Термопары чувствительность: Термопары. Типы, характеристики, конструкции, производство. Статья

Содержание

Термопары. Виды и состав. Устройство и принцип действия

Преобразователь температуры в электрический ток называется термопарой. Такой термоэлемент используется в преобразовательных и измерительных устройствах, а также во многих системах автоматики. Если рассматривать термопары по международным стандартам, то это два проводника из разных материалов.

Устройство

На одном конце эти проводники соединены между собой для создания термоэлектрического эффекта, позволяющего измерять температуру.

Внешне такое устройство выглядит в виде двух тонких проволочек сваренных на одном конце между собой, образуя маленький шарик. Многие китайские мультиметры имеют в комплекте такие термопреобразователи, что дает возможность измерять температуру разных нагретых элементов устройств. Эти два проводника обычно помещены в стекловолоконную прозрачную трубку. С одной стороны находится аккуратный сварной шарик, а с другой специальные разъемы для подключения к измерительному прибору.

Промышленное оборудование имеет более сложную конструкцию, по сравнению с китайскими термопарами. Рабочий элемент термодатчика заключают в металлический корпус в виде зонда, внутри которого он изолирован керамическими изоляторами, способными выдержать высокую температуру и воздействие агрессивной среды. На производстве таким термодатчиком измеряют температуру в технологических процессах.

Термопары являются наиболее популярным старым термоэлементом, который применяется в различных приборах для измерения температуры. Он обладает высокой надежностью, низкой инертностью, универсален и имеет низкую стоимость. Диапазон измерения различными видами термопар очень широк, и находится в пределах -250 +2500°С. Конструктивные особенности термодатчика не позволяют обеспечить высокую точность измерений, и погрешность может составлять до 2 градусов.

В бытовых условиях термопары используются в паяльниках, газовых духовках и других бытовых устройствах.

Принцип действия

Работа рассматриваемого термодатчика заключается в использовании эффекта ученого физика Зеебека, который обнаружил, что при спайке двух разнородных проводов в них образуется термо ЭДС, величина которого возрастает с увеличением нагрева места спайки. Позже это явление назвали термоэлектрическим эффектом Зеебека.

Напряжение, вырабатываемое термопарой, зависит от степени нагревания и вида применяемых металлов. Величина напряжения небольшая, и находится в интервале 1-70 микровольт на один градус.

При подключении такого температурного датчика к измерительному устройству, возникает дополнительный термоэлектрический переход. Поэтому образуется два перехода в разных режимах температуры. Входящий электрический сигнал на измерительном приборе будет зависеть от разности температур двух переходов.

Для измерения абсолютной температуры используют способ, называемый компенсацией холодного спая. Суть этого способа заключается в помещении второго перехода, не находящегося в зоне измерения, в среду образцовой температуры. Раньше для этого применяли обычный способ – размещали второй переход в тающий лед. Сегодня для этого используют вспомогательный температурный датчик, находящийся рядом со вторым переходом. По данным дополнительного термодатчика измерительное устройство корректирует итоги измерения. Это упрощает схему измерения, так как измерительный элемент и термопару совместно с дополнительным компенсатором можно соединить в одно устройство.

Разновидности

Температурные датчики на основе термопары разделяются по типу применяемых металлов.

Термопары из неблагородных металлов
Железо-константановые
  • Достоинством стала низкая стоимость.
  • Нельзя применять при температуре менее ноля градусов, так как на металлическом выводе влага создает коррозию.
  • После термического старения показатели измерений возрастают.
  • Наибольшая допустимая температура использования +500°С, при более высокой температуре выводы очень быстро окисляются и разрушаются.
  • Железо-константановый вид является наиболее подходящим для вакуумной среды.
Хромель-константановые
  • Способны работать при пониженных температурах.
  • Материалы электродов обладают термоэлектрической однородностью.
  • Их достоинство – повышенная чувствительность.
Медно-константановые термопары
  • Оба электрода отожжены для создания термоэлектрической однородности.
  • Не восприимчивы к высокой влажности.
  • Нецелесообразно применять при температурах, превышающих 400°С.
  • Допускается применение в среде с недостатком или избытком кислорода.
  • Допускается применение при температуре ниже 0°С.
Хромель-алюмелевые термопары

  • Серная среда вредно влияет на оба электрода термодатчика.
  • Нецелесообразно применять в среде вакуума, так как из электрода Ni-Cr может выделяться хром. Это явление называют миграцией. При этом термодатчик изменяет ЭДС и выдает температуру ниже истинной.
  • Снижение показаний после термического старения.
  • Применяется в насыщенной кислородом атмосфере или в нейтральной среде.
  • В интервале 200-500°С появляется эффект гистерезиса. Это означает, что при охлаждении и нагревании показания отличаются. Разница может достигать 5°С.
  • Широко применяются в разных сферах в интервале от -100 до +1000 градусов. Этот диапазон зависит от диаметра электродов.
Нихросил-нисиловые
  • Наиболее высокая точность работы из всех термопар, изготовленных из неблагородных металлов.
  • Повышенная стабильность функционирования при температурах 200-500°С. Гистерезис у таких термодатчиков значительно меньше, чем у хромель-алюмелевых датчиков.
  • Допускается работа в течение короткого времени при температуре 1250°С.
  • Рекомендуемая температура эксплуатации не превышает 1200°С, и зависит от диаметра электродов.
  • Этот тип термопары разработан недавно, на основе хромель-алюмелевых термодатчиков, которые могут быстро загрязняться различными примесями при повышенных температурах. Если спаять два электрода с кремнием, то можно заранее искусственно загрязнить датчик. Это позволит уменьшить риск будущего загрязнения при работе.
Термодатчики из благородных металлов
Платинородий-платиновые

  • Наибольшая рекомендуемая температура эксплуатации 1350°С.
  • Допускается кратковременное использование при 1600°С.
  • Нецелесообразно использовать при температуре менее 400°С, так как ЭДС будет нелинейной и незначительной.
  • При температуре более 1000°С термопара склонна к загрязнению кремнием, содержащимся в керамических изоляторах. Поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Способны работать в окислительной внешней среде.
  • Если температура работы более 900°С, то такие термодатчики загрязняются железом, медью, углеродом и водородом, поэтому их запрещается армировать стальными трубками, либо необходимо изолировать электроды керамикой с газонепроницаемыми свойствами.
Платинородий-платинородиевые
  • Оптимальная наибольшая рабочая температура 1500°С.
  • Нецелесообразно использование при температуре менее 600°С, где ЭДС нелинейная и незначительная.
  • Допускается кратковременное использование при 1750°С.
  • Может применяться в окислительной внешней среде.
  • При температуре 1000 и более градусов термопара загрязняется кремнием, поэтому рекомендуется применять керамические трубки из чистого оксида алюминия.
  • Загрязнение железом, медью и кремнием ниже, по сравнению с предыдущими видами.
Преимущества
  1. Прочность и надежность конструкции.
  2. Простой процесс изготовления.
  3. Спай датчика можно заземлять или соединять с объектом измерения.
  4. Широкий интервал эксплуатационных температур, что позволяет считать термоэлектрические датчики наиболее высокотемпературными из контактных видов.
Недостатки
  • Материал электродов реагирует на химические вещества, и при плохой герметичности корпуса датчика, его работа зависит от атмосферы и агрессивных сред.
  • Градуировочная характеристика изменяется из-за коррозии и появления термоэлектрической неоднородности.
  • Требуется проверять температуру холодных спаев. В новых устройствах измерительных приборов на базе термодатчиков применяется измерение холодных спаев полупроводниковым сенсором или термистором.
  • На большой длине удлинительных и термопарных проводников может появляться эффект «антенны» для имеющихся электромагнитных полей.
  • ЭДС зависит от температуры по нелинейному графику, что затрудняет проектирование вторичных преобразователей сигнала.
  • Если серьезные требования предъявляются к времени термической инерции термодатчика, и требуется заземлять спай, то необходимо изолировать преобразователь сигнала, чтобы не было утечки тока в землю.
Рекомендации по эксплуатации
Точность и целостность системы измерений на основе термопарного датчика может быть увеличена, если соблюдать определенные условия:
  • Не допускать вибраций и механических натяжений термопарных проводников.
  • При применении миниатюрной термопары из тонкой проволоки. Необходимо применять ее только в контролируемом месте, а за этим местом следует применять удлинительные проводники.
  • Рекомендуется применять проволоку большого диаметра, не изменяющую температуру измеряемого объекта.
  • Использовать термодатчик только в интервале рабочих температур.
  • Избегать резких перепадов температуры по длине термодатчика.
  • При работе с длинными термодатчиками и удлинительными проводниками, необходимо соединить экран вольтметра с экраном провода.
  • Для вспомогательного контроля и температурной диагностики используют специальные температурные датчики с 4-мя термоэлектродами, позволяющими выполнять вспомогательные температурные измерения, сопротивления, напряжения, помех для проверки надежности и целостности термопар.
  • Проводить электронную запись событий и постоянно контролировать величину сопротивления термоэлектродов.
  • Применять удлиняющие проводники в рабочем интервале и при наименьших перепадах температур.
  • Применять качественный защитный чехол для защиты термопарных проводников от вредных условий.
Похожие темы:

Термопара принцип работы

Что такое термопара, принцип действия

Термопара – это устройство для измерения температур во всех отраслях науки и техники. 

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера.

Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом.

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Особенности устройства промышленной термопары

Термодатчики изготавливаются по большей части из неблагородных металлов. От воздействия внешней среды их закрывают трубой с фланцем, служащим для крепления прибора. Защитная арматура предохраняет проводники от влияния агрессивной среды и делается без шва. Материалом служит обычная (до 600ºС) или нержавеющая (до 1100ºС) сталь. Термоэлектроды изолируют друг от друга асбестом, фарфоровыми трубками или керамическими бусами.

Если терминал расположен близко, то провода термопары подключаются к нему напрямую, без дополнительных разъемов. При расположении измерительного прибора на удалении, при включении его в цепь свободные концы термопары размещаются в литой головке, прикрепленной к защитной трубе. Внутри располагаются латунные клеммники на фарфоровом основании для подключения компенсационных проводов, изготовленных из таких же материалов, что и термоэлектроды, но не обладающих точными и строго контролируемыми характеристиками. Они имеют меньшую стоимость и большую толщину. Их вводят в головку через штуцер с асбестовой прокладкой. Керамика служит для выравнивания температуры во всех местах соединения. Сверху располагается резьбовая защитная крышка с герметичным уплотнением.

На провода нельзя устанавливать обжимные оконцеватели, поскольку они могут ухудшить точность показаний. Из проволоки делают кольцо и зажимают его под винт.

Корректировка изменения температуры на клеммах может производиться электронным прибором, что повышает точность измерений.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

Чтобы лучше понять принцип работы термопары газового котла, стоит рассмотреть схему, представленную на рисунке.

Схема термопары

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

 

Как работает датчик пламени в газовом котле

Датчик ионизации пламени – прибор, который призван обеспечить безопасную работу газового котельного оборудования. Устройство следит за наличием огня, и при обнаружении отсутствия пламени автоматически отключает котел. Принцип работы датчика пламени газового котла предусматривает следующее:

  • функционал основан на образовании ионов и электронов при зажигании пламени. Образование ионного тока вызывает процесс притягивания ионов к электроду ионизации. Устройство подключается к датчику контроля горения;
  • если при проверке датчиком контроля горения обнаруживается образование достаточного уровня ионов, это означает, что котел работает в штатном режиме. В случае снижения уровня ионов датчик блокирует работу котельного оборудования.

К ключевым причинам срабатывания датчика ионизации относят загрязнение клапана и некорректное соотношение уровня «газ-воздух». Также это происходит при оседании большого количества пыли на устройстве розжига.

Основные типы термопар для газового котла

При изготовлении термоэлектрических преобразователей применяют сплавы благородных и неблагородных металлов. Для конкретных диапазонов рабочих температур используют определенные группы сплавов.

В зависимости от металлических пар, применяемых при изготовлении, приборы делятся на несколько типов.

Для работы котельного оборудования на газовом топливе чаще всего используют следующие типы устройств:

  • термопара типа E. Заводская маркировка ТХКн, представляет собой пластины из хромеля и константана. Прибор предназначен для температурного диапазона от 0°C и до +600°C;
  • тип J. Предусматривает композицию из железа и константана, маркировка ТЖК. Используется для рабочих температур в пределах от -100°C и до +1200°C;
  • тип Kс маркировкой ТХА, изготавливается на основе пластин из хромеля и алюмеля. Температурный диапазон применения термопары типа Kзначительный – от -200°C и до +1350°C;
  • тип Lс маркировкой ТХК. Элементы конструкции представляют собой хромель и копель. Устройство предназначено для температур от -200°C и до +850°C.

Термопара для газового котла типа J

Следующие образцы продукции находят применение в сфере тяжелой промышленности:

  • тип Sс маркировкой ТПП10 представляет собой композицию платинородий-платина. Применяется в установках при температурном режиме до +1700°C;
  • тип Bс маркировкой ТПР состоит из композиции пластин платинородий-платинородий. Продукт предназначен для температурного диапазона от -100°C и до +1800°C.

Также изготавливаются и другие варианты аналогичных приборов из сплавов благородных металлов, которые актуальны в тяжелой промышленности и литейном производстве.

Термопара в системе газового контроля

При эксплуатации газового оборудования требуется энергонезависимая автоматика, что способствует оперативному перекрытию подачи газа в случае, если внезапно погаснет пламя. В современных отопительных котлах с газовой горелкой предусмотрена система газ-контроль, которая включает в себя электромагнитный клапан и термопару. К составным элементам электроклапана относятся:

  • сердечник с обмоткой;
  • колпачок;
  • возвратная пружина;
  • якорь;
  • резинка, перекрывающая подачу газа.

При нажатии на кнопку подачи газа, шток заглубляется внутрь катушки и заряжается пружина. По регламенту клапан подачи следует удерживать около 30 секунд, чтобы термопара прогрелась, и на концах образовалось напряжение для удержания клапана внутри катушки. Термопара начинает остывать, если гаснет горелка. Что дальше происходит:

  • это сопровождается уменьшением напряжения на концах термопары;
  • возвратная сила пружины превышает электромагнитную силу, которая удерживает шток внутри катушки;
  • клапан возвращается в исходное положение и перекрывается подача газа.

В этом заключается работа термопары в газовом котле. Система газ-контроль на термопаре отличается высокой надежностью, в том числе и благодаря тому, что она способна функционировать без подключения к энергосети.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

ГОСТ Р 50342-92

ГОСТ Р 50342-92
(МЭК 584-2-82)

Группа П24

ОКП 42 1150

Дата введения 1993-07-01

1. РАЗРАБОТАН И ВНЕСЕН Техническим комитетом ТК 286 «Промприбор»

РАЗРАБОТЧИКИ

В.И.Лах, д-р техн. наук; Л.С.Хохлова, О.Е.Гаевская, Ю.Б.Обручников, С.А.Ковальская

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 12.10.92 N 1350

Приложение 1 подготовлено методом прямого применения международного стандарта МЭК 584-2-82 «Термопары. Часть 2. Допуски»

3. Срок проверки — 1996 год, периодичность проверок — 5 лет

4. ВЗАМЕН ГОСТ 4.174-85 (в части преобразователей термоэлектрических)

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Настоящий стандарт распространяется на термоэлектрические преобразователи (ТП) с металлическими термопарами в качестве термочувствительных элементов, предназначенные для измерения температуры в диапазоне от минус 270 до плюс 2500 °С.

Стандарт распространяется также на термопары и термометрические вставки разборных ТП в части основных параметров и их допусков.

Требования пп.2.2, 2.3 (в части пределов допускаемых отклонений от номинальной статической характеристики), 2.6, 2.8, 2.9, 2.10 разд.3 настоящего стандарта являются обязательными, другие требования стандарта — рекомендуемыми.

Пределы допускаемых отклонений от номинальной статической характеристики (НСХ) для термопар типов В, K, Е, N, T, J — в соответствии с МЭК 584-2 (см. приложение 1).

Пояснения терминов, применяемых в стандарте, приведены в приложении 2.

1. КЛАССИФИКАЦИЯ

1.1. В зависимости от типа применяемой термопары ТП изготовляют:

вольфрамрений-вольфрамрениевые (ТВР) — термопара типов А-1, А-2, А-3;

платинородий-платинородиевые (ТПР) — термопара типа В;

платинородий-платиновые (ТПП) — термопара типов R, S;

хромель-алюмелевые (ТХА) — термопара типа K;

хромель-копелевые (ТХК) — термопара типа L;

хромель-константановые (ТХК) — термопара типа Т;

никросил-нисиловые (ТНН) — термопара типа N;

медь-константановые (ТМК) — термопара типа Т;

железо-константановые (ТЖК) — термопара типа J.

1.2. По способу контакта с измеряемой средой ТП подразделяют на:

погружаемые,

поверхностные.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. ТП следует изготовлять в соответствии с требованиями настоящего стандарта и конструкторской документации (КД), утвержденной в установленном порядке.

2.2. НСХ преобразования термопар должны соответствовать ГОСТ 3044 (МЭК 584-1).

НСХ ТП определяется типом применяемой термопары.

В КД на ТП конкретного типа могут быть приведены индивидуальные статические характеристики преобразования.

2.3. Основные показатели ТП должны соответствовать приведенным в табл.1.

Таблица 1

Подгруппа ТП (условное обозначение применяемой термопары)

Наименование показателя

Значение показателя

ТВР
(А-1, А-2, А-3)

Нижний предел диапазона измеряемых температур, °С

0

Верхний предел диапазона измеряемых температур, °С

2200 (2500)

Предел допускаемых отклонений от НСХ (в диапазоне температур) для классов допуска, °С;

2

±0,005

От 1000 до 2500 °С

3

±0,007

От 1000 до 2500 °С

ТПР
(B)

Нижний предел диапазона измеряемых температур, °С

300

Верхний предел диапазона измеряемых температур, °С

1700 (1800)

Предел допускаемых отклонений от НСХ, °С

В соответствии с п.3 приложения 1

ТХА
(K)

Нижний предел диапазона измеряемых температур, °С

-200

Верхний предел диапазона измеряемых температур, °С

1200 (1300)

Предел допускаемых отклонений от НСХ (в диапазоне температур), °С:

В соответствии с п.3 приложения 1

От -40 до +1200 °С;

В соответствии с КД на ТП
конкретного типа

От 1200 до 1300 °С

ТХК
(L)

Нижний предел диапазона измеряемых температур, °С

-200

Верхний предел диапазона измеряемых температур, °С

600 (800)

Предел допускаемых отклонений от НСХ (в диапазоне температур) для классов допуска, °С:

2

±2,5

От -40 до +300 °С;

От 300 до 800 °С

3

От -200 до -100 °С;

±2,5

От -100 до +100 °С

ТХК
(Е)

Нижний предел диапазона измеряемых температур, °С

-200

Верхний предел диапазона измеряемых температур, °С

900

Предел допускаемых отклонений от НСХ, °С

В соответствии с п.3 приложения 1

ТНН
(N)

Нижний предел диапазона измеряемых температур, °С

-270

Верхний предел диапазона измеряемых температур, °С

1200

Предел допускаемых отклонений от НСХ (в диапазоне температур), °С:

В соответствии с п.3 приложения 1

От -200 до +1200 °С;

Предел допускаемых отклонений от НСХ (в диапазоне температур), °С

в соответствии с КД на ТП конкретного типа

От -270 до -200 °С

ТМК
(Т)

Нижний предел диапазона измеряемых температур, °С

-200

Верхний предел диапазона измеряемых температур, °С

350 (400)

Предел допускаемых отклонений от НСХ (в диапазоне температур), °С:

В соответствии с п.3 приложения 1

От -200 до +350 °С;

в соответствии с КД на ТП конкретного типа

От 350 до 400 °С

ТЖК
(J)

Нижний предел диапазона измеряемых температур, °С

-200

Верхний предел диапазона измеряемых температур, °С

750 (900)

Предел допускаемых отклонений от НСХ (в диапазоне температур), °С:

В соответствии с п.3 приложения 1

От -40 до +750 °С;

в соответствии с КД на ТП конкретного типа

От -200 до -40 °С

Примечания:

1. — значение измеряемой температуры, °С.

2. В скобках указана предельная температура при кратковременном применении.

3. Значения предела допускаемых отклонений от НСХ установлены для термопар ТП.

4. Рабочий диапазон ТП может находиться внутри диапазона измеряемых температур. Кроме рабочего диапазона в КД на ТП конкретного типа может быть установлено номинальное значение температуры применения.

2.4. Диаметр термоэлектродов термопар находится в пределах от 0,07 до 0,5 мм — для термоэлектродов из благородных металлов и от 0,1 до 3,2 мм — для термоэлектродов из неблагородных металлов.

2.5. Термоэлектроды термопар не должны иметь перетяжек, резких изгибов. На поверхности термоэлектродов не должно быть пленок, трещин, раковин, расслоений и загрязнений.

2.6. Конструкция ТП и применяемые материалы должны обеспечивать стабильность НСХ при воздействии температуры верхнего значения рабочего диапазона измерения в течение 2 ч.

Изменение НСХ после воздействия этой температуры не должно быть более допускаемых отклонений, указанных в табл.1.

Для ТП, у которых значения температур рабочего диапазона превышают верхнего значения диапазона измеряемых температур, а также для ТП кратковременного и разового применения изменение НСХ устанавливают в КД на ТП конкретного типа.

2.7. Показатель тепловой инерции ТП при коэффициенте теплоотдачи, практически равном бесконечности, следует устанавливать в КД на ТП конкретного типа.

2.8. Электрическое сопротивление изоляции ТП между цепью чувствительного элемента и металлической частью защитной арматуры должно быть, не менее, МОм:

100 — при температуре (25±10) °С и относительной влажности от 30 до 80%;

1,0 — при температуре 35 °С и относительной влажности 98%;

1,0 — при температуре до 300 °С;

0,07 » » » 600 °С;

0,025 » » » 800 °С;

0,005 » » » 1000 °С.

Для ТП различных типов с защитной арматурой диаметром до 10 мм включительно с верхним пределом измерения свыше 1000 °С, с чувствительными элементами, имеющими две и более несвязанные электрические цепи, значение электрического сопротивления изоляции должно быть установлено в КД на ТП конкретного типа.

2.9. Электрическая изоляция ТП должна выдерживать в течение 1 мин синусоидальное переменное напряжение 250 В частотой 50 Гц.

Примечание. Требования пп.2.8, 2.9 не распространяются на ТП с термопарами, непосредственно соединенными с защитной арматурой (неизолированные), и ТП разового и кратковременного применения.

2.10. Монтажная часть защитной арматуры ТП должна выдерживать испытание на прочность давлением, значение которого следует выбирать по ГОСТ 356 и устанавливать в КД на ТП конкретного типа.

Для герметичных ТП в КД на ТП конкретного типа следует устанавливать требования по герметичности.

Примечание. Если в ГОСТ 356 отсутствуют значения давления для испытания материалов защитной арматуры, то их следует устанавливать в зависимости от механических (прочностных) характеристик и условий эксплуатации.

2.11. Требования к ТП по устойчивости к воздействию температуры и влажности окружающего воздуха, ударным воздействиям, устойчивости и прочности к ТП в транспортной таре следует устанавливать в соответствии с исполнениями по ГОСТ 12997.

2.12. Требования к защите ТП от воздействия агрессивных сред, инея и росы, соляного (морского) тумана, качки, радиации и других воздействий окружающей среды следует устанавливать в КД на ТП конкретного типа по требованию потребителя.

2.13. Требования к конструкции

2.13.1. Защитная арматура должна обеспечивать прочностные характеристики ТП в соответствии с условиями их применения.

Параметры измеряемой среды (давление, скорость потока и др.), для которых обеспечиваются прочностные характеристики ТП, следует указывать в КД на ТП конкретного типа.

Допускается использовать дополнительные защитные чехлы или монтажные приспособления.

2.13.2. Длину монтажной, погружаемой и наружной частей ТП следует выбирать из ряда: 10, 16, 20, 25, 32, 40, 50, 60, 80, 100, 120, 160, 200, 250, 320, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150 мм, свыше 3150 мм — из ряда R 40 по ГОСТ 6636.

2.13.3. Резьбу для крепления ТП следует выбирать из следующих: М6х1; М8х1; М12х1,5; М16х1,5; М20х1,5; М27х2; М33х2; М39х2.

Допускается крепить ТП с помощью фланцев или приварки, а также применять их без крепежных деталей.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

Требования безопасности ТП должны соответствовать ГОСТ 12.2.007.0 и устанавливаются в КД на ТП конкретного типа.

4. КОМПЛЕКТНОСТЬ

4.1. В комплект ТП входят специальный эксплуатационный инструмент, запасные части и принадлежности, номенклатуру, количество и необходимость которых указывают в КД на ТП конкретного типа.

4.2. К ТП прилагают эксплуатационные документы по ГОСТ 2.601, виды, количество и необходимость которых указывают в КД на ТП конкретного типа.

5. ПРАВИЛА ПРИЕМКИ

5.1. Правила приемки и виды испытаний — по ГОСТ 15.001*, ГОСТ 12997.
_______________
* На территории Российской Федерации действует ГОСТ Р 15.201-2000. — Примечание «КОДЕКС».

5.2. Объем, состав и последовательность испытаний, вид контроля (сплошной, выборочный, смешанный), перечень контролируемых параметров (характеристик) и последовательность их проведения следует устанавливать в КД на ТП конкретного типа.

6. МЕТОДЫ ИСПЫТАНИЙ

6.1. Условия проведения испытаний ТП устанавливают следующими:

температура окружающего воздуха (25±10) °С;

относительная влажность от 30 до 80%;

атмосферное давление от 84 до 106,7 кПа.

Уровень внешних электрических, магнитных полей, а также вибрации в месте расположения измерительных установок должен быть в пределах норм, установленных в КД на ТП конкретного типа.

6.2. Определение допускаемых отклонений от НСХ (п.2.3) и испытание на стабильность (п.2.6) для ТП с НСХ преобразования типов В, S, К, L, а также с длиной погружаемой части не менее 250 мм в диапазоне температур от 0 до 1800 °C осуществляют в соответствии с требованиями ГОСТ 8.338.

Испытания ТП остальных типов, а также ТП с длиной погружаемой части до 250 мм, и ТП с нижним значением диапазона рабочих температур минус 200 °С и ниже проводят по методикам, изложенным в КД на ТП конкретного типа.

Допускается проводить испытания по п.2.3 в одной температурной точке, указанной в КД на ТП конкретного типа, при условии, что ТП изготовлены из термоэлектродного материала, прошедшего предварительные испытания.

Примечание. Для ТП, чувствительные элементы которых изготовлены из термоэлектродов диаметром 0,1 мм и менее, испытание по п.2.3 проводят на заводе-изготовителе термоэлектродной проволоки по методике, изложенной к КД на проволоку.

6.3. Показатель тепловой инерции (п.2.7) определяют по переходному процессу в режиме простого охлаждения.

Переходный процесс определяют следующим образом. ТП подключают к измерительной установке и гальванометру светолучевого осциллографа. На осциллографе гальванометрами устанавливают две масштабные световые точки: одну — для температуры воды в диапазоне 15-20 °С, другую — для температуры воды в диапазоне 50-100 °С.

Частоту отметок времени выбирают в зависимости от типа осциллографа и ожидаемого показателя тепловой инерции.

ТП помещают на глубину до 100 мм в сосуд с интенсивно перемешиваемой водой, температура которой находится в диапазоне 15-20 °С. Когда температура ТП установится, с помощью гальванометра совмещают световую точку, соответствующую этой температуре, со световой точкой ТП.

ТП извлекают из воды и помещают в сосуд с водой, температура которой находится в диапазоне 50-100 °С. Когда температура ТП стабилизируется, с помощью гальванометра совмещают световую точку ТП со световой точкой, соответствующей этой температуре. Затем устанавливают скорость ленты самопишущего прибора осциллографа в зависимости от предполагаемого показателя тепловой инерции.

Запись переходного процесса проводят в следующей последовательности. Включают осциллограф и самопишущий прибор. ТП быстро переносят в сосуд с интенсивно перемешиваемой водой, температура которой находится в диапазоне 15-20 °С, на время, необходимое для записи переходного процесса (за переходным процессом наблюдают по осциллографу).

Показатель тепловой инерции определяют по осциллограмме следующим образом. На осциллограмме масштабной линейкой измеряют расстояние между линиями, соответствующими диапазонам 15-20 °С и 50-100 °С, . Вычисляют или . На кривой переходного процесса откладывают значение от линии, соответствующей температуре в диапазоне 50-100 °С, или от линии, соответствующей температуре в диапазоне 15-20 °С. Расстояние от начала отсчета до проекции точки на ось времени соответствует значению показателя тепловой инерции.

Поверхностные ТП вместо погружения в воду прикладывают неподвижно к поверхности медного тонкостенного сосуда (толщина не более 0,5 мм) с интенсивно перемешиваемой водой, температура которой находится в диапазоне 15-20 °С. Температуру и способ нагрева указывают в КД на ТП конкретного типа.

Показатель тепловой инерции для других значений коэффициента теплоотдачи определяют по методикам, изложенным в КД да ТП конкретного типа.

Примечание. Для определения показателя тепловой инерции допускается применять гальванометр, автоматически регистрирующий (самопишущий) или цифровой прибор с постоянной времени не более 0,2 предполагаемого значения показателя тепловой инерции, специальные установки, аттестованные в установленном порядке.

6.4. Электрическое сопротивление изоляции (п.2.8) при температуре до 300 °С определяют при испытательном напряжении 100 В.

Электрическое сопротивление изоляции при температуре 35 °С и относительной влажности 98% измеряют в течение 3 мин после извлечения ТП из камеры влажности.

Электрическое сопротивление изоляции при температуре свыше 35 °С измеряют при напряжении разной полярности не более 10 В при глубине погружения ТП не менее 300 мм после выдержки при температуре верхнего предела рабочего диапазона не менее 2 ч. Показания следует считывать после первой минуты с момента включения измерительного прибора. Значение сопротивления изоляции определяют как среднее арифметическое двух измерений разной полярности. ТП, у которых длина погружаемой части менее 300 мм, погружают на длину погружаемой части.

Для ТП с керамической погружаемой частью в КД на ТП конкретного типа, при необходимости, следует устанавливать условия измерения электрического сопротивления изоляции при температуре свыше 1000 °С.

6.5. Электрическую прочность изоляции (п.2.9) проверяют на установке переменного тока мощностью не менее 0,25 кВ·А. Испытательное напряжение прикладывают между короткозамкнутыми зажимами ТП и металлической частью защитной арматуры. У ТП, имеющих две и более несвязанные электрические цепи, испытательное напряжение прикладывают также между электрическими цепями.

6.6. Прочность защитной арматуры (п.2.10) испытывают до сборки ТП гидростатическим или воздушным давлением, приложенным извне, время выдержки — не менее 10 с.

Допускается проводить испытание защитной арматуры внутренним давлением.

В обоснованных случаях допускается испытывать защитную арматуру после сборки.

Испытание ТП на герметичность (п.2.10) проводят по методике, изложенной в КД на ТП конкретного типа.

6.7. Испытания ТП на воздействие температуры и влажности окружающего воздуха, синусоидальных вибраций, механических ударов, на устойчивость в транспортной таре (п.2.11) — по ГОСТ 12997 и КД на ТП конкретного типа.

6.8. Испытание ТП на воздействие агрессивных сред, инея и росы, соляного (морского) тумана, качки, радиации и других воздействий окружающей среды (п.2.12) проводят по методикам, изложенным в КД на ТП конкретного типа.

6.9. Маркировку полярности (п.7.1) проверяют подключением ТП к милливольтметру, при этом температура рабочего спая ТП не должна быть ниже 300 °С для преобразователя ТПР и ниже 100 °С для других типов.

Допускается проверять маркировку полярности другими методами.

7. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

7.1. На положительный термоэлектрод ТП следует наносить маркировку. Вид маркировки и способ ее нанесения устанавливают в КД на ТП конкретного типа.

7.2. На ТП или прикрепленном к нему ярлыке следует указывать:

товарный знак предприятия-изготовителя;

обозначение типа ТП;

дату выпуска (год, месяц).

Дополнительная маркировка может содержать следующие данные:

условное обозначение НСХ;

класс допуска;

рабочий диапазон измерений.

Маркировка транспортной тары — по ГОСТ 14192.

Примечания:

1. Последовательность нанесения дополнительной маркировки — в соответствии с приведенным примером:

.

2. Допускается наносить на ТП добавочные знаки маркировки.

Маркировка ТП, предназначенных для экспорта — по ГОСТ 26828.

7.3. ТП следует упаковывать согласно требованиям, установленным в КД на ТП конкретного типа.

Типы и размеры тары ТП — по ГОСТ 2991 или ГОСТ 5959.

Консервация ТП — по ГОСТ 9.014.

7.4. Условия транспортирования ТП — по ГОСТ 15150. ТП транспортируют всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозки грузов на данном виде транспорта.

Транспортирование ТП в районы Крайнего Севера и труднодоступные районы — по ГОСТ 15150.

7.5. Условия хранения ТП — по ГОСТ 15150 и ГОСТ 12997.

8. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

8.1. Изготовитель гарантирует соответствие ТП требованиям настоящего стандарта при соблюдении условий эксплуатации, хранения и транспортирования.

8.2. Гарантийный срок эксплуатации устанавливают в КД на ТП конкретного типа, при этом он должен быть не менее 18 мес с момента ввода ТП в эксплуатацию.

ПРИЛОЖЕНИЕ 1 (обязательное). ТЕРМОПАРЫ. Часть 2. Допуски. МЭК 584-2-82

ПРИЛОЖЕНИЕ 1
Обязательное

1. Назначение

Настоящий стандарт устанавливает допускаемые отклонения от НСХ (допуски) термопар из благородных и неблагородных металлов.

НСХ термопар должны соответствовать ГОСТ 3044 (МЭК 584-1).

Значения допускаемых отклонений установлены для термопар из проводов диаметром от 0,25 до 3 мм.

Во время эксплуатации не допускается смещение допускаемых отклонение при калибровании.

2. Определения

2.1. Термоэлектрический эффект

Термоэлектрический эффект — это генерирование термоэлектродвижущей силы, возникшей из-за разности температур между двумя соединениями различных металлов или сплавов, образующих часть одной и той же цепи.

2.2. Термопара

Термопара — два проводника из разнородных материалов, соединенных на одном конце и образующих часть устройства, использующего термоэлектрический эффект для измерения температуры.

2.3. Измерительный спай

Измерительный спай — соединение, описанное в п.2.2, на которое воздействует измеряемая температура.

2.4. Соединительный спай

Соединительный спай — соединение термопары с проводниками, на которое воздействует контрольная (фиксированная) температура.

2.5. Допускаемое отклонение от НСХ

Допускаемое отклонение от НСХ — это максимальное отклонение от зависимости термоэлектродвижущей силы от температуры, выраженное в градусах Цельсия.

Зависимость термоэлектродвижущей силы от температуры установлена в табл.1-20 ГОСТ 3044 (МЭК 584-1).

3. Пределы допускаемых отклонений от НСХ

Пределы допускаемых отклонений от НСХ термопар должны соответствовать приведенным в табл.2.

Таблица 2

Пределы допускаемых отклонений от НСХ
(опорный переход при температуре соединительного спая 0 °С)

Тип
термопары

Пределы допускаемых отклонений от НСХ (в диапазоне температур), °С

Класс 1

Класс 2

Класс 3

Т

±0,5

От -40 до +125 °С

±1

От -40 до +135 °С

±1

От -67 до +40 °С

От 125 до 350 °С

От 133 до 350 °С

От -200 до -67 °С

Е

±1,5

От -40 до +375 °С

±2,5

От -40 до +333 °С

±2,5

От -167 до +40 °С

От 375 до 800 °С

От 333 до 900 °С

От -200 до -167 °С

J

±1,5

От -40 до +375 °С

±2,5

От -40 до +333 °С

От 375 до 750 °С

От 333 до 750 °С

K, N

±1,5

От -40 до +375 °С

±2,5

От -40 до +333 °С

±2,5

От -167 до +40 °С

От 375 до 1000 °С

От 333 до 1200 °С

От -200 до -167 °С

R, S

±1

От 0 до 1100 °С

±1,5

От 0 до 600 °С

°С

От 1100 до 1600 °С

От 600 до 1600 °С

В

От 600 до 1700 °С

±4

От 600 до 800 °С

От 800 до 1700 °С

Примечания:

1. Диапазоны температур, приведенные в табл.2, не являются обязательно рабочими диапазонами.

2. При проведении испытаний должно быть обеспечено постоянное соединение проводников между измерительным и соединительным спаями.

Материалы для термопар обычно поставляются в соответствии с допускаемыми отклонениями, указанными в табл.2 для температуры выше минус 40 °С.

Однако при низких температурах материалы термопар типов Т, E, K и N могут не соответствовать допускаемым отклонениям класса 3.

Поэтому при заказе потребитель должен оговорить соответствие допускаемых отклонений класса 3, а также классов 1 или 2, т.к. требуется подбор материалов.

ПРИЛОЖЕНИЕ 2 (справочное). ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ИХ ПОЯСНЕНИЯ

ПРИЛОЖЕНИЕ 2
Справочное

Термин

Пояснение

Длина монтажной части ТП с неподвижным штуцером или фланцем

Расстояние от рабочего конца защитной арматуры до опорной плоскости штуцера или фланца

Длина монтажной части ТП с подвижным штуцером или фланцем

Расстояние от рабочего конца защитной арматуры до головки, а при ее отсутствии до мест заделки выводных проводников

Длина погружаемой части ТП

Расстояние от рабочего конца защитной арматуры до места возможного погружения в измеряемую среду с температурой верхнего предела измерения ТП

Длина наружной части ТП

Расстояние от опорной плоскости неподвижного штуцера или фланца до верхней части головки

Диапазон измеряемых температур ТП

Область значений температуры, в которой возможно применение данного типа ТП с нормированными для него номинальными статическими характеристиками преобразования

Рабочий диапазон

Область значений температуры, измеряемой конкретным ТП

Показатель тепловой инерции

Время, необходимое для того, чтобы при внесении ТП в среду с постоянной температурой разность температур среды и любой точки ТП стала равной 0,37 того значения, которое будет в момент наступления регулярного теплового режима

Тип ТП

Совокупность средств ТП, в которой каждый ТП обладает единой для данной совокупности номинальной статической характеристикой преобразования, определяемой используемой термопарой

ТП разового применения

ТП, однократно используемые для измерения температуры в течение времени, указанного в КД на ТП конкретного типа

ТП кратковременного применения

ТП, которые при использовании в измерительных средах обеспечивают свои метрологические характеристики при ограниченном числе циклов измерения или в ограниченном интервале времени, указанных в КД на ТП конкретного типа

Текст документа сверен по:
официальное издание

М.: Издательство стандартов, 1993

Правильный выбор: термометр сопротивления или термопара

Измерение температуры является одним из основных требований практически при любых условиях технологических процессов перерабатывающей промышленности. В большинстве устройств используются датчики, основанные на двух технологиях. Выбор между этими двумя подходами определяется конкретными требованиями к технологическому процессу и его условиями.

Колебания температуры могут оказывать значительное влияние на прибыльность, безопасность и качество. Это справедливо в отношении разных отраслей промышленности, таких как нефтегазовая, энергетическая, нефтеперерабатывающая, нефтехимическая, фармацевтическая и др. Точность непрерывного контроля температуры зависит от нескольких факторов, в том числе от правильного выбора датчика для конкретных задач и технологических процессов.

Наиболее распространенными устройствами измерения температуры являются термометры сопротивления (ТС) и термопары (ТП). Эти устройства основаны на двух разных технологиях, каждая из которых обладает своими преимуществами, в соответствии с которыми и делается выбор в пользу той или иной технологии.

В конструкции ТС используется тот факт, что электрическое сопротивление металла возрастает с повышением температуры — явление, известное как тепловое сопротивление.

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом если температура на одном конце этих отрезков проволоки (спае) отличается от таковой на другом, в ней возникает электрический ток. Такое явление известно под названием эффекта Зеебека. Возникающее напряжение зависит от конкретных используемых металлов, а также от текущей разницы температур. Сопоставление различных значений напряжения, возникающих при использовании разных металлов, представляет собой основу измерения температуры термопарой.

 

Сравнение технологий

Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

Термометры сопротивления изготавливаются из резистивного материала с прикрепленными выводами и, как правило, помещаются в защитную оболочку. В качестве резистивного материала может выступать платина, медь или никель. Наибольшее распространение получила платина — благодаря высокой точности и стабильности результатов измерений и их исключительной линейности в широком диапазоне. Не существует однозначного ответа на вопрос, какой тип датчика является более эффективным в конкретной ситуации. При эксплуатации каждого из них возникают негативные побочные эффекты, которые необходимо принимать во внимание при выборе термодатчика с должной тщательностью.

ТС отличаются высоким изменением сопротивления в расчете на один градус изменения температуры. Наиболее распространенными типами датчиков ТС являются проволочный и тонкопленочный. ТС из витой проволоки изготавливаются либо путем навивания резистивной проволоки на керамический сердечник, либо путем помещения спирально витой проволоки в керамическую оболочку, отсюда и название «проволочные ТС». При изготовлении тонкопленочного ТС тонкое резистивное покрытие осаждается на плоскую керамическую подложку (обычно прямоугольной формы). Как правило, тонкопленочные ТС являются менее дорогими по сравнению с проволочными, поскольку для их изготовления требуется меньшее количество различных материалов.

ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность.

Обычно показания термометров сопротивления являются значительно более стабильными, и ТС обладают более высокой чувствительностью по сравнению с ТП. Долгосрочное смещение показаний ТС является хорошо предсказуемым, в то время как ТП часто ведут себя неустойчиво в данном отношении. За счет этого обеспечивается такое преимущество ТС, как менее частая потребность в калибровке и, следовательно, пониженная стоимость их эксплуатации. Наконец, ТС обеспечивают исключительную линейность показаний. В сочетании с линеаризацией, произведенной в качественном передатчике, становится достижимой точность около 0,1 °C — значительно более высокая по сравнению с максимально возможной при использовании ТП.

Конструкции термометра сопротивления и термопары

Рис. 1. Конструкции термометра сопротивления и термопары

В отличие от ТС, ТП представляет собой замкнутый термоэлектрический датчик температуры, состоящий из двух отрезков проволоки из разнородных металлов, соединенных между собой на обоих концах. При этом различные сочетания металлов классифицируются как разные типы датчиков и, соответственно, обладают отличающимися характеристиками. Наиболее часто используемыми типами ТП являются тип J (железо и константан) и тип K (хромель и алюмель). ТП отличаются более высокой скоростью реакции и более широкими допустимыми диапазонами рабочей температуры, чем ТС, однако имеют более низкую точность. Конструкция кабелей ТП отличается повышенной прочностью, за счет чего они могут выдерживать высокие уровни вибрации (рис. 1). В таблице приводится сравнение основных характеристик датчиков.

Таблица. Сравнение характеристик рассматриваемых устройств для измерения температуры

Свойство

Термометр сопротивления

Термопара

Точность
Взаимозаменяемость

Класс A: ±[0,15+0,002] °C

Класс B: ±[0,30+0,005] °C

Согласно стандарту IEC 60751

Типичная точность составляет ±1,1 °C или ±0,4 % от измеренного значения температуры (большее из двух значений). Зависит от типа ТП и диапазона измерения. Снижается при использовании удлинительного провода.

Стабильность работы

±0,05 °C по истечении 1000 ч работы при температуре <300 °C. Отклонения повышаются с увеличением температуры. ТС проволочной конструкции имеют более высокую стабильность, чем тонкопленочные.

Сильно зависит от типа термопары, качества кабеля и рабочей температуры. Типичные отклонения составляют от ±2 до 10 °C на 1000 ч работы.

Скорость реакции при установке
в термокармане с погружением
в жидкость

Скорость реакции 6-мм датчика примерно равна скорости реакции термопары.

Скорость реакции 6-мм датчика примерно равна скорости реакции ТС. Немного выше
для 3-мм датчика.

Калибровка

С легкостью подвергается повторной калибровке, что обеспечивает длительный срок службы. Наивысшая точность достигается при специальной взаимной подгонке датчика и передатчика.

Ограничивается сравнением со «стандартной термопарой» на месте измерений.

Возможный диапазон измерения температуры, °C

–200…+850

–270…+2300

Срок службы

Многие годы. Сокращается при использовании под воздействием высоких температур.

Снижение чувствительности приводит
к необходимости частой замены ТП.
Срок службы заметно сокращается
при высоких температурах.
Более высокие издержки за срок службы.

Факторы, которые необходимо учитывать при установке

Используется стандартный медный провод. Достаточно высокая невосприимчивость
к ЭМП и радиопомехам.

Требуется использование дорогого удлинительного кабеля, подходящего
для конкретной ТП. Сигналы малой мощности в значительной степени подвержены ЭМП и радиопомехам.

Устойчивость к вибрации

Очень хорошая при тонкопленочной конструкции.

Очень хорошая при большом диаметре кабелей.

Издержки за срок службы

Более низкие.

Более высокие.

Стоимость приобретения

Тонкопленочная конструкция: примерно одинакова по сравнению с ТП. Проволочная конструкция дороже.

Наиболее дорогими являются термопары
типов R и S.

Эффективность использования
системы с передатчиком

Всегда выше при температурах до +650 °C.

Ниже на один порядок.

 

Выбор наиболее подходящего типа датчика

При выборе типа датчика, наиболее подходящего для конкретного технологического процесса и поставленной задачи, следует предварительно поставить несколько основных вопросов. Ответы на них предоставят ценную информацию.

Каков диапазон измеряемых температур?

При выборе датчика определение правильного температурного диапазона является очень важным. Если температура будет превышать +850 °C, необходимо использовать ТП. При температурах ниже +850 °C можно выбрать как ТС, так и ТП. Кроме того, не стоит забывать, что проволочные ТС обладают более широким диапазоном измерения температур, чем тонкопленочные (рис. 2).

Диапазоны измерения температур различными типами термодатчиков

Рис. 2. Диапазоны измерения температур различными типами термодатчиков

Какова требуемая точность измерения датчика?

Определение требуемого уровня точности является еще одним важным фактором при выборе датчика. Как правило, ТС имеют большую точность по сравнению с ТП, а проволочные ТС — по сравнению с тонкопленочными. Если предположить, что на выбор одной из двух технологий не оказывают влияние другие факторы, это правило помогает сделать выбор наиболее точного датчика.

Вызывает ли опасения вибрация, возникающая в ходе процесса обработки?

Уровень вибрации при технологическом процессе также необходимо учитывать при выборе датчика. ТП обладают наиболее высокой вибростойкостью из всех существующих технологий измерения температуры.

Существуют различные типы термопар, определяющиеся сочетанием используемой в них проволоки. ТП большинства типов могут использоваться для измерения более высоких температур, чем ТС.

Если достоверно известно, что в ходе процесса возникает сильная вибрация, использование ТП позволит достичь максимальной надежности измерения температуры. Тонкопленочные ТС также устойчивы к воздействию вибрации; тем не менее они не обладают достаточной прочностью. Использование проволочных ТС в условиях повышенной вибрации исключено.

 

Правильный выбор — точные результаты

Ключевым моментом для успешного применения датчиков температуры является постановка основополагающих вопросов и подбор датчика, наиболее пригодного для поставленных задач и конкретных технологических процессов с учетом всех имеющихся данных. В качестве примера можно привести принятие решения об использовании датчика температуры на участке трубопровода с постоянно изменяющимися условиями при непрерывной вибрации и изменении температуры в диапазоне –200…+300 °C. Целью такого решения является достижение максимально возможной точности, несмотря на описанные непростые условия. Для указанного диапазона температур пригодны термодатчики обоих типов. Хорошо известно, что ТП обладают высокой стойкостью к вибрации, поэтому на первый взгляд может показаться, что ТП являются хорошим вариантом решения поставленной задачи. Тем не менее в данном конкретном случае требуется выполнение измерений с максимально возможной точностью. Правильным выбором для данной задачи будет использование тонкопленочных ТС. Известно, что тонкопленочные ТС отличаются более высокой стойкостью к вибрации по сравнению с проволочными и обеспечивают более высокую точность измерений по сравнению с термопарами.

Приведем еще один пример: измерение температуры в реакторе в диапазоне +550…+900 °C при низком уровне вибрации. Поставлена цель измерения температуры с точностью ±5 °C. ТС дают стабильно точные показания, особенно в условиях невысокой вибрации. Однако не стоит забывать о диапазоне температур. Как правило, ТС не следует использовать при температурах свыше +850 °C. Поскольку температура данного процесса обработки может подниматься до +900 °C, следует остановить свой выбор на ТП. Вероятность получения неверных показаний датчиков или их отказа повышается при их использовании в неподходящих диапазонах температур.

Facebook

Twitter

Вконтакте

Google+

Лр Датчики

Выполнил
студент_________________________________________ группы
№_______

Протокол
№2

Лабораторная
работа

Электрические
датчики температуры

Цель работы: ознакомиться с
работой различных датчиков температуры,
приобрести навыки их градуировки,
определить чувствительность термопары
и резисторных датчиков, проведение с
их помощью медицинских исследований.

Теоретическое обоснование:

Датчики
на основе металлов называются термометрами
сопротивления
.
Они основаны на зависимости сопротивления
металлов от температуры. В этих датчиках
входная величина – температура T,
выходная – сопротивление R.
В простейшем варианте такой датчик
состоит из тонкой металлической
проволоки, намотанной на каркас из
изолятора. Такие датчики характеризуются
линейной
зависимостью

сопротивления от температуры R=f(T)
и небольшой
температурной чувствительностью
.

Чувствительность датчика
показывает, на сколько изменяется
выходная величина при изменении входной
величины на единицу.

Датчики
на основе полупроводников называются
термисторами.
Они основаны на зависимости сопротивления
R
полупроводников от температуры T.
Термисторы изготавливают из кристаллических
полупроводников. Эти датчики характеризуются
малыми
размерами
,
малой
теплоемкостью

(что повышает точность измерений),
высокой
температурной чувствительностью

и нелинейной
зависимость

сопротивления от температуры R
= f(t).

Для
медицинских
целей термометры измеряют ∆Т≤10С,
поэтому на небольших участках график
R
= f(t)
для полупроводников почти
прямолинеен

R=
Rо(1
β·T),
где β
— температурный коэффициент полупроводника,
Rо
– сопротивление при 0˚С (237К).

Для измерения
температуры термометрами сопротивления
и термисторами их предварительно
градуируют.

Термопара – устройство, состоящее
из двух пар соединённых между собой
разнородных проводников. Если один из
спаев поместить при 0˚С, а другой в среду
с измеряемой температурой, то в цепи
возникает ЭДС= разности контактных
разностей потенциалов горячего и
холодного спаев. ε=α·12),
где α–чувствительность
термоэлектрического датчика, показывающая
на сколько изменяется термоЭДС при
повышении температуры на 1˚С.

Термопарой можно измерять только
разности температур. Если температура
одного из спаев Т2= const
(0 или комнатная), то термоЭДС будет
зависеть только от температуры другого
спая Т1 (измерительный спай).

Для измерения температур, термопару
предварительно градуируют – строят
график зависимости термоЭДС от температуры
ε (Т).

Ход работы

Результаты измерений и вычислений:

I. 1. Градуировка
термопары
медь-константан.
Снятие зависимости термоЭДС от разности
температур холодного и горячего спаев
ε(∆Т).

Т1,˚С

Т,˚С

ε,
мВ

Т2=const=
˚С

2

ε,
мВ

. Построение градуировочного графика
зависимости термоЭДС от разности
температур холодного и горячего спаев.

T,˚С

Определение чувствительности
термопары.


, выразим

Измерение температуры с помощью
термопары.


мВ, по графику ∆T= ˚С, вычислим
температуру

II. 1. Градуировка
термистора и термометра сопротивления.
Снятие зависимости сопротивления
металла и полупроводника от температуры.

Т,˚С

RGe,кОм

RSi,кОм

RCu,кОм

2. Построение градуировочного графика
зависимости сопротивления от температуры.

Вывод. Ознакомились с работой
различных датчиков температуры,
проградуировали и определили их
чувствительность, убедились, что
чувствительность термопары

мВ/˚С ниже,
чем резисторных датчиков

кОм/˚С.

Элементы, чувствительные к температуре — Студопедия

Температура является одним из основных параметров технологических процессов. Температура среды оказывает влияние на параметры многих материалов – размеры, электрическое сопротивление, термоэлектродвижущую силу и т.д. В качестве чувствительных элементов датчиков температуры применяются тепломеханические элементы, термопары, терморезисторы, p-n- переходы, кристаллы кварца, кремния и их соединений и многие другие материалы и явления в них.

Тепломеханические датчики (термобиметаллические, дилатометрические) используются в качестве чувствительных элементов, преобразующих изменение фактического значения регулируемой температуры в перемещение (рис.9.21).

Биметаллический чувствительный элемент (рис.9.21а) представляет собой две узкие металлические пластинки 1 и 2 с различными коэффициентами температурного расширения, жестко скрепленные между собой по всей плоскости касания (спаянные).

Рисунок 9.21 – Тепломеханические чувствительные

элементы: а)- биметаллический; б)- дилатометрический.

Один конец биметаллической пластинки неподвижно закреплен в основании 1, а второй – свободен. При длине плоской пластинки l, зна­чительно превышающей ее толщину δ, угол перемещения сво­бод-ного конца α будет зависеть от температуры окружающей среды Т. На пути изгиба биметаллической пластинки можно поставить, например, электрические контакты, которые будут включать электрическую сеть.

Подобные чувствительные элементы используют для двухпозиционного регулирования (включено-выключено) температуры.



На рис. 9.21б показан тепломеханический-дилатометрический преобразова­тель с расширяющейся жидкостью или газом. Изменение температуры T металлического баллона 1 связано с из­менением давления находящихся в нем жидкости или газа 4, так как коэффициенты объемного расширения жидкостей и газов гораздо выше, чем металлов. При изменении дав­ления перемещается свободный конец мембраны 3, связан­ный с баллоном через капилляр 2. Указатель 5, связанный с мембраной 3, может включать электрические контакты 6, установленные под определенным углом α, соответствующим температуре Т.

В качестве термометри­ческих жидкостей применяются амиловый спирт, ацетон, ртуть, и газовые наполнители – азот, ге­лий и др. Термо-биметаллические и дилатометрические чувствительные элементы применяются для измерения температур в диапазоне от -60 до +450°С. Погрешность преобразования составляет 1…5%.


Терморезисторами называют элементы, электрическое сопротивление которых зависит от температуры. Для их изготовления используют медь, платину и другие металлы, удельное сопротивление ρ которых увеличивается с повышением температуры T по закону

ρ=ρ0 (1+α T),

где ρ0— удельное сопротивление металла при 0 оC, α- температурный коэффициент сопротивления Ом/K, показывающий на сколько увеличивается удельное сопротивление терморезистора при увеличении температуры на 10С.

Чувствительный элемент металлического терморезисто­ра помещается в стальной или латунный корпус с клеммой головкой и представляет собой бифилярную обмотку из проволоки диаметром 0,04…0,08 мм, размещенную на изо­лированном корпусе, к концам которой припаиваются вы­воды из серебряной, а при температуре до 100°С — из мед­ной проволоки.

Погрешность измерений металлических терморезисто­ров не превышает 0,5…1%. Из металлических терморези­сторов наибольшее распространение получили термометры сопротивления типа ТСП (платиновые) и ТСМ (медные).

Термисторы – это полупроводниковые терморезисторы с отрицательным температурным коэффициентом сопротивления, а позисторы – с положительным.

Нелинейность характеристик ограничивает применение термисторов при измерениях температуры в узких преде­лах. Большой разброс по номинальному сопротивлению затрудняет их взаимозаменяемость.

Распространены медно-марганцевые (ММТ), кобальто-марганцевые (КМТ), кос­венного подогрева (ТКП) и другие термисторы для темпе­ратур от -203 °К до 523 °К. Чувствительность термисторов в 5…30 раз выше чувствительности металлических терморе­зисторов.

Зависимость термистора от температуры и схема его включения приведены на рис.9.22. В практике измерения температуры в рабочем диапазоне -60…+120о С с погрешностью измерения 0,1 % получили распространение кремниевые p-n переходы, выполненные в виде смещённых в прямом направлении диодов или базоэмитерных переходов транзисторов. Отрицательный температурный коэффициент падения напряжения на базоэмитерном переходе кремниевого биполярного транзистора составляет 2,2×10-3 B/ oC, а германиевого — 2,7…3,1×10-3 B/ oC.

Рисунок 9.22 – Зависимость электрического сопротивления термистора Rt от температуры T (а) и схема его включения (б).

Терморезисторы и p-n переходы (диоды, транзисторы) используются для построения датчиков температуры, теплосчетчиков, термоанемометров и т.п.

Термопары. Термопара – термоэлектрический преобразователь (рис.9.23) состоит из двух 1 и 2 металлов, концы которых А и Б спаяны. Металлы обладают разными термоэлектрическими свойствами. Для изготовления термопар используют пары сплавов «хромель-копель» или «хромель-алюмель».

Спаянный конец называется рабочим спаем, он погружается в измеряемую среду (температура Т1), а свободные концы (холодный спай- температура Т0) подключаются ко входу измерительной схемы П.

Если температуры рабочего спая и свободных концов различны, то термопара вырабатывает термоэлектродвижущую силу. Она зависит от разности температур двух спаев термопары, и для снижения погрешности показаний необходимо знать температуру холодного спая, чтобы компенсировать эту разницу в дальнейших вычислениях. Подключение термопары к схеме измерения осуществляется проводами тех же металлов, что и термопары.

Рисунок 9.23 – Термопара.

Термопары применяются в системах автоматического регулирования и контроля в диапазоне температур от 373 до 3000 °К. Чувствительность термопары обычно невелика и со­ставляет для разных термопар 0,01…0,07 мВ/°С.

Контрольные вопросы к главе 9.

1. Дайте определение датчика.

2. Перечислите основные характеристики датчиков.

3. Что такое чувствительный элемент датчика?

4. Дайте определение диапазона измерений датчика.

5. Дайте определение статической характеристики датчика.

6. Дайте определение коэффициенту чувствительности датчика.

7. Может ли быть коэффициент чувствительности переменной величиной?

8. Дайте определение точности датчика.

9. Дайте определение быстродействию датчика.

10. Дайте определение времени успокоения датчика.

11. Требует ли параметрический чувствительный элемент для своей работы дополнительного источника энергии?

12. Назовите основные недостатки механических чувствительных элементов.

13. Назовите вид входной величины, которая должна поступать на вход потенциометрического элемента.

14. Какие материалы могут использоваться в тензочувствительных элементах?

15. Какой параметр индуктивного чувствительного элемента изменяется при измерении перемещения объекта?

16. Назовите два типа индукционных преобразователей.

17. Почему сигнал индукционного преобразователя зависит от скорости перемещения ферромагнетика?

18. Какие параметры вещества должны измениться, чтобы на выходе емкостного чувствительного элемента появился полезный сигнал?

19. Опишите прямой пьезоэффект.

20. Опишите обратный пьезоэффект.

21. Опишите работу кварцевого генератора.

22. Назовите виды фотоэлектрических преобразователей.

23. Отчего зависит ток фотоэлектрического преобразователя?

24. Опишите работу фотоэлемента с внешним фотоэффектом.

25. Опишите работу с внутренним фотоэффектом.

26. В чем преимущество фотодиода, включенного по генераторной схеме?

27. Назовите разницу между светодиодом и оптроном.

28. Опишите принцип работы ПЗС-матрицы.

29. Поясните принцип действия термопары.

30. Поясните принцип действия терморезистора.

31. Для чего необходим холодный спай термопары?

32. Перечислите возможные виды элементов, чувствительных к температуре.

33. Из каких частей состоит биметаллический чувствительный элемент?

Рабочая термопара, типы-E, J, K, T, S, R, заземление, термобатарея, преимущества

Thermocouple
Термопара

Термопара — это датчик температуры , который имеет пару разнородных металлов, соединенных вместе на одном конце и оканчивающихся на другом конце. Присоединенный конец называется чувствительным спаем или горячим спаем, а заделанный конец называется опорным спаем или холодным спаем.Температура эталонного спая называется эталонной температурой и всегда поддерживается постоянной. Когда чувствительный спай и опорный спай имеют разные температуры, получается разность потенциалов, и это вызывает протекание тока в цепи. Создаваемое термоэлектрическое напряжение возникает из-за разной энергии связи электронов с ионами металлов. Это напряжение зависит от самих металлов, а также от температуры. Тепловое напряжение возникает только из-за замкнутой цепи между двумя металлами.Это явление называется «эффектом Зеебека».

Провода должны быть электрически разделены за пределами измерительного спая. Если эталонный спай поддерживается при стандартной температуре, обычно 32 ° F, то данная пара металлов будет иметь уникальное изменение ЭДС при изменении температуры измерительного перехода (обратите внимание, что при 32 o F ЭДС отсутствует. генерируется). Этот вариант можно также назвать калибровкой термопары, и он показан на рисунке ниже для различных типов.

Circuit for Temperature Measurement by Thermocouple
Схема измерения температуры с помощью термопары
Thermocouple Temperature-EMF Graph
График температуры-ЭДС термопары

Измерение термопар

Измерение с помощью термопары поясняется на рисунке ниже.На рисунке показана схема термопары с T2 при 32 ° F (0 ° C). Эта температура поддерживается с помощью эталонного спая ледяной бани. Цепь термопары заканчивается в ледяной бане, генерируемая ЭДС течет через стандартный медный провод, пока не достигнет своего конечного пункта назначения — прибора типа милливольтметра. Затем значение милливольт, измеренное этим прибором, преобразуется в температуру T1. Таблицы доступны для каждой коммерчески используемой комбинации материалов термопар, и они основаны на температуре эталонного спая, равной 0 ° C / 32 ° F.

Thermocouple Measurement
Измерение термопар

Типы термопар

Существует множество типов материалов термопар, и эти комбинации одобрены и стандартизированы американским национальным стандартом ISA MC 96.1: «Термопары для измерения температуры» в США. Необходимо соблюдать стандарты для различных обозначений устройства, а также его цветовой кодировки.

Согласно ISA MC96.1, термопара может быть обозначена различными комбинациями букв, например «E», «J», «K», «T», «S», «R». Четыре из самых популярных комбинаций проводов термопар почти всегда идентифицируются по их торговым названиям:

  • Термопара типа E представляет собой комбинацию хромеля (никель-хром) и константана (медь-никель).
  • Термопара типа J представляет собой комбинацию железа и константана.
  • Термопара типа K представляет собой комбинацию хромеля (никель-хром) и алюмеля (никель-алюминий).
  • Термопара типа T представляет собой комбинацию меди и константана.
  • Термопара типа S представляет собой комбинацию платины 10% родия и платины.
  • Термопара типа R представляет собой комбинацию платины 13% родия и платины.

Удлинительные провода

Провода для термопар

дороги, потому что они изготавливаются с соблюдением очень строгих требований контроля качества. Поэтому принято переходить на так называемые «удлинители термопар» в ближайшей (к точке измерения или горячему спайу) удобной точке подключения.Эти точки подключения должны быть изотермичными друг другу. Эти удлинительные провода для термопар менее дороги, потому что они изготовлены в соответствии с менее строгими требованиями к качеству.

Цветовое кодирование

Чтобы различать разные типы проводов термопар, их изоляция имеет цветовую кодировку в соответствии со стандартами ISA MC 96.1. Ниже показаны различные комбинации проводов термопар, их рабочие диапазоны и цветовая кодировка в соответствии с международными стандартами.

Thermocouple Conductor-Combinations,Operating Range, and Colour Coding

Комбинации проводников термопары, рабочий диапазон и цветовое кодирование

Соединения термопар

Термопара, используемая в промышленности, имеет три спая. Их

1. Открытое соединение — Это соединение находится под прямым воздействием окружающей среды. В результате срок его службы намного меньше. Хотя он имеет очень большое время отклика, он не часто используется.

2. Незаземленный переход — Этот переход имеет очень минимальное время отклика, но известен своими невероятными свойствами электромагнитного экранирования.Он используется в основном для измерений на электрическом оборудовании, но также обычно подходит для многих технологических приложений.

3. Заземленный переход — время срабатывания этого перехода больше, чем просто незаземленное соединение, оно также обеспечивает хорошие экранирующие свойства для большинства технологических процессов. Он является предпочтительным для большинства нефтегазовых и обрабатывающих производств для приложений управления из-за его скорости реакции.

Рисунки с заземленным спаем, незаземленным спаем и открытым спаем показаны под заголовком «Заземление термопары».

Зонды для термопар

Иногда термопару необходимо устанавливать внутри защитной гильзы для обеспечения защиты.Это применимо только в тех случаях, когда необходимо измерить температуру жидкости, протекающей внутри трубы. Для этого зонд должен быть защищен и заключен в коррозионно-стойкую трубку. Обычно оболочка должна иметь диаметр четверти дюйма, а зонд должен быть подпружинен, чтобы обеспечить прочный контакт с дном защитной гильзы. Головка винта с крышкой используется для электрических соединений. В зонде провода термопары отделены друг от друга и от оболочки с помощью керамического изоляционного материала, такого как оксид магния (MgO) или оксид алюминия (Al2O3).

Некоторые варианты зонда термопары описаны ниже.

Накладные термопары — Как следует из названия, они прикрепляются зажимом к трубе и, таким образом, прижимают измерительный переход к трубе. Этот метод применим только в тех местах, где требуется измерение температуры, для которых ранее не было предусмотрено нормальных условий. Эта термопара может быть полезна при поиске неисправностей в процессе. Результат может быть не таким точным, если точка измерения и окружающая область хорошо изолированы от внешней среды.Другой тип накладной термопары — это кожуховая пара, которая используется в основном для измерения температуры трубы печи и поверхности реактора. Пары обшивки могут быть либо приварены прихваточными швами к измеряемой поверхности (трубы печи), либо закреплены (стенки реактора).

На рисунке ниже показана термопара шайбового типа, которая должна быть установлена ​​на трубопроводе, и датчик температуры для этого применения.

Washer Type Thermocouple
Термопара с шайбой

На рынке представлено много типов накладных и поверхностных термопар, и они выбираются в соответствии с требованиями.Термопары контактного типа используются для измерения температуры поверхности. Его применение можно увидеть при измерении температуры трубок нагревателя. Они устанавливаются на трубопроводы и трубки нагревателя с помощью сварки.

Дуплексные термопары — Дуплексные термопары очень похожи на обычные термопары, за исключением того, что это устройство имеет две пары проводов термопар в измерительном переходе. Может быть два алюминиевых и два хромелевых провода, соединенных вместе, и провода выведены в две отдельные цепи для обеспечения двух отдельных измерений.Тогда два показания температуры должны быть идентичными, если предположить, что в остальном обе цепи похожи. Это может быть полезно для сравнения одного прибора с другим, особенно при использовании тестового вольтметра на месте, чтобы определить, неточные ли удаленные показания из-за прибора или из-за проблем в цепи.

Поскольку все устройство может быть изготовлено в одной сборке, стоимость производства намного ниже. Но, если одна из двух цепей термопары выйдет из строя из-за проблем с измерительным спаем или короткого замыкания, все устройство придется заменить.Таким образом, он менее надежен, чем две одиночные термопары. Кроме того, если для проверки используется одна пара дуплексной термопары, существует риск короткого замыкания или заземления другой пары проводов.

Заземление термопары

Цепи термопар

могут быть как заземленными, так и незаземленными (плавающими или изолированными). Цепи термопар с заземлением рекомендуются для обеспечения безопасности персонала, уменьшения воздействия электрических шумов и обеспечения хороших характеристик теплового отклика.Незаземленные термопары следует рассматривать в случаях, когда оборудование может быть повреждено из-за замыканий на землю или ударов молнии, особенно в зонах резервуарного парка.

Заземление термопары должно выполняться со стороны цепи с низким или отрицательным потенциалом и должно выполняться у источника, а не у вторичного прибора, чтобы добиться максимального подавления синфазного шума. Обычно любая электрическая или электронная цепь должна быть заземлена только в одной точке s, чтобы избежать тока заземления в цепи.С учетом этого правила заземление термопары выполняется одним из следующих способов — Всегда рекомендуется заземлять измерительный спай термопары или заземлять термопару в другом месте, кроме измерительного спая.

Таким образом, термопары можно классифицировать по способу их заземления.

Термопары могут быть:

  • Намеренно заземлено
  • Умышленно незаземленная
  • Непреднамеренное заземление — используется в местах, где происходит плохой контакт или отсутствие контакта измерительного перехода с колодцем, или из-за образования химической пленки с высоким сопротивлением на измерительном переходе.

Различные комбинации типов термопар, заземленные периодически / случайно заземленные или незаземленные; типа вторичного прибора, изолированный вход / выход или нет; и заземления выхода показаны на рисунках ниже.

Grounding of Thermocouple Systems
Заземление систем термопар

Очков

  • PT: 1 Соединение экрана и термопары не применяется, если экран не требуется.
  • PT: 2 Земля может располагаться в любом месте на линии.
  • PT: 3 Заземление термопары может быть выполнено путем подсоединения к головке термопары или винту распределительной коробки, предполагая, что они заземлены. В противном случае подключите термопару к любой другой заземленной точке.
  • PT: 4 Заземлите термопару через резистор, если работа схемы показывает необходимость повышения повторяемости И / ИЛИ подавления шума. При использовании резистор может быть приблизительно 100 000 Ом, ½ Вт углеродного типа.
  • PT: 5 Если термопара сама по себе заземлена, то остальная часть цепи, от термопары до приемника, если таковой имеется, не должна быть заземлена. В качестве альтернативы, если существует другое заземление, тогда сама термопара не должна быть заземлена.
  • PT: 6 Если вторичным прибором является не передатчик, а такой, как самописец, у которого нет выхода измерения, то выходные линии и связанные с ними детали на диаграмме следует игнорировать.
  • PT: 7 Заземлите экран, если он есть, в точке, ближайшей к заземлению сигнала.

Системы термопар, используемые с DCS, показаны ниже.

Grounded Thermocouple and Ungrounded Thermocouple
Заземленная термопара и незаземленная термопара

Экранирование

На устройство могут влиять внешние шумы от различных источников, таких как электростатические поля, магнитные поля и синфазные помехи. Электростатические поля возникают от источников напряжения, которые имеют емкостную связь с удлинительным проводом термопары.Различные электростатические поля, обычно возникающие от проводников переменного тока, создают емкостной ток, протекающий через путь связи к сигнальным проводникам.

Лучший способ свести к минимуму влияние таких электростатических полей — это закрыть провода термопары заземленным металлическим экраном. Емкостный ток будет течь через этот экран на землю. Назначение экрана состоит в том, чтобы оставаться на уровне или около потенциала земли и, таким образом, не передавать сигнал на сигнальные провода, содержащиеся внутри экрана, поскольку нет разницы в напряжении.Обратите внимание, что незаземленный экран не обеспечивает защиты.

Изменяющееся магнитное поле (например, создаваемое переменным током в силовом кабеле) может вызывать помехи для сигналов термопар из-за индукции небольших токов в сигнальном проводе. Величина индуцированного тока является функцией напряженности поля и размеров проводящей петли, в которой индуцируется ток. Скрученные проводники эффективны при уменьшении индуцированных токов за счет чередования полярности индуцированного тока с каждой половинной закруткой, чтобы компенсировать большую часть индукции.Обратите внимание, что этот эффект возникает независимо от того, экранирован ли провод термопары.

Помехи в синфазном режиме создают шум, который одинаков в обоих проводниках витой пары относительно земли.

Головка термопары и разъемы

Наиболее часто используемые узлы / датчики термопар снабжены головкой термопары типа винтовой крышки; атмосферостойкий, высокотемпературный, с прокладками; имеет клеммную колодку для одиночной или дуплексной термопары, в зависимости от ситуации.Кабельный ввод должен соответствовать требованиям конкретного проекта. Клемма должна быть пружинной на керамической основе.

Преимущество

  • Быстрый ответ
  • Возможность дистанционного измерения
  • Широкий диапазон
  • Свобода воздействия по длине и диаметру провода при условии, что используется вторичный инструмент с высоким импедансом.

Недостаток

  • Необходимость компенсации холодного спая
  • Восприимчивость к ошибке из-за градиента температуры на конце удлинительного провода
  • Возможная чувствительность к сигнальному шуму
  • Потребность в дополнительном инструменте
  • Необходимость в термопреобразователе на больших расстояниях
  • Необходимо избегать промежуточных стыков разнородных металлов
  • Невозможность точного измерения температуры в узком диапазоне

Термобатарея

Подобно термопаре, термобатарея также представляет собой устройство, которое используется для измерения температуры с точки зрения электрической энергии.Устройство фактически представляет собой комбинацию ряда термопар, соединенных последовательно или параллельно. Последовательное соединение обычно используется для большинства приложений.

Устройство способно генерировать выходное напряжение, которое будет мерой разницы температур или температурного градиента. Его реакция на абсолютную температуру минимальна. Выходной сигнал находится в диапазоне милливольт.

Устройство находит свое применение в составе датчиков температуры, например, инфракрасного термометра, прибора для расчета температуры тела.Они также используются в качестве предохранительных устройств в тепловых горелках и датчиках теплового потока. Их также можно использовать для производства электрической энергии, то есть путем рассеивания тепла от электронных устройств. Он также используется для пространственного усреднения температуры.

,

Доступные типы термопар

Типы термопар

Тип K — Тип K (хромель {90 процентов никеля и 10 процентов хрома} –алумель) (алюминий, состоящий из 95% никеля, 2% марганца, 2% алюминия и 1% кремния) является наиболее распространенной термопарой общего назначения с чувствительность приблизительно 41 мкВ / ° C, хромель положительный по отношению к алюмелю. Он недорогой, и доступно большое количество датчиков в диапазоне от -200 ° C до +1350 ° C / от -328 ° F до +2462 ° F.Тип K был определен в то время, когда металлургия была менее развита, чем сегодня, и, следовательно, характеристики значительно различаются между образцами. Никель, один из металлов, является магнитным; Характерной чертой термопар, изготовленных из магнитного материала, является то, что они претерпевают ступенчатое изменение выходной мощности, когда магнитный материал достигает точки Кюри (около 354 ° C для термопар типа K).

Тип E — Тип E (хромель-константан) имеет высокий выход (68 мкВ / ° C), что делает его хорошо подходящим для криогенного использования.Кроме того, он немагнитный.

Тип J — Тип J (железо-константан) имеет более ограниченный диапазон, чем тип K (от -40 до +750 ° C), но более высокую чувствительность, около 55 мкВ / ° C. Точка Кюри чугуна (770 ° C) вызывает резкое изменение характеристики, определяющей верхний предел температуры.

Тип N- Термопары типа N (никросил-нисил) (никель-хром-кремний / никель-кремний) подходят для использования при высоких температурах, превышающих 1200 ° C, благодаря их стабильности и способности противостоять высокотемпературному окислению.Чувствительность составляет около 39 мкВ / ° C при 900 ° C, что немного ниже, чем у типа K. Разработанный как улучшенный тип K, он становится все более популярным.

Платина типов B, R и S

В термопарах

типов B, R и S для каждого проводника используется платина или сплав платины с родием. Это одни из самых стабильных термопар, но их чувствительность ниже, чем у других типов, примерно 10 ° C. Термопары типов B, R и S обычно используются только для высокотемпературных измерений из-за их высокой стоимости и низкой чувствительности.

Тип B — Термопары типа B используют сплав платины с родием для каждого проводника. Один проводник содержит 30% родия, а другой проводник — 6% родия. Эти термопары подходят для использования при температуре до 1800 ° C. Термопары типа B дают одинаковый выход при 0 ° C и 42 ° C, ограничивая их использование ниже примерно 50 ° C.

Тип R — термопары типа R используют сплав платины с родием, содержащий 13% родия для одного проводника и чистую платину для другого проводника.Термопары типа R используются до 1600 ° C.

T ype S — Термопары типа S состоят из одного провода из 90% платины и 10% родия (положительный или «+») и второго провода из 100% платины (отрицательный или «-»). Как и тип R, термопары типа S используются до 1600 ° C. В частности, тип S используется в качестве эталона для калибровки температуры плавления золота (1064,43 ° C).

Тип T — Термопары типа T (медь – константан) подходят для измерений в диапазоне от –200 до 350 ° C.Часто используется в качестве дифференциального измерения, так как только медный провод касается датчиков. Поскольку оба проводника немагнитны, точка Кюри отсутствует и, следовательно, нет резкого изменения характеристик. Термопары типа T имеют чувствительность около 43 ° C.

Тип C — Термопары типа C (вольфрам 5% рения — вольфрам 26% рений) подходят для измерений в диапазоне от 0 ° C до 2320 ° C. Эта термопара хорошо подходит для вакуумных печей при чрезвычайно высоких температурах.Запрещается использовать его в присутствии кислорода при температуре выше 260 ° C.

Тип M — Термопары типа M используют никелевый сплав для каждой проволоки. Положительный провод содержит 18% молибендума, а отрицательный провод содержит 0,8% кобальта. Эти термопары используются в вакуумных печах по тем же причинам, что и для типа C. Верхняя температура ограничена 1400 ° C. Он используется реже, чем другие типы.

Хромель-золото / железо — В термопарах хромель-золото / железо положительный провод выполнен из хромеля, а отрицательный провод — из золота с небольшой долей (0.03–0,15 ат.%) Железа. Его можно использовать в криогенных приложениях (1,2–300 К и даже до 600 К). И чувствительность, и диапазон температур зависят от концентрации железа. Чувствительность обычно составляет около 15 мкВ / К при низких температурах, а самая низкая допустимая температура варьируется от 1,2 до 4,2 К.

Thermocouple Types Color Code

thermocouple_color_code

[email protected]

,

Измерение температуры термопар — Dataforth

Преамбула

Теория поведения термопар обсуждается в документе Dataforth Application Note AN106, Introduction to Thermocouples. Читателю рекомендуется изучить это руководство по применению, чтобы получить сведения о термопарах и основные положения. Для получения дополнительных сведений о интерфейсных продуктах для термопар читатель должен посетить предложение этого веб-сайта по формированию сигналов термопар.

Существует множество дополнительной информации о термопарах из различных источников.Заинтересованным читателям рекомендуется посетить ссылки, перечисленные в конце этой инструкции по применению.

Типы термопар

Термопары стали стандартом в отрасли как экономичный метод измерения температуры. С момента их открытия Томасом Иоганном Зеебеком в 1821 году термоэлектрические свойства многих различных материалов были исследованы для использования в качестве термопар. Сообщество стандартов вместе с современной металлургией разработало специальные пары материалов специально для использования в качестве термопар.

В таблице 1 показаны восемь популярных стандартных термопар и их типовые характеристики. Буквенный тип обозначает конкретное соотношение температуры и напряжения, а не конкретный химический состав. Производители могут изготавливать термопары данного типа с различными составами; тем не менее, результирующая зависимость температуры от напряжения должна соответствовать стандартам термоэлектрического напряжения, связанным с конкретным типом термопары.

Полные наборы таблиц зависимости температуры от напряжения, относящиеся к нулю ° C и включающие математические модели для всех популярных промышленных стандартных термопар, доступны в NIST, Национальном институте стандартов и испытаний, и могут быть бесплатно загружены с их веб-сайта Ссылка 1.Читателю предлагается изучить этот сайт для получения дополнительной информации.

Таблица 1: Стандартные типы термопар
Table 1: Standard Thermocouple Types

* Определения материалов:

  • Константан, сплав никель (Ni) — медь (Cu)
  • Хромель, сплав никель (Ni) — хром (Cr)
  • Алюмель, сплав никеля (Ni) и алюминия (Al)
  • Магний (Mg), базовый элемент
  • Платина (Pt), базовый элемент
  • Никель (Ni) базовый элемент
  • Кремний (Si), базовый элемент
  • Хром (Cr), базовый элемент
  • Железо (Fe), базовый элемент
  • Родий (Rh), базовый элемент

Примечания :

  1. Термопары типа L и U определены стандартом DIN 43710; однако они не так часто используются в новых установках, как более популярные стандарты термопар типа T и J.
  2. Термопара типа U аналогична популярному стандарту T типа
  3. .

  4. Термопара типа L аналогична популярному стандарту J типа

Три дополнительных типа термопар, используемых для высокотемпературных измерений, — это термопары типов C, D и G. Буквы их обозначений (C, D, G) не признаются стандартами ANSI; тем не менее они доступны. Их проволочные составы:

  • G Тип: W против W-26% Re
  • C Тип W-5% Re и W-26% Re
  • D Тип W-5% Re и W-25% Re

Куда; «W» — вольфрам, «Re» — рений.

С помощью термопар можно измерить практически все диапазоны температур; даже несмотря на то, что их выходное полномасштабное напряжение составляет всего милливольты с чувствительностью в микровольтах на градус диапазона, и их реакция нелинейна.На рисунках 3 и 4 в конце данной инструкции по применению показаны типичные вольт-температурные характеристики вышеуказанных термопар. Эти кривые обеспечивают визуальную индикацию диапазонов термопар, масштабных коэффициентов, чувствительности и линейности.

Dataforth предлагает модули ввода для термопар, которые взаимодействуют со всеми вышеперечисленными типами. Для получения дополнительной информации об этих и других современных модулях посетите веб-сайт Dataforths, Ссылка 2.

Аналитическая модель термопары

Для каждого типа термопар были разработаны стандартные математические модели степенных рядов.Эти модели силового ряда используют уникальные наборы коэффициентов, которые различны для разных температурных сегментов в пределах данного типа термопары. Если не указано иное, все стандартные модели и таблицы термопар относятся к нулю градусов по Цельсию, 0 ° C. Читателю отсылаем к Руководству по применению Dataforths AN106, Введение в термопары для основных принципов работы с термопарами, Ссылка 8.

Ссылка на следующие примеры и соответствующие данные — это NIST, Национальный институт стандартов и тестирования; сайт, Ссылка 1.Уравнение 1 иллюстрирует модель силового ряда, используемую для всех термопар, кроме типа K, который проиллюстрирован уравнением. 3

Equation 1: Thermocouple Analytical Model
Где T в градусах Цельсия

Набор коэффициентов, используемых в уравнении. 1 к модели E Тип термопары показан для 3 значащих цифр в таблице 2.

Таблица 2: Коэффициенты C i для термопары типа E

Table 2: Coefficients Ci for Type E Thermocouple

Эти уравнения с различными наборами коэффициентов
трудно использовать для прямого определения фактических
температуры, когда измеряется только напряжение термопары
[VTC] известен.Поэтому обратные модели были
разработан для определения температуры по измеренным
напряжения термопары. Уравнение 2 представляет эту обратную
модель.

Equation 2: Thermocouple Analytical Model
Где VTC в милливольтах

Пример набора обратных коэффициентов для типа E
термопары показаны для 6 значащих цифр в таблице 3.

Таблица 3: Обратные коэффициенты для термопары типа E
Table 3: Inverse Coefficients for E Type Thermocouple

Здесь стоит отметить, что K Тип V1 = S * (Tx-Tc) Ур.4
термопары требуют немного другой серии мощности
модель. Уравнение 3 представляет собой стандартный математический
модель серии power для термопар типа K.

Equation 3: Thermocouple Analytical Model

Экспоненциальный член Equation: Thermocouple Analytical Model в уравнении. 3 это
добавлен учет спецэффектов. Подробнее об этом
тип модели термопары доступны на сайте NIST
сайт, Ссылка 1.

Метод компенсации холодного спая (CJC)

Стандартные справочные таблицы и модели термопар:
относительно нуля ° C; тогда как измерение поля
топологии выполнены с термопарой, подключенной к
коннектор, температура которого не равна нулю ° C; следовательно, фактическая
измеренное напряжение необходимо отрегулировать так, чтобы оно выглядело как
относительно нуля ° C.

Современные модули преобразования сигналов имеют электронное
разрешили эту ситуацию и, кроме того, линеаризовали
напряжения термопары. Эти модули кондиционирования
предоставить конечному пользователю линейный выходной сигнал, масштабированный до
либо вольт на ° C (° F), либо ампер на ° C (° F). Концепция
измерений термопар с электронной привязкой
до нуля ° C показано на рисунке 1. Этот метод известен
как «компенсация холодного спая» или CJC.

Figure 1: Cold Junction Compensation Concept
Рисунок 1: Концепция компенсации холодного спая

На рисунке 1 напряжение V1 — это термопара Зеебека.
напряжение, создаваемое разницей между неизвестными
температура (Tx) и температура соединителя (Tc), как
показано в уравнении 4.Температура разъема (Tc) равна
измеряется нетермопарным датчиком (диод, RTD,
и т. д.) и соответствующее напряжение датчика (V2) равно
электронно масштабируется для представления того же Зеебека
напряжение термопары (относительно 0 ° C), которое
термопара считала бы, если бы использовалась для измерения Tc как
указано в уравнении. 5. Это «масштабирование V2» согласовано с
термопара того же типа, что и для измерения Tx.

Equation 4: Cold Junction Compensation Concept Equation 5: Cold Junction Compensation Concept

Для ознакомления см. Ссылку 8, Dataforth’s.
Примечание по применению AN106 для получения этих
выражения.

Уравнение 4 можно математически преобразовать, чтобы включить
температура точки льда (Tice).

Equation 6: Cold Junction Compensation Concept

Уравнение 6 показывает, что напряжение термопары (V1) имеет два
части, обе из которых ссылаются на Tice. Напряжение
термин, S * (Tx-Tice), является значением стандартной справочной таблицы
необходим для определения неизвестной температуры (Tx).
Член S * (Tc-Tice) — это напряжение, получаемое, если
температура разъема (Tc) была измерена с тем же
тип термопары, используемой для измерения Tx.Напомним, что V2
был масштабирован электронным способом, так что V2 равен этому
напряжение, V2 = S * (Tc-Tice). На рисунке 1, если G = 1, то;

Equation 7: Cold Junction Compensation Concept

Можно ввести выходное напряжение (Vout) в уравнении 7.
непосредственно в ссылку на термопару соответствующего типа
таблица для определения измеренной температуры.

Линеаризация

Требуется сигнал для точных измерений термопар
модули кондиционирования с выходами, которые линейно
масштабируется по температуре.Выходные напряжения модуля, которые
иметь линейные масштабные коэффициенты в вольтах на градус или амперах на
степень исключает необходимость в справочных таблицах или мощности
расширение серии с момента перехода от термопары
напряжение в зависимости от температуры встроено в линеаризованный выход
масштаб. Такое преобразование сигнала термопары
модули, включая изоляцию и CJC, доступны от
Dataforth.

На рисунке 3 показаны кривые напряжение-температура для восьми
из самых распространенных термопар.Эти кривые
представлены здесь, чтобы показать визуальную индикацию стандартных
диапазоны термопар, величины выходных напряжений, нелинейность
и чувствительность (мВ / ° C). Хотя
диапазоны рабочих температур, в которых термопары
могут использоваться довольно большие, их чувствительность мала; в
микровольт на диапазон ° C. Кроме того, на Рисунке 3 показано
что при отрицательных температурах реакция термопар
очень нелинейный; однако эти кривые выглядят почти линейными
для определенных диапазонов положительных температур.Тем не менее,
факт остается фактом: термопары нелинейны.

В качестве примера нелинейности на рисунке 2 показано
нелинейность термопары путем построения разницы
между идеальным линейным откликом и откликом
Термопара типа J в диапазоне от 0 до 150 ° C.

Figure 2: Output Voltage Difference Between Ideal Linear Sensor and J Type Thermocouple
Рисунок 2: Разница выходного напряжения между идеальным линейным датчиком и термопарой типа J

Чувствительность термопары типа J составляет приблизительно
54 мкВ / ° C.Из рисунка 2 очевидно, что в предположении
линейный отклик для термопар типа J может привести к
почти две степени ошибки.

Очевидно, что линеаризация необходима для обеспечения точной
измерения температуры с помощью термопар. Dataforth
разработал запатентованные схемы, которые
обеспечивают точную линеаризацию для их преобразования сигналов
модули. Хотя современные ПК или другие встроенные
микропроцессоры могут линеаризовать термопары, используя
программные методы, аппаратная линеаризация обеспечивает
более быстрые результаты и не обременяют ценный компьютер
Ресурсы.

Для достижения линейности коэффициент усиления (G) на рисунке 1 и
Уравнение 7 внутренне запрограммировано на выборочное масштабирование
функция напряжения S * (Tx-Tice) должна быть линейной функцией
температуры в вольтах на ° C (° F) или
миллиампер на ° C (° F). Для более подробной информации изучите AN505.
«Аппаратная линеаризация нелинейных сигналов» на
Раздел примечаний к применению на веб-сайте Dataforth, ссылка 9.
Находясь на этом веб-сайте, уделите несколько минут, чтобы изучить все
полной линейки сигналов термопар Dataforth
модули кондиционирования.

На рисунке 5 этого приложения показана функциональная блок-схема.
с типичными характеристиками Dataforth
модуль формирования сигнала термопары.

Практические соображения

Ниже приводится список некоторых «бегунов ума» для
учитывать при измерении температуры с помощью
Термопары.

  1. Всегда проверяйте производителей термопар
    спецификации на соответствие стандартам, указанным
    диапазоны температур и взаимозаменяемость.
  2. Воспроизводимость и взаимозаменяемость между
    следует изучить марки термопар.
    Ошибки из-за замены термопары должны быть
    избегать.
  3. Используйте изолированные модули преобразования сигналов, чтобы избежать
    контуры заземления.
  4. Всегда используйте преобразование сигнала термопары
    модули с соответствующей входной фильтрацией. Это могло избежать серьезных «шумовых» ошибок.
  5. Каждый провод термопары подключен к датчику
    модуль должен иметь одинаковую температуру.модуль
    разъемы не должны иметь температурных градиентов по
    отдельные соединения.
  6. Поведение термопары зависит от материалов
    молекулярная структура. Условия окружающей среды, такие
    как стресс, химическая коррозия, радиация и т. д., которые влияют на
    молекулярная структура в любом месте по длине
    Проволока термопары может создавать ошибки. Например,
    термопары с железным составом подлежат
    ржавчина, которая может вызвать ошибки.
  7. Используйте удлинители витой пары и сигнальные
    модули кондиционирования с соответствующей фильтрацией, чтобы помочь
    Избегайте ошибок EMI и RFI.
  8. Следите за тем, чтобы провода термопары были короткими.
  9. Используйте удлинители, рекомендованные производителем, если
    необходимы длинные провода термопары.
  10. Всегда соблюдайте полярность цветового кода. Примечание: некоторые
    Европейские производители используют противоположный цвет для
    положительная и отрицательная полярность, чем в Северной Америке
    производители.
  11. Избегайте «тепловых шунтов» при установке термопар.
    Любой теплопроводящий материал, например, большие свинцовые провода,
    может отводить тепло от термопары, создавая
    ошибка
  12. Враждебные коррозионные среды в сочетании с
    влага и тепло могут вызвать коррозию, которая может
    стимулируют гальваническое действие и создают электрохимические
    ошибки напряжения.
  13. Напомним, что время отклика измерения температуры
    подвергается значительному воздействию термопары
    инкапсуляция пакетов. Например, термопары
    в «термальном колодце» имеют медленное время отклика, что
    может вызвать нежелательные колебания в контуре управления.
  14. Кожухи для термопар доступны с
    термопары, подключенные к корпусу. Эти
    «заземленные термопары» и могут вызвать заземление
    проблемы с петлей. Учитывая использование изолированных модулей для
    избежать таких проблем.
  15. Убедитесь, что модули преобразования сигналов с
    электронные методы CJC используют измерение температуры
    устройства, которые имеют время теплового отклика
    эквивалентно измерительным термопарам.

На рисунке 3 показан спектр вольт-амперных характеристик наиболее популярных стандартных термопар.

Figure 3: Voltage-Temperature Characteristics of B, E, J, K, N, R, S, and T Type Thermocouples
Рисунок 3: Напряжение-температура термопар типов B, E, J, K, N, R, S и T

На рисунке 4 показан спектр вольт-температурных характеристик высокотемпературных термопар, не классифицированных ANSI.

Figure 4: Voltage-Temperature Characteristics of G, D, C Type Thermocouples
Рисунок 4: Температурные характеристики термопар типа G, D, C

На рис. 5 показан пример модуля изолированной линеаризованной термопары Dataforth SCM5B47. Dataforth предлагает
полная линейка модулей для всех типов термопар. Эти модули обеспечивают отличную изоляцию, превосходную точность и
линейность. См. Сайт Dataforth http://www.dataforth.com.

Figure 5: Dataforth

Рисунок 5: Изолированный линеаризованный термопарный модуль Dataforth SCM5B47

Каждый модуль ввода термопары SCM5B47 обеспечивает единственный канал входа термопары, который фильтруется, изолирован,
усиливается, линеаризуется и преобразуется в аналоговое выходное напряжение высокого уровня (Рисунок 5).Этот выход напряжения является логическим переключателем
управляемый, что позволяет этим модулям совместно использовать общую аналоговую шину без необходимости использования внешних мультиплексоров.

Модули SCM5B спроектированы с полностью изолированной цепью на стороне компьютера, которая может быть плавно подведена до ± 50 В от
Общий вывод питания, контакт 16. Эта полная изоляция означает, что соединение между общим входом / выходом и питанием не требуется.
Общее для правильной работы выходного переключателя. При желании выходной переключатель можно включить постоянно, просто
соединяющий контакт 22, контакт разрешения чтения, с общим входом / выходом, контакт 19.

SCM5B47 может взаимодействовать с восемью стандартными типами термопар: J, K, T, E, R, S, N и B.
выходной сигнал работает в диапазоне от 0 В до + 5 В. Каждый модуль имеет компенсацию холодного спая для устранения паразитных
термопары, образованные проводом термопары и винтовыми клеммами на монтажной задней панели. Высококлассный открытый
Обнаружение термопары обеспечивается внутренним подтягивающим резистором. Индикация уменьшения масштаба может быть реализована путем установки
внешний резистор 47 МВт, допуск ± 20%, между винтовыми клеммами 1 и 3 на задней панели SCMPB01 / 02/03/04/05/06/07.

Фильтрация сигналов осуществляется с помощью шестиполюсного фильтра, который обеспечивает 95 дБ подавления нормального режима при 60 Гц и 90 дБ при
50Гц. Два полюса этого фильтра находятся со стороны поля изоляционного барьера, а четыре других — со стороны компьютера.

После начальной фильтрации на стороне поля входной сигнал прерывается запатентованной схемой прерывателя. Изоляция обеспечивается
трансформаторная связь, опять же с использованием запатентованной технологии для подавления передачи синфазных пиков или выбросов.
модуль запитан от + 5В постоянного тока, ± 5%.

Специальная входная цепь на модулях SCM5B47 обеспечивает защиту от случайного включения напряжения в сети.
до 240 В переменного тока.

Список литературы

  1. NIST, Национальный институт стандартов и тестирования
  2. Dataforth Corp.
  3. Rosemount
  4. Омега
    а. http://www.omega.com/temperature/Z/zsection.asp
    б. http://www.omega.com/temperature/Z/pdf/z246.pdf
  5. ASTM, Американское общество испытаний и материалов
  6. IEC, Международная электротехническая комиссия
  7. ANSI, Американский национальный институт стандартов
  8. Dataforth Application Note AN106, Введение в термопары
  9. Информация по применению Dataforth AN505, Аппаратная линеаризация нелинейных сигналов

Стандарты, относящиеся к термопарам

  • DIN 43722
  • DIN 43714
  • DIN 43760
  • DIN 43710
  • МЭК 304
  • МЭК 751
  • DIN IEC 548
  • ANSI MC 96-1-82
  • JIS C 1602-1981

.

Регистраторы и регистраторы данных термопар

Регистраторы данных с термопарой

идеально подходят для мониторинга высоких температур, поверхностных температур или любого приложения, в котором датчик может быть поврежден, например, для мониторинга затвердевания бетона. Регистраторы термопар доступны как в одноканальной, так и в многоканальной версии и совместимы с широким спектром типов датчиков термопар.

Регистраторы данных с термопарой

позволяют отслеживать и записывать значения температуры за определенный период времени.Данные обычно просматриваются с помощью программного обеспечения, которое в большинстве случаев доступно для бесплатной загрузки. Программное обеспечение регистратора данных дает отметку времени для каждой точки данных, которую можно просмотреть в виде графика, файла исходных данных или отчета в формате PDF.

Регистраторы данных с термопарой

доступны в большом количестве стилей, от простых USB-регистраторов с прямым подключением до беспроводных регистраторов, которые могут отправлять удаленные уведомления о тревожных событиях и автоматически отправлять данные в облачную службу. MicroDAQ.com предлагает большой выбор регистраторов, гарантируя, что у нас, вероятно, есть несколько вариантов практически для любого приложения.Наши технические представители по продажам доступны по чату, электронной почте или телефону, и они всегда рады помочь вам найти лучшее решение для вашего конкретного приложения.

  1. Lascar EL-USB-TC USB Thermocouple Data Logger

    EL-USB-TC

    $ 71.80

    • Измерение и запись показаний с использованием внешней термопары типа J, K или T
    • сохраняет 32000 показаний температуры во внутренней энергонезависимой памяти
    • Питание от заменяемой пользователем литиевой батареи 1/2 AA со стандартным сроком службы 2 года
    • 2 Пользовательская программа

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *