательный элемент будет пятую часть часа, т. е. 12 минут. Максимальное потребление электричества на 1 м2 равно 220 Вт. Таким образом, это число умножается на 12 минут. В среднем выходит 44 Вт. Потребление электроэнергии в сутки, учитывая бесперебойную работу теплого пола, превысит 1056 Вт. А благодаря специальному программированию (отключение системы ночью или в отсутствие хозяина) расход составит примерно 500 Вт.

Как снизить расходы?

Используя теплый пол постоянно, особенно в зимнее время, можно ощутить увеличение расходов на электроэнергию. Поэтому стоит прислушаться к советам по уменьшению расходов на обогрев пола:

  • Необходимо следить за тем, чтобы в комнате была хорошая теплоизоляция. Она сокращает расход на электричество почти в два раза.
  • В самом холодном месте комнаты нужно установить терморегулятор. Он позволит оптимизировать работу источника тепла и снизить затраты на электроэнергию на 40%.
  • Целесообразно перейти на тариф, в котором будет разграничение на дневное и ночное время.
  • Рекомендуется устанавливать теплый пол только по полезной площади. Нет смысла утеплять участки под бытовой техникой и мебелью. Это не только совет, но и требование производителей теплых полов, оно касается не только экономии энергии, но и соблюдения техники безопасности.
  • Можно уменьшить мощность, немного понизив температуру теплого пола. Даже уменьшение на один градус поможет сократить энергопотребление на 5%.

В наши дни можно установить нагревательные элементы под любое покрытие, в любой комнате и с различной мощностью. Поэтому есть возможность обогреть помещение с большой площадью. Благодаря многочисленным преимуществам теплые полы становятся очень популярным видом обогрева жилья. Особенно это касается электрического теплого пола, так как его работа не зависит от отопительного периода, а мощность может регулироваться. Иногда пол с подогревом является единственным источником тепла в помещении.

А чтобы получить выгоду от использования теплых полов, недостаточно знать, сколько потребляется энергии. Нужно учитывать все особенности помещения, утеплить его, проследить за качеством и рациональностью укладки пола. Если соблюдать все рекомендации специалистов, теплый пол будет приносить только комфорт и уют. Оставьте свое мнение о статье в комментариях или поделитесь своим опытом эксплуатации систем теплого пола.

Материалы По Теме:

Электрический теплый пол: расход энергии, рейтинг производителей

В связи с тем, что стоимость энергоносителей постоянно растет и такие тенденции планируются на длительную перспективу, все владельцы жилья принимают меры по максимальной экономии. Теперь каждый из них пытается разобраться в эффективности и КПД каждого типа отопления (например подсчитать расход энергии на электрический теплый пол). Для того чтобы иметь возможность принимать правильное решение, рекомендуется кратко ознакомиться с физическими процессами. Какие факторы влияют на потребление энергии? Как можно сократить затраты? Об этом наша сегодняшняя статья.

Электрический теплый пол - расход энергии

Электрический теплый пол — расход энергии

Содержание статьи

Как протекает процесс нагревания с точки зрения физики

Для понимания вопроса нужно вспомнить школьные уроки. Обогрев помещения выполняется за счет теплопередачи от горячих тел воздуху, он может осуществляться несколькими способами.

  1. Теплопроводность. Твердые предметы контактируют с теплым полом. При прямом контакте скорость движения молекул холодного тела возрастает, что увеличивает его температуру. Со временем быстрое движение молекул передается дальше на близлежащие участи и нагревает их, процесс происходит до выравнивания параметров температуры. Именно по этой причине наши ноги чувствуют теплый пол. Чем больше плотность тела – тем ближе располагаются молекулы, тем быстрее передается тепло. К технологии монтажа теплых полов этот процесс имеет прямое отношение. Настоятельно не рекомендуется монтировать их по натуральным деревянным покрытиям, у них невысокая плотность и, соответственно, низкая теплопроводность. Для теплых полов оптимальное финишное покрытие – керамическая плитка, покрытие из натурального или искусственного камня. Таким методом теплые полы передают до 15% своей энергии.
    Как отдельные напольные покрытия влияют на проход тепла от системы обогрева в помещение

    Как отдельные напольные покрытия влияют на проход тепла от системы обогрева в помещение

    Теплопроводность различных напольных покрытий и материалов

    Теплопроводность различных напольных покрытий и материалов

  2. Конвекция. Этим способом передается до 80% всей энергии теплого пола. Воздух после соприкосновения с поверхностью нагревается, расширяется, уменьшается его плотность. Он поднимается вверх, его место занимают холодные потоки и процесс повторяется. За счет постоянного движения воздуха происходит нагрев помещения. Именно конвекция увеличивает КПД полов с обогревом, по этому параметру они намного превосходят отопления традиционными батареями. Почему? Батареи нагревают воздух на расстоянии примерно один метр от уровня пола, все, что ниже, увеличивает температуру за счет принудительного движения. В результате воздух под потолком нагревается на 8–10°С выше, чем температура в зоне комфорта (примерно 1,5 м над уровнем пола). Соответственно, это намного увеличивает непродуктивные потери тепловой энергии. Еще один недостаток батарейного отопления – они устанавливаются по периметру помещения, соответственно, там самый теплый воздух. Кроме того, небольшие размеры батарей делают этот обогрев точечным, что еще больше ухудшает эксплуатационные характеристики устройств. Теплый пол греет помещение по всей площади, а наиболее благоприятные температурные параметры располагаются как раз в зоне комфорта. Регулируется температура не около потолка, а только в зоне пребывания людей. За счет этого достигается значительная экономия энергии, в некоторых случаях она может достигать 30–40%.
    Основные преимущества системы отопления

    Основные преимущества системы отопления

  3. Инфракрасное излучение – энергию переносят инфракрасные лучи. Тепло может передаваться даже в вакууме, но интенсивность его поглощения холодными предметами зависит от их цвета и плотности. Теплые полы таким методом передают не более 2–3% общей энергии, такие незначительные объемы почти не оказывают влияния на температуру в помещении. Наше тело может чувствовать только очень интенсивные лучи, а их продуцируют сильно нагретые тела. К примеру, можно почувствовать тепло от нагретого до красного цвета металла на расстоянии до 10–20 см. Но ладонь ничего не ощущает на удалении нескольких сантиметров от батареи отопления.
    Разновидности теплых полов

    Разновидности теплых полов

Какой надо сделать вывод? Расход электрической энергии теплыми полами главным образом зависит от конвекции, именно этим способом происходит обогрев помещения. Инфракрасное излучение по интенсивности нагрева можно игнорировать, а за счет теплопроводности нагревается мебель.

Зачем нужно изолировать теплый пол

Зачем нужно изолировать теплый пол

Важно. Широко разрекламированные инфракрасные системы теплых полов ничего общего с отоплением помещений таким методом не имеют. Это лишь удачный маркетинговый ход, направленный на привлечение потенциальных покупателей умным и красивым названием.

Системы подогрева можно было отнести к инфракрасным, если хотя бы 50% тепловой энергии передавалось таким путем. Это нужно понимать и не реагировать на недобросовестную рекламу производителей.

Теплый пол на балконе

Теплый пол на балконе

Факторы, влияющие на потребление электрической энергии

Не существует двух полностью одинаковых помещений, каждое имеет свои индивидуальные особенности, оказывающие влияние на параметры энергосбережения. Кроме того, в зависимости от назначения комнаты действуют различные требования по показателям микроклимата.

Что влияет на потребление электроэнергии

Что влияет на потребление электроэнергии

Таблица. Перечень основных факторов, которые следует принимать во внимание во время расчета мощности теплого пола.

Наименование фактораКраткое описание влияния на мощность теплого пола
В каких целях используется система

В каких целях используется система

Теплый пол может быть единственным источником отопления помещения или дополнением к уже существующим. Мощность во многом засвистит от особенностей использования, если для дополнительного подогрева требуется примерно 100–140 Вт/м2, то для основного отопления значения возрастают до 200 кВт/м2. Это очень большая мощность, она должна учитываться во время монтажа электрической проводки зданий, во многих случаях потребуется специальное разрешение на подключение к питанию от владельцев электрических сетей.
Качество теплоизоляции помещений

Качество теплоизоляции помещений

Современные государственные нормативные акты устанавливают для объектов жесткие требования по тепловым потерям. Это вызвано поддержкой нашей страной меморандума о минимизации выброса в атмосферу углекислого газа. Все новые постройки отвечают этим критериям, у них минимальные тепловые потери. Соответственно, теплые полы расходуют намного меньше энергии для создания благоприятных климатических условий. Что касается старых построек, то их рекомендуется предварительно утеплять, в противном случае стоимость содержания зданий в отопительный период будет очень высокой.
Климатический регион размещения

Климатический регион размещения

Зависимость простая – чем севернее, тем больше мощности потребляют электрические полы.
Тип напольного покрытия

Тип напольного покрытия

Чем выше плотность финишного напольного покрытия – тем лучше оно проводит тело, тем выше КПД системы и тем меньше она потребляет электрической энергии. Профессиональные теплотехники настоятельно не рекомендуют устанавливать теплые полы под деревянными покрытиями, они заметно увеличивают потери энергии. Строители также не советуют монтировать под пиломатериалами обогревающие маты. Высокая температура неизбежно станет причиной появления трещин в половых покрытиях, они начнут скрипеть при ходьбе, потеряют свой первоначальный внешний вид и т. д.
Назначение помещения

Назначение помещения

Температурные параметры значительно отличаются в зависимости от назначения помещений. В спальных комнатах надо иметь +17°С, на кухнях +19°С, в ванных и детских не менее +24°С, в остальных +18–22°С. Как видно, разброс довольно большой, к нему нужно еще добавить колебания в зависимости от времени суток.

Теплопотери типичных строений

Теплопотери типичных строений

Теплые полы имеют электронные устройства, постоянно контролирующие температуру в помещениях, не допускающие ее снижение или увеличение выше рекомендованных норм. За счет этого повышается комфортность пребывания в помещениях и снижается общее потребление энергии.

Виды электрических теплых полов

Виды электрических теплых полов

Виды теплых полов с электрическим подогревом

Технология расчета оптимальной мощности почти не зависит от типа систем, но они влияют на КПД и эффективность их использования.

  1. Кабельный. В качестве нагревательных элементов используются специальные кабели, способные длительное время выдерживать высокие температуры и при этом не ухудшать свои первоначальные физические характеристики. Кабели могут быть одножильными и двухжильными. У вторых в два раза меньше ЭМИ, за счет этого увеличивается надежность и безопасность эксплуатации. Количество выделяемого тепла пленочным полом, как и абсолютно для всех типов электрических систем подогрева, определяется по формуле Q = I2× R×T. Здесь Q – количество тепла, I – сила тока, R – показатели сопротивления кабеля или иного токопроводящего элемента, T – время нагрева. Это единственная формула расчета тепловой эффективности электрических систем подогрева пола, других не существует. Все попытки производителей убедить потребителей, что они изобрели новый тип обогрева – неправда.
    Принципиальная разница в строении одножильного, двужильного и полупроводникового саморегулирующегося кабелей (сверху вниз)

    Принципиальная разница в строении одножильного, двужильного и полупроводникового саморегулирующегося кабелей (сверху вниз)

    Шаг укладки и удельная мощность кабеля

    Шаг укладки и удельная мощность кабеля

  2. Термоматы. Более современная разновидность кабельных систем. Проводники заклеены в термоустойчивую пленку, что облегчает процесс монтажа и увеличивает безопасность использования. Продаются рулонами, размеры и конфигурацию можно корректировать в зависимости от особенностей помещения.
    Термомат

    Термомат

Инфракрасные. По своему устройству во многом напоминают термоматы. Различие – вместо обыкновенных жильных проводников используются карбоновые полосы. Это инновационные материалы с повышенными эксплуатационными показателями. Мы уже упоминали, что передача тепла делается обыкновенным методом и никакого отношения к инфракрасному не имеет. Карбоновые проводники длительный период времени не перегорают, по всей длине имеют одинаковое сопротивление. Монтаж может делаться под любое финишное половое покрытие, но учитывать их теплопроводность надо обязательно.

Пленочный ИК пол

Пленочный ИК пол

Выбор теплого пола

Выбор теплого пола

Рейтинг популярных производителей

Electrolux

Теплые полы Electrolux обладают рядом инновационных технологических преимуществ, европейским качеством, имеют фирменную упаковку и являются продуктом премиум класса. Основа кабеля — арамидная нить (Kevlar). В нагревательных матах Electrolux — изоляция греющих жил из Фторопласта (Teflon), что обеспечивает повышенную устойчивость нагревательного кабеля к локальным перегревам.

Electrolux

Electrolux

Плюсы

  • высокая мощность;
  • качественные материалы;
  • гарантия 20 лет от производителя;
  • средняя ценовая категория.

Минусы

  • большое энергопотребление.

электрические полы Electrolux

Теплолюкс

Электрический теплый пол «Теплолюкс» российского производства — экологичный и очень эффективный вариант для дополнительного или основного обогрева помещения. Модели в виде кабелей, матов и ковриков создают оптимальную температуру в комнате, частном доме или в офисе.

Теплолюкс

Теплолюкс

Плюсы

  • хороший выбор оборудования;
  • легкий монтаж;
  • доступная цена.

Минусы

  • быстрый выход из строя терморегулятора;
  • нестабильность нагрева поверхности, если уложена толстая стяжка и нет хорошей теплоизоляции.

теплый пол теплолюкс

Devi

Электрический теплый пол Devi производится в Дании. Продукцию компании отличает высокое качество, доступная цена и универсальность. Все комплектующие данной торговой марки подходят к любому типу теплых полов выпускаемых этим производителем.

Devi

Devi

Плюсы

  • простой монтаж;
  • не сушит воздух;
  • гарантия от производителя;
  • срок службы более 20 лет.

Минусы

  • высокое энергопотребление.

теплый пол devi

Unimat

Продукция корейской компании Unimat хорошо зарекомендовала себя на российском рынке. Инфракрасный карбоновые стержни, подогревающие поверхность, не боятся повышенной влажности.

Unimat

Unimat

Плюсы

  • система подогрева довольно экономична
  • невысокая стоимость;
  • гарантийный срок эксплуатации – 20 лет.

Минусы

  • использовать в качестве основного отопления при сильных морозах не получится.

теплый пол unimat

Rehau

Теплый пол Rehau электрический представляет собой систему двужильных саморегулирующих кабелей фиксированной длины, обладающих повышенным сопротивлением. Снаружи они покрыты двойным слоем изоляции и защитной оплеткой.

Rehau

Rehau

Плюсы

  • отличное немецкое качество;
  • монтаж под любое покрытие;
  • оптимальное распределение тепла;

Минусы

  • относительно высокая стоимость.

rehau solelec

Caleo

Пленочный инфракрасный теплый пол Caleo предназначен для быстрого монтажа системы обогрева «теплый пол» методом «сухого монтажа», без стяжки и пыли. Идеально подходит при косметическом ремонте под ламинат, ковролин, линолеум и паркетную доску.

Caleo

Caleo

Плюсы

  • хорошая теплоотдача;
  • в комплекте все необходимое для монтажа: качественные зажимы, провода, изоляция возможность самостоятельного монтажа;
  • инструкция по установке и монтажу идет в комплекте.

Минусы

  • повышенная хрупкость пленки.

теплый пол caleo

Алгоритм расчета фактической потребляемой мощности систем

Перед началом расчетов надо знать, что теплые полы всегда потребляют больше электрической энергии, чем обещают производители. Это объясняется несколькими объективными факторами.

  1. Качеством утеплительного слоя между нагревательными элементами и основанием пола. Производители дают рекомендации по монтажу, но они не могут предвидеть качество самих материалов и соблюдение технологии укладки. Эти параметры зависят от добросовестности и профессионализма строителей. Как показывает практика использования различных систем для обогрева пола, лучше всегда давать запас по толщине утеплителей. Незначительное увеличение стоимости компенсируется через 2–3 года за счет экономии электрической энергии, а при дальнейшей эксплуатации пользователи имеют чистую прибыль. Еще одни плюс очень качественной теплоизоляции – несколько уменьшается температура нагрева токопроводящих элементов и сокращается время их работы. Это дает возможность увеличивать срок пользования системой, все элементы меньше стареют и дольше сохраняют первоначальные свойства.
    То, насколько утеплен дом, также очень важно

    То, насколько утеплен дом, также очень важно

  2. Физическими параметрами стяжки. Стяжка в некоторых случаях может иметь толщину более пяти сантиметров, система должна нагревать такой большой объем бетона, а для этого требуется время и энергия. Толстая стяжка обладает так называемой инертностью, она долго греется и так же долго остывает. Эту особенность надо принимать во внимание во время выбора времени включения/включения системы подогрева.
    Первоначально сделанная стяжка толщиной до 85 мм очень сильно поможет вам сэкономить в будущем на отоплении

    Первоначально сделанная стяжка толщиной до 85 мм очень сильно поможет вам сэкономить в будущем на отоплении

  3. Материалами изготовления финишных покрытий. Чем они лучше проводят тепло, тем меньше мощности потребует система. Почему? Все довольно просто. Абсолютное большинство энергии отдается внутрь помещения, плиты перекрытия напрасно не греются.
    Также значение имеет и выбранное финишное покрытие

    Также значение имеет и выбранное финишное покрытие

Важно. В природе не существует материалов, не проводящих тепловую энергию. Это значит, что все утеплители с той или иной скоростью пропускают ее.

Если одна поверхность, к примеру, нагрета до +30°С, то и вторая со временем будет иметь такие же параметры. Она не будет всегда холодной, это противоречит фундаментальным законам физики. Раз утеплитель прогревается, то будет греться и бетонная плита перекрытия, потери неизбежны. Вопрос только в их количестве, а это полностью зависит от физических характеристик материалов.

Виды терморегуляторов для теплого пола

Виды терморегуляторов для теплого пола

Лучше всего использовать программируемые терморегуляторы, с выставлением не только нужной температуры, но и времени отключения-включения теплого пола

Лучше всего использовать программируемые терморегуляторы, с выставлением не только нужной температуры, но и времени отключения-включения теплого пола

Терморегулятор для теплого пола

Терморегулятор для теплого пола

Как правильно рассчитать мощность электрической системы подогрева

Пример расчета мощности пленочного теплого пола

Пример расчета мощности пленочного теплого пола

Шаг 1. Узнайте площадь обогреваемого помещения. К примеру, ширина комнаты 4 м, а длина 5 м, общая площадь равняется 4×5=20 м2.

Для начала измеряется площадь помещения

Для начала измеряется площадь помещения

Как рассчитать площадь комнаты

Как рассчитать площадь комнаты

Шаг 2. Умножьте ее на рекомендованную мощность одного квадратного метра. В нашей комнате система подогрева пола используется как единственный источник тепла, соответственно, рекомендованная мощность составляет 160 Вт/м2. Умножаем мощность, необходимую для обогрева одного квад

потребление электроэнергии, формулы и примеры

Тем, у кого при демонстрации возможностей пола с электрическим подогревом сразу же загорелись глаза, и появилось острое желание соорудить дома такой же, следует сразу же указать на то, сколько потребляют тёплые полы электрические. Многим полученные цифры покажутся небольшими, другие же поумерят свой пыл, просчитав счета за электричество. Важно помнить одно — на энергопотребление теплых полов влияет не один, а совокупность факторов.

Содержание статьи

  • Факторы, влияющие на энергопотребление теплого пола
  • Что необходимо для расчета?
  • Порядок расчёта электрического теплого пола
  • Температура пола с электроподогревом

Даже самый экономичный тёплый пол будет серьёзно раскручивать счётчик. К тому же, не все бытовые электрические системы способны его выдержать. Поэтому разумный хозяин, помня, сколько энергии потребляет тёплый пол, так распределит потребление электроэнергии, чтобы она шла на обогрев самой необходимой поверхности и служила лишь добавлением к основной системе отопления.

Факторы, влияющие на энергопотребление теплого пола

  • Больше всего на расход электричества и степень нагрева пола влияет качество теплоизоляции помещения. Чем лучше теплоизоляция, тем меньшее потребление энергии необходимо для поддержания заданной температуры.
  • Вносит свой вклад и вид финишного покрытия пола в помещении. Известно, что тёплый электрический пол, установленный под керамической плиткой, потребляет несколько больше энергии, чем пол под деревом, линолеумом и другими видами покрытий с меньшей степенью теплопроводности.
  • До 30% меньше может израсходовать электрический тёплый пол, температура которого регулируется хорошим и по всем правилам расположенным датчиком температуры.

Что необходимо для расчета?

Чтобы определить примерный расход электроэнергии для конкретной ситуации, нужно знать следующие параметры:

  • обогреваемая площадь;
  • мощность нагревательных элементов;
  • тепловые потери системы.

Для упрощения расчётов в качестве удельной потребляемой мощности, расходуемой на 1 кв. м обогреваемой поверхности, для разных случаев берутся следующие величины:

  • 150 Вт – когда пол нужен лишь для увеличения комфорта;
  • 200 Вт – когда он является полноценной системой отопления.

Следует, однако, иметь в виду, что точный расчет отопления тёплым полом на практике сделать невозможно, поскольку в него вмешиваются различные переменные факторы, которые оказывают своё влияние на общий результат. Поэтому вычисления делаются с приближением и опираются на максимальные значения.

Часто на упаковке отопительной системы указывается расход энергии тёплых полов, что будет неплохим ориентиром при определении конкретных параметров, поскольку паспортная мощность изделия никак не может быть превышена.

Порядок расчёта электрического теплого пола

Чтобы выполнить достаточно точный расчёт электрического тёплого пола, нужно посмотреть на параметры имеющейся модели и определить площадь помещения.

В качестве примера можно взять мощность нагревательного элемента в 150 Вт, а площадь комнаты принять за 20 кв. м.

  1. Вначале нужно прикинуть площадь покрытия для тёплого пола. Поскольку она не должна превышать 70%, то получается 14 кв. м.
  2. Полученное значение площади нужно умножить на удельную мощность элемента:

14 х 150 = 2100 Вт (или 2,1 кВт).

  1. Далее необходимо учесть, какая роль в отоплении жилища будет отведена монтируемому тёплому полу. Поскольку искомым является максимальный результат, то следует предположить, что тёплый пол будет работать 8 часов в сутки, поскольку круглосуточный нагрев электрический тёплый пол по ряду причин не производит.

То есть нужно умножить 2,1 киловатта на 8 часов, что даст 16,8 кВт*ч. Другими словами, тёплый пол в помещении будет каждый день эксплуатации потреблять 16,8 киловатт электроэнергии.

  1. Если умножить полученный результат на 30 (число дней в месяце), то получается, что за месяц устройству потребуется 504 кВт. Конечно, не следует забывать, что полученная величина является максимально возможной для данной системы.
  2. Остаётся только вспомнить текущий тариф на энергопотребление, умножить его на 360 и получить кругленькую сумму в рублях, которую придётся выложить в месяц за удовольствие жить с комфортом.

Стоит отметить, что реальные расходы окажутся примерно вдвое меньше теоретических выкладок – но, только если помещение будет надёжно утеплено, и тёплый пол лишь будет дополнять основную систему отопления.

Температура пола с электроподогревом

Если при монтаже тёплый пол укомплектован температурным датчиком и программатором, то владелец сможет с их помощью задавать полу необходимый режим работы. Однако предел у нагревателей преодолеть не удастся.

Греющие кабели имеют изоляцию, которая может выдержать 100 градусов. Средняя температура пола равна 30 градусам, а максимальная – 65 градусам. Диапазон максимальных температур в матах зависит от их марки, оставаясь в пределах 80-104 градусов. Рабочие температуры матов:

  • кабельных – до 60 градусов;
  • стержневых – 55 градусов.

Плёночные ИК-нагреватели достигают 55 градусов, а сама плёнка плавится при 200-250 градусах.

Поскольку экономный тёплый пол использует терморегулятор, задающий температуру, то точно предсказать расход электроэнергии будет невозможно. Ведь помимо имеющейся теплоизоляции, которая, в общем-то, постоянная, есть ещё переменчивое влияние погоды.

На основании площади помещения и удельной мощности нагревательных элементов можно вычислить только максимальную потребляемую мощность, а её реальную величину можно узнать только в ходе эксплуатации тёплого пола. Да и то эта величина будет постоянно меняться.

Можно лишь добавить, что более экономичными являются системы, способные регулировать степень нагрева.

Наиболее экономичными являются стержневые нагреватели, а следом за ними идут плёночные модели, уровень же всех остальных примерно одинаков.

Как Вы считаете, насколько экономичны электрические теплые полы, и стоит ли платить такие деньги за комфорт? Поделитесь своим мнением в комментариях.

Теплый пол электрический расход энергии: сколько потребляет пол

Перед каждым владельцем жилья рано или поздно возникает вопрос утепления своего жилища и одним из вариантов является укладка электрического подогрева. А так же ответ на теплый пол электрический расход энергии. Но прежде чем идти в магазин и покупать его, необходимо сесть и спокойно произвести расчет электрического теплого пола и на основе данного подсчета сделать вывод стоит приобретать этот продукт или нет. В этой статье мы рассмотрим виды электроэнергетических полов доступных на рынке и изучим вопрос электрический теплый пол расход электроэнергии.

На рынке представлены три модификации электрического пола, которые допустимо использовать для обогрева:

Пленочные электрические полы применяются под следующие финишные покрытия, как плитки ламината или линолеумные рулоны. Под кафель, а так же подобные различные твердые покрытия используют термоматы или нагревающие кабеля. Наименьшее потребление электроэнергии теплым полом осуществляется во время применения греющего кабеля. А вот пленки и термомат будут расходовать электроэнергии много больше.

Сколько потребляет теплый пол?

Расход киловатт-часов у каждого изделия различное, например пленочное покрытие потребляет примерно от 0,15 до 0,4 кВт/м2, термомат потребляет от 0,12 до 0,2 квт/м2, а греющий провод потребляет от 0,01 до 0,06 квт/м2 на один виток, а в одном квадратном кабеле обычно укладывают не менее пяти витков, следовательно, количество поглощенной энергии равно 0,06 умножаем на 5 получаем 0,3 квт/м2.

Из выше написанного можно сделать вывод, что средняя поглощаемая мощность на 1 м2 составляет от 0,15 до 0,2 квт/м2. Эти показатели позволяют смонтировать электрический теплый пол не только в виде дополнительного подогрева, но и возможен главный обогрев комнаты.

Схема применения электрического теплого полаСхема применения электрического теплого пола

Рассчитываем затраты на электроэнергию

Рассмотрим электрические теплые полы потребление электроэнергии.

Для самостоятельного подсчета потребление электричества можно воспользоваться формулой :

W = S * P *0.5

  • S – общая площадь комнаты в котором планируется положить электронагреватели;
  • P – мощность системы;
  • 0,5 – данный коэффициент,позволяющий учесть размеры комнаты, для которой применен электрический пол, этот коэффициент не может ровняться единице, потому что монтировать инфракрасный теплый пол под мебелью не рекомендуется производителями.

Теплый пол расход электроэнергии.

Допустим вам нужно подсчитать энергопотребление теплого пола имеющего площадь двадцать пять квадратных метров, а потребление энергии примем 0,15 квт/м2.

Формула расчета примет вид:

W = 25 * 0.15*0.5 = 1.87квт/ч.

Таким образом получилась затрата электрической энергии за один час, но это не весь расчет. Обычно, теплый пол электрический расход энергии осуществляет в интервале 7 – 9 часов за двадцать четыре часа, а это означает, в сутки потребление составит 13,1 – 16,8 кВт*ч. А проведя совсем несложные оставшиеся вычисления мы узнаем, сколько потребляет теплый пол электроэнергии в месяц: 393 –504 киловатт-часов.

Произведя эти несложные вычисления, получены приблизительные данные, сколько потребляет теплый пол электроэнергии.

Произведенные расчеты выполнены в очень приближенной форме, а поэтому теплый пол расход электроэнергии может сократить на сорок процентов. Это связанно в первую очередь с тем, что в расчетах не был учтен терморегулирующий орган, он будет отключать электрические элементы при достижении температуры комнаты нужного температурного значения.

Таким образом, приняв во внимание факт применения терморегулятора, по факту теплый пол потребление электроэнергии снижает до 157 – 201 киловатт за один месяц.

Существует еще более экономически выгодное решение, это применение инфракрасной пленки, ее КПД довольно высок, а потребление электричества мало.

В неотапливаемой комнате расход для подогрева 1 м2пола будет равен 60 ватт в час, а в отапливаемом помещении снижается до 20 ватт. Тем самым инфракрасная пленка в экономии электроэнергии выигрывает у своих конкурентов.

Таблица расчета энергопотребления инфракрасной пленкиТаблица расчета энергопотребления инфракрасной пленки

Экономим энергию с умом

Были произведены нужные расчеты и выяснено, сколько энергии потребляет теплый пол, но этот показатель можно снизить и значительно.

Первым делом выставляется правильные настройки на терморегуляторе, ведь от того какой режим будет активирован и зависит расход энергии.

Если ваше финишное напольное покрытие допускает применение инфракрасного подогрева, то применяйте только его, ведь он признан самым энергоэффективным.

Произведите комплексное утепление всего дома или квартиры, ведь подтверждено экспертами, что грамотное утепление снижает затраты на прогрев и поддержание температурного режима на 40 %.

Теплый электрический полТеплый электрический пол

Зная, сколько потребляет электрический теплый пол и каким образом снизить это потребление, можно построить эффективную систему поддержания температуры за разумные деньги. Электрические полы считают с хорошим дополнением к основной форме отопления.

Быстрый расчет:

Полы с подогревом, расход электроэнергии: отзывы владельцев

При наступлении холодов каждый хозяин стремится качественно обогреть жилище с минимальными затратами энергоресурсов. Поэтому в последнее время набирает популярность такое отопление, как электрический теплый пол. Потребление электроэнергии, по словам производителей, невелико.

Но есть несколько условий, которые влияют на потребление энергоресурсов такими системами. Отзывы покупателей позволят сделать правильные выводы и оборудовать пол с минимальными эксплуатационными затратами.Только при правильной установке система сможет полностью обогреть помещение, при этом затратив минимум электроэнергии.

Принцип действия

Электрический провод, используемый для обогрева, состоит из нихромовой жилы и различных изоляционных оболочек. Такие устройства необходимо устанавливать в раствор. Слой стяжки или плиточного клея нагревается и отдает тепло напольному покрытию. Ламинат, плитка или другие материалы при этом становятся похожими на нагретую поверхность конвектора.Только обогрев, в отличие от такого электроприбора, происходит по другому принципу.

Конвектор направляет потоки нагретого воздуха вверх. У потолка в этом случае определяется максимум температуры. В основании комнаты скапливаются холодные массы. Теплый пол — электрический, потребление электроэнергии у которого зачастую меньше, чем у конвектора, создает обогрев внизу помещения. Под потолком воздух холоднее. Поэтому такой вид обогрева более комфортный для человека.

Назначение системы

Сегодня существует большое количество видов электрического теплого пола. С их помощью можно создать как комфортное, так и автономное отопление. В первом случае площадь помещения покрывается проволочной системой или пленкой менее 50%. При этом для отопления используется дополнительное устройство (аккумулятор, конвектор).

Полное отопление помещения без применения дополнительных устройств позволяет создать теплый электрический пол. Потребление электроэнергии, которое могут обеспечить специалисты, при этом может быть минимальным.При этом потребленные энергоресурсы будут расходоваться оптимально.

Еще стоит сказать, что с помощью пленочно-теплого пола создавать автономное отопление не нужно. Такие системы созданы для комфортного обогрева.

Типы систем

Тип системы зависит от потребления электроэнергии. Чаще всего используются кабельные, матовые и пленочные. В первом варианте нагревательный элемент поставляется в отсеке. На специальной рейке установщик самостоятельно выкладывает провод.В этом случае шаг укладки составляет от 7 до 15 см. Чем толще проложен провод, тем больше расход энергии с 1 м², а также теплопередача. Проволока сечением около 7 мм заливается в стяжку толщиной 3-5 см.

Мат система уже собрана с определенным шагом на сетке ПВХ. Это теплый электрический пол под плиткой. Расход электроэнергии фиксированный. Коврик укладывается под плиточный клей толщиной 5-8 мм. Диаметр такой проволоки примерно 3 мм.

Пленочный теплый пол тоже имеет фиксированную мощность.Эта система устанавливается под ламинат, линолеум без использования раствора.

Выбор мощности

Чтобы теплый пол мог обогреть комнату, необходимо выставить мощность, достаточную на 1 м². Для помещений этот параметр составляет от 110 до 180 Вт / м². Для обогрева улиц требуется в 2 раза больше мощности.

На представленный показатель влияют предварительные характеристики. Чем больше в нем уровень теплопотерь, тем мощнее потребуется система. Если окна, пол и стены утеплены, потолок стандартной высоты (не более 2.7 м), подойдет маломощная система.

Но для холодных помещений, в которых потери тепла значительны, необходимо усилить обогрев. Иногда бывает необходимо установить мощность 300 Вт / м². Для этого используется специальный электрический теплый пол. Потребление электроэнергии в гараже, например, будет намного больше, чем в квартире многоэтажного дома.

Если покрытие выполнено из ламината в помещении с минимальными тепловыми потерями, мощность системы должна составлять 110–130 Вт / м².Для балкона, санузла, где будет монтироваться плитка, этот показатель увеличивают до 150-180 Вт / м².

Расчет мощности

Чтобы правильно выбрать и установить теплый полЭлектрический, расход электроэнергии которого не ударит по семейному бюджету, необходимо произвести предварительный расчет. Сначала выбираем необходимую мощность на 1 м². Например, это будет санузел в квартире на 2 этаже (внизу соседи, которые обогревают комнату), где пол будет выложен плиткой.

Потребляемая мощность системы составит 150 Вт / м². Если уронить площадь, на которой расположена мебель, сантехника, то площадь составит 3 м². Следовательно, для пола требуется следующее:

150 x 3 = 450 Вт.

Калибр провода выбирается исходя из этого показателя. Это оптимальная мощность, при которой данное помещение будет отапливаться с минимальными затратами.

Контроль температуры

Представленный расчет позволяет определить максимальный показатель мощности системы.Обычно рабочая температура нагревательного провода составляет 65 ° С. До этого уровня пол не нагревается, так как в помещении есть определенные теплопотери. А вот 50-55ºС при хорошей системе утепления базы сможет выдать на поверхность.

Человеку комфортно стоять босиком по поверхности, нагретой до 25-28 ° С. Для поддержания этого уровня теплый пол подключается к термостату. В этом случае устройство размыкает цепь при достижении заданного пользователем нагрева.

Когда пол остынет на несколько градусов, устройство снова включит ток.Следовательно, система потребляет меньше электроэнергии в час, чем указано на упаковке.

Отзывы клиентов

Чтобы понять, сколько система будет потреблять энергоресурсов в день и в час, необходимо принять во внимание несколько особенностей. В них любой теплый пол электрический. Расход электроэнергии, отзывы владельцев о котором представлены в разных источниках, неоднозначен.

Чтобы минимизировать эту цифру, необходимо установить нагреватель под системой.Иначе из-за быстрой потери тепла прибор не сможет нагреться до нужного уровня. Один и тот же провод в комнате и на балконе будет потреблять разное количество электроэнергии.

А вот если сравнить пол и конвектор в комнате площадью 20 м², то проводной прибор, по отзывам потребителей, i

.

150 Вт / м2 Низкоуглеродистые электрические теплые полы

Часто задаваемые вопросы

1. Сколько стоит эксплуатация?

Рассмотрим средний размер комнаты 10 м 2
. Отапливаемая площадь составляет примерно 80%, или 8 м 2.

В случае матов мощностью 150 Вт, когда нагреватель включен, часовое потребление составляет 150 Вт, умноженное на 8 м 2, или 1200 Вт в час.

Правильно изолированное помещение, управляемое рекомендованными энергоэффективными термостатами, будет работать с рабочим циклом от 20% до 25% (то есть от 20% до 25% времени, в течение которого обогреватель будет включен, а остальное время — ВЫКЛЮЧЕН. ).
В этом случае среднее потребление электроэнергии для обогрева помещения составит 240 — 300 Вт в час.

Фактическая почасовая стоимость зависит от ваших местных тарифов на электроэнергию.

2. Следует ли использовать изоляцию?

Мы настоятельно рекомендуем использовать изоляцию при установке системы электрического теплого пола. При использовании изоляции вы можете сократить время прогрева пола с более часа до нескольких минут. Это обеспечит вам уровень большей комфортности и приведет к снижению стоимости электроэнергии.

3. Безопасно ли использование во влажных помещениях?

Да, кабели заземлены.

4. Насколько легко установить?

Кабельные электрические коврики для теплого пола чрезвычайно просты в установке.

Под плитку установщик просто укладывает кабель электрического теплого пола непосредственно между черным полом / изоляцией и плиткой. Же гибкая черепица клей, используемый для крепления плитки используется для склеивания изоляции Insomax на черный пол.

Под ламинатом / паркетом / винилом / ковром установщик укладывает нагревательные маты на соответствующую изоляцию, как обычно.Слой латекса на основе самовыравнивания соединения (8-10 мм), затем укладывают на верхнюю часть кабеля нагревательного мата. После того, как сухой, деревянный пол / винил / ковер можно укладывать.

Укладку утеплителя и матов под силу любому потребителю. Благодаря сети, как сетки, в большинстве случаев праймер также не будет required- только небольшое количество утиной ленты необходимо закрепить коврики вниз.

Квалифицированный электрик должен выполнить соединение между нагревательными матами и электрической цепью.

5. Как узнать, какой размер коврика заказать?

Измерьте доступную открытую площадь пола в вашей комнате. Он сообщил, что вы приобрели систему, которая позволяет покрытие 80-90%. Например, если ваши меры комната 15m 2, вы бы купить 2 Mat 12,7 млн. Если комната имеет неудобную форму с большим количеством светильников в центре комнаты, то рекомендуется, что вы покупаете систему, которая позволяет охват примерно 80%.

6. Что делать, если моя комната больше, чем ваш самый большой доступный коврик?

Несколько матов можно подключить параллельно к распределительной коробке.Пожалуйста, помните, что терморегуляторы позволяют максимум 15 ампер, поэтому максимум на одной цепи составляет около 23м2. Если сила тока в одной комнате превышает 15 ампер, то либо контактор необходимо будет установлен вашим электриком или другой термостат нужно будет приобрести.

7. Могу ли я разрезать циновки?

Вы можете разрезать сетку, но не нагревательный кабель.

8. Какова толщина кабеля?

Толщина кабеля 4 мм.

9. Можно ли класть мат под тяжелые предметы / приспособления?

Нет — коврики можно размещать только в доступном свободном месте. Там должна быть какая-то форма воздушного зазора между любой мебелью и полом, так что тепло может уйти.

10. Обеспечивает ли он первичный источник тепла?

В большинстве случаев в новостройке / хорошо изолированной собственности система может обеспечить первичное отопление. В тех случаях, когда дома имеют одинарное остекление, сводчатые потолки, плохие уровни изоляции или менее 80-90% Нагревательный кабель покрытия матового, система может понадобиться источник резервного копирования.

11. Что делать, если мой коврик слишком велик для комнаты?

Коврики могут быть неправильно заказаны. Если мат слишком велик, можно удалить сетку и уложить кабели ближе друг к другу. Пожалуйста, обратите внимание, что наименьший зазор между кабелями составляет 5 см. Имейте в виду, что при этом вы найдете в этой области с кабелей, проложенных ближе будет немного теплее по сравнению с остальной частью области.

12. Насколько безопасны коврики?

Коврики изготовлены и испытаны в полном соответствии с международными стандартами качества IEC (Международной электротехнической комиссии).Непрерывная фольга с покрытием обеспечивает экранирование куртка 100% гарантию электрической безопасности и отсутствие, если электромагнитное излучение.

13. Какая гарантия на эту систему?

На нагревательные маты предоставляется 15-летняя гарантия производителя.

14. Выбор системы водяного теплого пола будет зависеть от конкретных требований вашего проекта?

1) Первоначальная стоимость

Покупка и установка большинства электрических систем обходятся дешевле просто потому, что требуется меньше материалов и быстрее устанавливается.

2) Текущие расходы

В настоящее время стоимость сетевого газа ниже, чем электроэнергии, поэтому система водяного теплого пола будет стоить меньше затрат на электроэнергию.

3) Техническое обслуживание

Электрические системы обычно не требуют технического обслуживания. Водные системы должны быть проверены регулярно входят (только вы бы с вашим котлом и обычными радиаторами), потому что есть намного больше движущихся частей.

4) Высота пола

Как правило, электрические системы теплого пола намного тоньше, чем водяные, поэтому, если у вас есть пол, который вы не хотите удалять, мы рекомендуем использовать мат Anbang для теплого пола или undertile кабель.

5) Площадь, подлежащая обогреву

Если вам требуется отапливать только небольшую площадь, зачастую проще и дешевле установить систему электрического теплого пола.

6) Назначение отопления

Вы хотите, чтобы теплые полы обеспечивали общее тепло помещения или просто теплый пол. Полы с подогревом воды системы, как правило, используются для общего тепла решений, но электрические системы отопления под полом часто используются для общего тепла или теплых компрессов пола.

.

Прогнозирование потребления и выработки электроэнергии с помощью искусственных нейронных сетей

3.1. Определение профилей потребления

Чтобы динамически определять профили потребителей, сначала мы рассмотрели серию алгоритмов, основанных на методах классификации и кластеризации. Для реализации и тестирования модели мы использовали набор данных с почасовым потреблением электроэнергии, зарегистрированным в разных городах США в период с 1 января 2014 г. по 31 декабря 2014 г. Каждая запись содержит значения для следующих типов потребления: отопление, охлаждение, вентиляторы , внутреннее освещение, внешнее освещение, водонагреватель, бытовая техника (стиральная машина и холодильник) и другие предметы интерьера (телевизор и компьютер).Данные были импортированы в Oracle Database 11 g R2 в таблицу LOAD_PROFILE_T с примерно 1 900 000 часовых записей для 212 потребителей. Мы проанализировали распределение потребления электроэнергии в различных диапазонах значений, типах потребления и периодах времени, как показано на Рисунке 1.

Рисунок 1.

Статистика набора данных.

Анализ показывает, что кривая потребления имеет тот же аспект, что и потребление на отопление и внутреннее оборудование, что делает эти типы потребления значимыми атрибутами для общей стоимости потребления.

Данные, импортируемые в Oracle Database, мы рассматриваем алгоритмы интеллектуального анализа данных, разработанные в Oracle SQL Developer. Итак, для первого метода мы подошли к методу классификации опорных векторных машин (SVM) и построили шесть профилей (классов), причем профили с большинством случаев (более 30 000) имеют самую высокую степень точности (около 90%), которая может считается хорошим результатом для классификации. Выполняя анализ классов, мы обнаружили, что профили очень чувствительны к изменениям в поведении потребителей из-за того, что классы с небольшим количеством элементов регистрировали самые высокие ошибки прогнозирования.

Для устранения этих недостатков мы сочли полезным применить второе решение для динамического определения профилей с помощью методов кластеризации. Для построения профилей мы применили метод K-средних, а для измерения сходства в кластере используется дисперсия (сумма квадратов различий между основным элементом и каждым элементом), которые являются лучшими кластерами, в которых дисперсия маленький. Мы проанализировали уровень достоверности для каждого кластера, и было заметно, что достоверность высока, в большинстве случаев более 85%.Что касается правил кластеризации, по нашим результатам мы заметили, что правила группирования не учитывают такие атрибуты, как нагрев воды, вентиляторы, охлаждение, бытовое оборудование, внутреннее / внешнее освещение, а только отопление и общее потребление (наиболее важные атрибуты) , Это может быть связано с тем, что мы выбираем небольшое количество кластеров по сравнению с совокупностью набора данных. Таким образом, чем меньше количество кластеров, тем больше людей в группе и меньше они чувствительны к изменениям в поведении потребителей.

Чтобы разделить полученные профили на более мелкие группы, мы выбираем другой метод кластеризации, чтобы установить модели потребления. Итак, мы уточнили результаты K-среднего и применили метод O-кластера (кластеризация с ортогональным разбиением). Этот метод принадлежит Oracle Corporation [37] и использует алгоритм рекурсивной группировки данных посредством ортогонального разделения данных. На основе предыдущих 6 профилей, определенных K-means, мы строим 10 субкластеров, представляющих модели потребления для каждого профиля с почасовыми интервалами.Анализируя правила обучения и вес каждой категории потребления в каждом кластере, мы заметили, что они имеют различный состав, каждый кластер идентифицирует основной профиль, определенный методом K-средних, и одну или несколько моделей потребления, определенных методом O-кластера. , Например, мы рассмотрели распределение моделей потребления потребителя в профиле P5 в течение 24 часов. На Рисунке 2 показан профиль P5, разделенный на 10 шаблонов (T1,…, T10) для подробного обзора потребления электроэнергии.

Рисунок 2.

Шаблоны профиля P5 с O-кластером.

Шаблоны, построенные с помощью O-кластера, уточняют кластеры и дают лучшее понимание поведения потребления в отношении небольших групп потребителей и, таким образом, корректируют ToUT для этих групп. Кроме того, модели потребления более точно формируют динамическое поведение потребителя в течение 24 часов, причем профили фактически являются приблизительными изменениями почасового потребления. Отклонения фактического потребления по сравнению со средним потреблением профиля невелики, что еще раз подтверждает правильность модели кластеризации.

В качестве варианта методов кластеризации мы подошли также к третьему методу, основанному на искусственных нейронных сетях (ИНС). В Matlab R2015a мы импортировали данные из Oracle Database из таблицы LOAD_PROFILE_T и организовали входные векторы как x ( t ) ∈ Rn , где n = 13 для каждого типа потребления (отопление, вентиляция, внутри помещения). освещение и т. д.), а t представляет временной интервал (часы) между 1 января 2014 г. и 31 декабря 2014 г.

Мы разработали алгоритм самоорганизующихся карт (SOM), установив следующие параметры для нейронной сети:

  • Архитектура SOM — 2D с 2 × 3 нейронами / слоем (размеры) = [2 3];

  • количество шагов для первоначальной обработки входного пространства (coverSteps) = 100;

  • начальный сосед (initNeighbor) = 2;

  • топология сети (topologyFcn) = «hextop» и

  • расстояние между нейронами (distanceFcn) = «linkdist».

Сеть инициализируется случайными значениями для каждого нейрона. Мы использовали обучающую функцию trainbu , которая регулирует веса и смещение после каждой итерации. Мы построили график результатов и наблюдали за распределением входного набора на рисунке 3:

Рисунок 3.

Распределение расстояний между кластерами.

Из представления кривых потребления, соответствующих шести кластерам, можно наблюдать четкое разграничение между профилями P2 и P5.Кроме того, разница ок. 30% пика вечернего потребления наблюдается между P6 и P1, P3, P4 (Рисунок 4).

Рисунок 4.

Профили, полученные с помощью SOM.

Проанализировав полученные результаты, мы заметили правильную и эффективную группировку профилей потребителей с помощью самоорганизующихся нейронных сетей.

Краткое сравнение результатов, полученных с помощью трех проанализированных методов, представлено в таблице 1.

Метод SVM K-средства и O-кластер SOM
Количество профилей 6 профилей 6 профилей с 10 узорами 6 профилей
Чувствительность к колебаниям потребления Высокая, небольшие классы с низкой достоверностью Средняя, ​​вариации включены в шаблоны Средняя, ​​каждая группа четко разграничена
Подробная информация о потреблении Высокая (подтипы профилей ) Высокая (по шаблонам O-кластера) Низкая
Общая производительность Средняя Высокая Высокая

Таблица 1.

Сравнение профилей, полученных с помощью SVM, K-средних и O-кластера и SOM.

Из анализа мы можем сделать вывод, что для определения динамических профилей потребления, которые удивляют ряд моделей потребления, оптимальным методом является метод кластеризации, а для определения четко разграниченных профилей наиболее эффективным методом является использование самоорганизующиеся карты.

3.2. Решение для прогнозирования потребления с ИНС

Анализируя набор данных о потреблении для 212 потребителей в течение 4–6 недель, наблюдается регулярная картина между рабочими днями или рабочими днями (с понедельника по пятницу) и некоторые различия в выходные и праздничные дни.Следовательно, для почасового прогнозирования нагрузки, агрегированной на уровне оператора сети или поставщика электроэнергии для типичного дня недели, мы можем рассмотреть модель авторегрессии. В этом разделе мы подходим и сравниваем два метода прогнозирования потребления электроэнергии: статистические методы на основе ARIMA и авторегрессионные искусственные нейронные сети.

Модели авторегрессионного скользящего среднего (ARMA) подходят для стационарных рядов, но большинство рядов нестационарны, их среднее значение и дисперсия не являются постоянными во времени.Модель ARMA была адаптирована для нестационарных временных рядов, которые становятся стационарными в результате дифференциации, а полученные модели называются авторегрессионными интегрированными скользящими средними ARIMA (p, d, q). Модель ARIMA (p, d, q) состоит из трех частей: авторегрессия (AR), где p представляет порядок авторегрессии, d представляет собой порядок дифференциации, необходимый для построения ряда (I) и скользящего среднего, где q — порядок скользящей средней. В отличие от авторегрессии, скользящее среднее описывает явления с некоторыми отклонениями.Скользящее среднее описывается следующим уравнением:

Yt = c + θ1et − 1 + θ2et − 2 +… + θpet − p + etE1

, где Yt — потребление, c — постоянный коэффициент, а θ — это параметры скользящей средней, а и — ошибка временного ряда.

Для оценки результатов анализа мы использовали среднеквадратичную ошибку (MSE), а также среднюю абсолютную процентную ошибку (MAPE) для сравнения точности прогноза, полученного в различных вариантах модели ARIMA.

Данные из таблицы LOAD_PROFILE_T были импортированы в SAS Guide Enterprise 7.1. Исходя из набора входных данных, мы применили модели авторегрессионного интегрированного скользящего среднего. В таблице 2 мы представили MAPE для модели AR первого порядка, ARMA (1,1) и ARIMA (1,1,1).

Модель MAPE [%]
AR (1) 7,29
MA (1) 24,45
ARMA (1,1) 29.05
ARIMA (1,1,1) 24,97

Таблица 2 показывает, что MAPE является самым низким в авторегрессионной модели, а точность прогноза потребления электроэнергии является наилучшей (около 93%). Точность других прогнозов превышает 70%. Во всех анализах степень корреляции указывает на среднюю или плохую обратную зависимость.

Помимо моделей ARIMA, мы обратились к авторегрессионным нейронным сетям в Matlab. Мы построили виртуальную таблицу LOAD_PROFILE_HOURLY на основе таблицы LOAD_PROFILE_T и таблицы LOAD_PROFILE_SOM_6 , которая включает шесть профилей потребления, ранее определенных самоорганизующимися картами.Для моделирования рассматривался один профиль — P6 с наибольшим количеством потребителей (6197).

Из-за структуры входных данных и того факта, что существует авторегрессионная составляющая потребления электроэнергии в течение типичной недели, мы построили нелинейную авторегрессионную нейронную сеть ( narnet ). Мы настроили параметры ИНС следующим образом:

  • feedbackDelays — количество задержек;

  • hiddenSizes — количество нейронов в скрытом слое;

  • trainFcn — обучающая функция.

Мы рассмотрели 50 нейронов в скрытом слое и один вход y (t) — общее потребление, определенное по формуле:

yt = fyt − 1… yt − dE2

, где d представляет количество записей считается задержкой. Для первой итерации модели мы рассмотрели d = 5, а для второй итерации с лучшими результатами d = 10. Архитектура сети показана на рисунке 5.

Рисунок 5.

Архитектура авторегрессионной нейронной сети.

Для скрытого слоя мы использовали биполярную сигмовидную функцию активации и линейную функцию активации для выходного слоя. Что касается алгоритма обучения, Matlab предоставляет следующие алгоритмы: алгоритм Левенберга-Марквардта (LM) ( trainlm ), алгоритм байесовской регуляризации (BR) ( trainbr ) и алгоритм Scaled Conjugate Gradient (SCG) ( traincg). ). Мы разработали авторегрессионную нейронную сеть и сравнили результаты, полученные с помощью трех алгоритмов обучения.Производительность сети очень хорошая, среднеквадратичная ошибка (MSE) составляет 0,0046, достигнутая в эпоху 936 для алгоритма обучения BR, а коэффициент корреляции R между прогнозом и фактическим значением составляет 0,996 (рисунок 6).

Рисунок 6.

Результаты для коэффициента R для алгоритма BR.

Из гистограммы ошибок (рисунок 7) можно заметить, что ошибки находятся в диапазоне от –0,13 до +0,12, что можно считать приемлемым распределением.

Рисунок 7.

Гистограмма ошибок.

Мы обучили сеть с использованием трех алгоритмов (LM, RB и SCG), лучшие результаты были получены с использованием алгоритма байесовской регуляризации, хотя алгоритм Левенберга-Марквардта показал хорошие результаты с повышенной производительностью при обучении.

В таблице 3 результаты, полученные с помощью авторегрессионных нейронных сетей, сравниваются со стохастическими методами (ARMA, ARIMA и AR).

Производительность / метод LM RB GCS AR MA ARMA ARIMA
MSE 0.0064 0,0046 0,167 0,0091 0,0275 0,0316 0,0287
MAPE 4,26 4,21 4,26 4,21 6,21 7,2 6,21 7,2 распределение −0,3 до 0,12 −0,13 до 0,12 −0,18 до 0,22 −1,24 до 1,16 −1,36 до 1,44 −1,11 до 0,99 −1.От 14 до 0,66

Таблица 3.

Авторегрессионные нейронные сети и стохастические методы.

Точность алгоритмов ИНС лучше (около 95%) по сравнению с точностью стохастических моделей. Кроме того, алгоритмы Левенберга-Марквардта и байесовские алгоритмы регуляризации также превосходят в отношении самой низкой MSE. Коэффициент R и распределение ошибок для алгоритмов нейронной сети лучше, чем модели AR, MA, ARMA и ARIMA.

.

[towtech] Высокоэффективная защита от частичного перегрева Пленка для электрического обогрева полов в дальнем инфракрасном диапазоне

Введение в компанию

Безопасность — это технология

Towtech Co., Ltd. — специализированный производитель электрического отопления Materials была основана в 2009 году под девизом «Безопасность — самая передовая технология».

В настоящее время многие компании производят и экспортируют материалы для электронагревания, такие как нагревательная пленка, саморегулирующаяся нагревательная пленка, нагревательный кабель и т. д. , они настаивают на том, чтобы их продукция имела превосходное качество и более высокую эффективность нагрева.Однако даже небольшой дефект электронагревательных материалов может привести к необратимым несчастным случаям, таким как поражение электрическим током или пожар.

Все участники производственной линии более 10 лет занимаются производством нагревательной пленки. Это самая большая заслуга компании Towtech Co., Ltd.
Итак, мы разработали саморегулирующуюся угольную пасту (PTC) путем постоянных исследований и разработок с момента их создания. На основе такого опыта компания Towtech Co., Ltd с 2010 года производит саморегулирующуюся нагревательную пленку, которая демонстрирует стабильную функцию защиты от перегрева.Кроме того, Towtech Co., Ltd. получила различные сертификаты международных стандартов, включая ISO9001, ISO14001, CE, RoHS.

Towtech Co., Ltd. имеет многолетний опыт в установке электронагревательных материалов на различных строительных площадках.

Итак, мы знаем о различных проблемах, которые возникают в строительстве.

Кроме того, мы стремимся внедрить подходящие методы строительства и монтажные материалы, обладая такими обширными знаниями.

Вас интересуют электронагревательные материалы?
Тогда обратитесь в компанию Towtech Co., ООО
Мы приложим все усилия, чтобы стать вашим успешным деловым партнером.

Наконец, Towtech Co., Ltd. всегда будет стараться быть компанией, которая производит самые безопасные электрические нагревательные изделия на основе передовых технологий.
Спасибо.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *