Генератор водорода как сделать: Делаем водородный генератор: принцип работы, устройство, применение

Содержание

как изготовить в домашних условиях

Ракета мчит космический корабль в просторы Вселенной. Неимоверную мощь двигателей верхней её ступени питает сжиженное топливо: водород и кислород. Водород (Hydrogenium) не уступает по теплотворности природному газу, для работы на нём с минимальной переделкой подходят все существующие бензиновые ДВС и газовые котлы отопления. h3 — единственный известный науке абсолютно чистый вид топлива. В процессе горения образуется соединение с кислородом — прозрачная, как слеза, дистиллированная водица. Запасы водорода во Вселенной неисчерпаемы, этот чудесный газ вместе с гелием является основным строительным материалом мироздания.

Даже организм человека на 63% состоит из молекул водорода. Он окружает нас со всех сторон: протяни руки — и они полны гидрогениума. Больше всего h3 содержится в океанах, морях и реках. Одна беда: в свободном состоянии на Земле находится лишь ничтожная его часть, добыча в чистом виде невозможна. Небольшой процент h3 содержит биогаз, сепарацией его не занимаются, предпочитая сжигать вместе с метаном. Однако существует ряд технологий, позволяющих получать чистый водород из различных химических соединений. Наиболее перспективным является метод электролиза, сырьём служит вода.

Принципиальная схема получения водорода методом электролиза

В последнее время интернет заполонила коммерческая реклама недешёвых реакторов (генераторов) водорода, а сайты для домашних умельцев охотно клонируют статьи о том, как сделать водородный генератор для отопления своими руками.

О выделении горючего газа при взаимодействии кислот и металлов известно было ещё средневековым алхимикам. Но только в 1783 году Лавуазье и Меньё смогли превратить эмпирические знания в прибор по получению «горючего воздуха» из воды. С тех пор не прекращаются научные исследования и попытки построить эффективный водородный генератор для отопления или автомобиля, который сделал бы водородную энергетику рентабельной.

На сегодняшний день нет никаких проблем в переходе энергетики и транспорта на водородное топливо, производители готовы сделать это хоть завтра. В 2008 году авиастроительная компания Airbus подтвердила свою готовность перейти с авиакеросина на h3, проведя испытательный полёт на модели A320. Первый серийный водородомобиль HondaFCX уже колесит по дорогам Японии. Тем не менее, в общей массе мировой энергетики это капля в море. Для массового развития водородной энергетики не хватает главного — дешёвого чистого h3. «Халявный»  Hydrogenium получают лишь в качестве побочного продукта некоторых химических производств, именно на таком топливе работает на предприятии «Саянскхимпласт» с 2005 года первая и пока единственная в России «водородная» котельная. Активно работает в России с 2006 года «Институт водородной экономики», издавший уже более 60 томов научных исследований. Не ограничиваются научными трудами более предприимчивые зарубежные компании, в научно-технические разработки по генерации чистого водорода вкладывают миллиарды долларов.

Возможно, в будущем мы все будем ездить на водородомобилях

Увы, воз и ныне там. Большую часть мирового производства h3, главным образом для нужд ракетной техники, производят сегодня не с помощью генерации из воды, а паровой конверсией газа и газификацией угля. Ни о какой экологичности либо экономии ресурсов в данном случае и речи не идёт, просто бензином ракету не заправишь.

Но учёные не сдаются: в конце концов придумал же Эдисон после долгих лет исследований эффективную и при этом недорогую электрическую «лампочку Ильича». И в течение века это изобретение, пусть и в значительно усовершенствованном виде, устраивало человечество.

С помощью электролиза (см. школьную программу по физике и химии) вода разлагается на водород и кислород.

Площадь поверхности электродов должна быть велика, поэтому их собирают в пакеты (ячейки). Кстати, электролизер нельзя перегревать свыше 65 ºС, иначе пластины придётся долго очищать либо вообще заменить

Сепарировать газы не нужно, горючую смесь направляют в теплогенератор, в котором происходит обратная реакция: водород и кислород воссоединяются, вновь образуя воду.

Простейший самодельный генератор водорода — герметичная ёмкость с погруженными в жидкость электродами, источник питания 12 Вольт.

Заряд есть, вода «булькает», Hydrogenium пошёл

На крышке ёмкости располагают штуцер для отведения к потребителю смеси водорода с кислородом (газ Брауна, «гремучая смесь»).

Помимо штуцера, на крышке желательно иметь развоздушиватели

Вот такая ёмкость является основой генератора водорода для автомобиля с карбюраторным двигателем. ДВС работает на смеси с бензином, нужен ещё дополнительный накопитель и аккумулятор. Корпус прочный, от водопроводного фильтра, нехитрая установка, созданная «народными академиками», называется «АкваКар», предлагалась на Украине за 1600 гривен в дореволюционных ценах

Генератор водорода для дома, тоже в корпусе водяного фильтра. Здесь применены более производительные цилиндрические электроды, есть датчик давления. На стенках сосуда видны пузырьки — вожделенный Н2 и кислород

Но ведь дело не просто в том, чтобы выделить из воды «гремучку», это сделать немудрено. Газ нужно получить из сырья в максимальном количестве, в сжатые сроки, при этом потратить минимум энергии. Для повышения эффективности используют не обычные электроды из меди или нержавейки, а изделия сложной формы из дорогих сплавов. Сила электрического тока должна изменяться в ходе реакции, соответственно, нужен электронный блок.

Вариант исполнения электронного блока чудо-генератора

Вода расходуется, её уровень следует поддерживать постоянно и если делать это не вручную, понадобится система автоматической подпитки. Наконец, чтобы электролиз проходил с достаточной интенсивностью, вода должна содержать достаточное количество растворённых солей, в мягкой воде реакция будет слабой, а в дистиллированной вовсе отсутствовать. Значит, наливать воду из крана нельзя: её придётся готовить (самый простой вариант — столовая ложка гидроксида натрия на 10 л воды), а это дополнительные резервуары, трубопроводы и т. д.

На рисунке показана схема генератора водорода для автомобиля, но разница с устройством для отопления лишь в том, что потребителем газа являются не форсунки двигателя, а горелка котла

Но и это не всё. Теплогенератор (котёл) потребляет топливо неравномерно, к тому же требует определённого его давления и влажности. Чтобы система реактор топлива + генератор тепла работали взаимосвязано и чётко, hydrogenium должен поступать сначала в осушитель, потом компрессор, который будет закачивать его в хранилище, где с помощью дополнительной автоматики должно поддерживаться требуемое давление.

Всё в природе взаимосвязано. Если куда-то что-то прибыло, значит, откуда-то убыло. Эта народная мудрость упрощённо, но в целом верно описывает закон сохранения энергии. Водород, сгорая, выделяет тепловую энергию. Но, чтобы получить газ методом электролиза, придётся затратить некоторое количество электроэнергии. Которая, в свою очередь, по большей части получается за счёт генерации тепла при сжигании других видов топлива. И если брать чистую тепловую энергию, необходимую для получения электричества и ту энергию, которую даст при сгорании водород, даже на самых продвинутых установках получаются двукратные потери. Половину денег мы буквально выбрасываем. И это только эксплуатационные затраты, но ведь следует учесть и стоимость весьма недешёвого оборудования.

Проект ветро-водородного дирижабля AeromodellerII. Картинку бельгийские инженеры нарисовали красивую, остаётся подкрепить её конкретными экономически оправданными технологиями

По данным исследовательской лаборатории  INEEL, на промышленных генераторах водорода США себестоимость одного килограмма водорода составила:

  • Электролиз от промышленной электросети — 6,5 usd.
  • Электролиз от ветрогенераторов — 9 usd.
  • Фотоэлектролиз от солярных устройств — 20 usd.
  • Производство из биомассы — 5,5 usd.
  •  Конверсия природного газа и угля — 2,5 usd.
  •  Высокотемпературный электролиз на атомных электростанциях — 2,3 usd. Это наименее дорогой способ и наиболее далёкий от домашних условий.

Причём, даже самый лучший генератор водорода в домашних условиях будет заметно уступать промышленному в эффективности. С такими ценами нет никаких оснований говорить о сколь-нибудь серьёзной конкуренции водородного топлива по сравнению не только с дешёвым природным газом, но и с дорогим электроотоплением, дизельным топливом и даже тепловыми насосами.

Есть ли реальные пути серьёзного снижения себестоимости чистого Hydrogenium? Конечно. Это, в первую очередь, получение дешёвого электричества из возобновляемых источников. Во-вторых, применение более совершенных химических катализаторов процесса. Они, кстати, давно известны и применяются в автомобильных топливных водородных ячейках. Но опять всё упирается в слишком большую их стоимость.

Реально полезное применение альтернативной энергетики: серийное газосварочное устройство со встроенным водородным реактором. В данном случае стоимость газа не имеет решающего значения, для сварщика имеет значение то, что вместо неудобных в транспортировке баллона и сварочника он имеет один относительно небольшой и лёгкий ящик

Наука идёт вперёд, техника совершенствуется. Когда-нибудь нефть закончится и человечеству придётся перейти на иные источники энергии. Пока же можно с уверенностью сказать — водородная энергетика убыточна (за исключением тех случаев, когда горючий газ является побочным продуктов технологических процессов), а программы развития водородного транспорта возможны только благодаря государственным и корпоративным программам поддержки альтернативной энергетики.

Муниципалитеты крупных немецких городов компенсируют транспортным компаниям все убытки, чтобы эти прекрасные гидрогениумные автобусы перевозили пассажиров, не отравляя окружающую среду

А что у нас, в среде отечественных «кулибиных»? Интернет-форумы полны споров о возможности постройки генератора водорода своими руками. Адепты гидрогениума тычут в глаза скептикам фотками самогонных аппаратов, переделанных в установки по производству чистого топлива. Скептики: покажите конкретный пример постоянно работающего устройства. В ответ — тишина. Кто-то что-то собрал, подключил к кухонной плите, пожарил на водороде яичницу, съел. Теперь вот стоит в сарае, а к плите опять подключен газ, это проще, дешевле, безопаснее. Правда, умные люди всё же извлекают из «диванной» гидрогениумной энергетики пользу: завлекательные посты обеспечивают владельцев аккаунтов лайками, большим числом просмотров и подписчиков, что приносит неплохие деньги.

Если кто-то из читателей хочет повторить опыт гаражных мастеров, то, пожалуйста, вот достаточно подробное описание конструкции «самопального» водородного реактора. Ничего сложного.

В этом ролике нам красиво показывают, как мелкосерийное отечественное устройство обслуживает два десятка радиаторов, но не называют ни его тепловую мощность, ни себестоимость килокалории тепла.

Сегодня сложно сказать, какая из перспективных энергетических технологий «выстрелит» в будущем, когда запасы углеводородов иссякнут. Будет ли это термоядерный синтез, солярные или гравитационные системы, водородная энергетика? Пока что идёт эволюционное развитие перспективных направлений и революционных прорывов в ближайшее время в этой области не предвидится, о чём бы ни писал «жёлтый» интернет. По оценке специалистов, появление электролизных реакторов водорода, которые могли бы составить реальную конкуренцию традиционным видам топлива, ожидается не ранее, чем через лет 20-30. Многие эксперты вообще скептически оценивают перспективы водородной энергетики, оставляя этому виду топлива лишь узкую нишу в ракетостроении. Но все, кто занимается этим делом профессионально, сходятся на том, что действительно эффективные водородные реакторы будут продуктом высоких технологий, а не «приспособами», собранными из старых кастрюль и других ненужных железок на коленке.

 

Как сделать генератор водорода

Я уверен, что многие люди не знают, что они могут использовать некоторые бытовые материалы, 12 вольт, дистиллированную воду, трубы для PCV и крышки выключателей света, чтобы создать генератор водорода, который при правильной сборке может быть установлен на вашем автомобиле для удвоения ваш бензин пробег.

Шаг 1

Построить генератор водорода настолько просто, что я почти в шоке, что автомобили не стали стандартными с этой опцией. Подумайте об этом, один раз в месяц вы добавляете немного свежей дистиллированной воды в резервуар для воды и удваиваете свой бензиновый пробег. Я видел, как люди делали генератор водорода из старой пластиковой банки с арахисовым маслом. Самая важная вещь, которую нужно помнить, это то, что вы создаете газ, то есть газы могут быть взрывоопасными.

Шаг 2

Чтобы сделать его безопасным и простым, установите [Генератор водорода PCV] в крышку переднего бампера или на внутреннюю поверхность переднего крыла. Затем установите резервуар для воды под капотом автомобиля.

Шаг 3

Для сборки генератора используйте рисунок выше для справки. Для начала возьмите 5-10 крышек выключателей освещения из нержавеющей стали и сложите их друг на друга с резиновой втулкой между ними. Пропустите болт из нержавеющей стали через верхний и нижний болты из нержавеющей стали размером 1/16x2x [?] По одному с каждой стороны, один сверху и один снизу.

Вам понадобятся два шланговых фитинга 1/2 “[L] и трубка PCV длиной от 7 до 12 дюймов с двумя сплошными крышками, по одной на каждой стороне. [Клей для труб PCV] Просверлите и установите фитинги шланга, один сверху и один на нижней стороне [они оба бегут к резервуару для воды] Затем просверлите два отверстия для болтов из нержавеющей стали, которые крепятся на верхней крышке крышки PCV. Просверлите, отрежьте и отрегулируйте материал из нержавеющей стали 1/16x2x [?], Который крепится болтами на крышках выключателя освещения, а затем привинтите его к болтам, установленным на верхней крышке. Попробуйте отцентрировать его так, чтобы все поместилось внутри PCV с обеими крышками, не касаясь боковых сторон. Последний провод в 12 вольт к верхним болтам из нержавеющей стали, так что когда ваш ключ включен, то и 12 вольт. Последним просверлите 3 отверстия в резервуаре для воды, два для генератора, одно для шланга, который идет к воздухозаборнику двигателя после воздухоочистителя.

подсказки

  • используйте 10-амперный регулятор для подключения генератора для достижения наилучших результатов
  • Вы должны смешать дистиллированную воду с пищевой содой, чтобы она заработала!

Предупреждение

  • рисунок не в масштабе,

Предметы, которые вам понадобятся

  • крышки выключателей света из нержавеющей стали, болты из нержавеющей стали, 1/16 “x2” x12 “крепления из нержавеющей стали [2], резиновый шланг, провод, труба из ПВХ.
  • сода для воды-
  • Регулятор на 10 амперов

применение водорода в системе отопления, особенности водородного генератора

На современном рынке представлено множество вариантов отопления дома. Но нелегко найти качественный вариант с минимальными затратами. Одним из хороших вариантов является отопление на водороде. Ведь водород можно получить с легкостью, где есть электричество и вода. Такой вариант отопления считается довольно-таки экономичным.

Содержание:

  1. Применение водорода в системе отопления
  2. Преимущества и недостатки отопления на водороде
  3. Особенности водородного генератора
  4. Особенности электролитического генератора
  5. Применение газа Брауна

Применение водорода в системе отопления

Для тех, кто любит все делать своими руками, есть возможность создать систему отопления для своего дома самостоятельно. Одним из таких систем является отопление на водороде. С помощью такой отопительной системы можно эффективно отапливать большие помещения. Так как отопление на водороде обладает высокой мощностью. 

Впервые такое отопление изготовила Итальянская компания. Отопление на водороде не производит вредных веществ и выбросов. Она влияет положительно на здоровье людей, а отапливает дом быстро, качественно и без шума.

Так как данное отопление может сжигать водород при температуре 300°, то существует возможность применения обычных котлов изготовленных из стандартных материалов.

В связи с тем, что отопление на водороде не выбрасывает вредные вещества в атмосферу, отсутствует необходимость в применении специальных котлов с системой вывода продуктов сгорания. В такой отопительной системе выделяется только пар, который не несет никакого вреда. Для того чтобы получать водород вам придется только тратиться на расходы электричества. Если же вы проживаете в теплых регионах, то можно применить солнечные батареи. В таком случае вы сможете хоть немного сократить расхода на электроэнергию. 

Компоненты, которые входят в отопительную систему на водороде: трубы диаметром от 25 до 32 мм и котел. Установить трубы можно самостоятельно с учетом некоторых требований: диаметр трубы должен быть меньше после каждого разветвления. При соблюдении такого правила горелка будет работать качественно. 

Также котел, работающий на водороде можно применять для обогрева полов. Такую систему используют довольно-таки часто. Установить такую систему самостоятельно не составит труда. А приобрести данную отопительную систему можно с разной мощностью.

Преимущества и недостатки отопления на водороде

Отопление на водороде имеет много преимуществ:

  1. Водородное отопление вполне может заменить другие традиционные варианты. Пи этом не придется добывать нефть, газ, дрова и уголь. Такая система значительно упростит расходы на отопление.  
  2. Отопления на водороде является экологически чистым. Именно поэтому многие отдают предпочтение такой системе. Она не производит вредных выбросов в атмосферу. Единственным продуктом, который она выделяет, является пар. Он не наносит никакого вреда для окружающих.
  3. Высокий КПД. Он может достигать до 96%.
  4. Тепло получается в результате каталитической реакции. Такая система работает без использования огня. Вода получается в результате соединения кислорода и водорода. Таким образом, выделяется тепловая энергия. Для системы «теплый пол» такое отопление отлично подходит. Ведь в теплообменник идет тепло с температурой 40°. 

Но есть и некоторые недостатки у такой системы отопления:

  1. Небольшое количество специализированных мастеров, которые могут произвести ремонт такого отопительного прибора.
  2. Если оборудование устроено неправильно, то может произойти взрыв.
  3. На рынке представлено мало моделей такого отопления. Поэтому существуют проблемы покупкой и установкой оборудования. 

Особенности водородного генератора

Водородную горелку необходимо выбирать подходящую для вашего помещения. А также в зависимости от площади отапливаемого здания нужно определить с требуемой мощностью. Для того чтобы не производить лишние затраты на отопление. Максимальным значением мощности является 6.
Получать водород можно в любом количестве. Для этого должна присутствовать вода и электричество. Отопление на водороде считается самым экономным. 
Если у вас уже установлена отопительная система, но вы бы хотели приобрести дополнительный источник тепла, то отопление на водороде отлично подходит. Но такое отопление может работать не только как дополнительное, но и как основное. При использовании данной системы в качестве дополнительного источника энергии, следует следить за температурой элементов, которая должна быть невысокой.

Особенности электролитического генератора

Электролитический генератор водорода изготавливают в контейнере. Перед покупкой такого оборудования необходимо получить некоторые документы: сертификаты и разрешение от Ростехнадзора. 

В состав электролитического генератора входят следующий элементы:

  • Система, которая охлаждает жидкость;
  • Электролизер. Это устройство, которое разделяет получение кислорода и водорода;
  • Система по анализу газа;
  • Панели автоматической системы контроля и управления оборудования;
  • Система, которая контролирует возможную утечку водорода;
  • Блок для пополнения воды;
  • Блок, который состоит из выпрямителя, трансформатора и распределительной коробки. 

Часто применяют несколько капель щелока для того чтобы достичь максимальной эффективности электропроводности. Пополняют устройство не чаще, чем 1 раз в год. Как и все генераторы электролитические изготавливают с соблюдением всех норм безопасности и экологии. 

Купить водородный электролитический генератор обойдется намного выгоднее, чем регулярно покупать газ. Для того чтобы получить 1 м3 газа из кислорода и водорода потребуется всего 3, 5 кВт электроэнергии и 0,5 л деминерализованной воды. 

Применение газа Брауна

Спорным вопросом до сих пор считается применение газа Брауна в системе отопления. При сгорании газа получается больше энергии примерно в 4 раза. Газ Брауна — это хим. соединение, которое состоит из 1 атома кислорода и 2 атомов водорода.

Так как для получения такого газа необходим электролиз воды, то применяют специальный электролиз для отопления. Для использования данной технологии в отопительной системе необходимо переделать стандартный котел. В основе такого оборудования будет электролизер, в который заливается электролит. На трубки или металлические пластины подается переменный ток. Вследствие этого происходит разъединение молекул водорода и кислорода. В результате чего получается газ Брауна.

Читайте также:

Помогите: водородная вода правда полезна для здоровья?

Водородная вода — модный напиток, который рекламируют популярные блогеры и звёзды шоу-бизнеса от Светланы Бондарчук и Веры Брежневой до Ксении Собчак. Мы решили разобраться, есть ли смысл покупать это не самое дешёвое снадобье.

Что такое водородная вода

Водородная вода — самая обычная вода, в которой растворено небольшое количество газообразного водорода (Н2). Насыщенную водородом воду можно купить уже готовую в специальной упаковке или сделать самостоятельно при помощи домашнего генератора водородной воды или специальных шипучих таблеток. Другой вопрос — а стоит ли всем этим заниматься?

Водородная вода: что о ней знает наука

О том, как растворённый в воде водород влияет на здоровье, впервые задумались в Японии — возможно, потому, что именно там изобрели дешёвый способ изготовления такой жидкости. Первопроходцем был доктор Хидемицу Хаяши, который ещё в 1995 году предположил, что молекулярный водород способен работать как антиоксидант — то есть разрушать активные формы кислорода, заставляющие клетки организма преждевременно стареть и погибать. 

Это открытие заинтересовало научное сообщество — активные формы кислорода вызывают серьёзное повреждение тканей, которое лежит в основе многих воспалительных и хронических заболеваний (например, некоторых видов рака). 

В 2007 году группа японских учёных доказала, что молекулярный водород способен деактивировать самый неприятный и к тому же не имеющий биологических функций гидроксильный радикал. При этом он не мешает работе остальных активных форм кислорода, которые играют важную роль в обмене веществ.

Использовать водород в качестве лекарства — хорошая идея. Этот газ способен проникать в ткани и клетки и при этом действует достаточно мягко, чтобы не повредить нашей тонкой «биохимической кухне». Однако от хорошей идеи до хорошего лекарства иногда проходят десятилетия — а иногда этого так и не происходит.

На сегодняшний день лечение водородом так и не вышло за рамки небольших экспериментов [1, 2, 3], результаты которых пока никто не перепроверял. 

Шанс, что водородная вода никогда не вырвется из списка «хороших идей для препарата», которые так и не стали лекарствами, довольно велик. Во всяком случае, все остальные когда-то модные антиоксиданты — например, витамин С, витамин Е, бета-каротин — оказались неэффективными для лечения болезней сердца, лёгких, рака и возрастных заболеваний глаз, не помогли улучшить умственные способности и оказались не способны предотвращать преждевременную смерть. 

Стоит ли пить водородную воду

Даже если предположить, что растворённый водород действительно полезен, мы до сих пор не знаем, сколько водородной воды нужно пить для того, чтобы, например, замедлить старение. А если учесть, что 60% водорода, который содержится в воде, мы просто выдыхаем вместе с воздухом, то, чтобы получить хоть какой-то эффект, водородной воды потребуется много. То есть пить её придётся по нескольку литров в день.

С другой стороны, исследования показывают, что водородная вода как минимум безвредна, а по вкусу не отличается от обычной. Так что при сильном желании с готовой водородной водой можно и поэкспериментировать. Главное — учитывать, что она стоит дорого, и помнить, что газообразный водород выходит из воды в течение часа и при кипячении. Поэтому пить её надо сразу, как только откроете упаковку.

Стоит ли покупать домашний прибор для изготовления водородной воды

Приборы для изготовления водородной воды в домашних условиях вызывают серьёзные сомнения. 

Некоторые приборы для изготовления водородной воды миниатюрны — не больше спортивной бутылки для воды/Источник: Ama­zon

Производители таких устройств утверждают, что в их конструкции задействована протонообменная мембрана PEM. Такие мембраны действительно существуют, но пока — в основном в качестве увесистого лабораторного оборудования или как компонент прототипа двигателя на водородном топливе. Протонообменные мембраны работают при 80–100 °C, и давлении примерно в 15–30 атмосфер. Можете представить себе такую бутылочку?

Никаких упоминаний о миниатюрных приборах, в которых реализована технология PEM-мембраны, нам найти не удалось. Скорее всего, «домашние приборы для изготовления водородной воды с PEM-мембраной» — просто маркетинговая уловка.

Есть только один относительно дешёвый и простой способ получения водородной воды — электролиз с магниевым стержнем (MSW). Но найти такой прибор в продаже непросто, а реальную его эффективность никто не проверял. 

Металлические палочки-ионизаторы, заполненные магнием, которые не надо подключать в сеть или подзаряжать, точно не работают: их содержимое нерастворимо, поэтому без помощи электричества в воду попасть никак не сможет.

Тест подобной палочки-ионизатора (видео на английском языке)

Что в итоге

  1. Польза водородной воды для здоровья не доказана. Другие продукты с таким же принципом действия оказались неэффективными.
  2. «Готовая» водородная вода безвредна, но важно учитывать, что водород покидает её очень быстро. 
  3. Принцип работы приборов и устройств для домашнего изготовления водородной воды вызывает сомнения. Скорее всего, они просто не работают.

Генератор для получения водорода своими руками

В этой инструкции я расскажу вам как добыть водород в домашних условиях. Сделаем простой генератор водорода своими руками.

Чтобы получить водород нам понадобятся:

  • Пустой контейнер с крышкой
  • Провода
  • Карандаш
  • Завинчивающиеся клеммы
  • Горячий клей
  • Блок питания постоянного тока
  • Дрель
  • Воронка
  • Надувной шарик

Шаг 1: Сооружаем анод

Для создания анода нам понадобятся старый карандаш, нож, клеммы, провода и пистолет с горячим клеем.

Возьмите карандаш и счистите дерево, пока не доберётесь до графитового сердечника. Поместите сердечник в клеммы и закрутите его, но не слишком туго, иначе он сломается.

Оголите концы кабеля и закрепите их с другой стороны закручивающихся клемм.

Изолируйте клеммы горячим клеем. Убедитесь, что соединение водонепроницаемо. Единственное, что не нужно закрывать горячим клеем — графитовые стержни.

Как вы видите на фото, я взял два кусочка графита и поместил их в две клеммы. Я соединил обе клеммы с одним кабелем. Это увеличит рабочую поверхность графита и повысит производительность генератора.

Шаг 2: Сооружаем катод

Для сборки катода нам понадобится кабель и стриппер для оголения кабеля (можете оголить кабель подручными средствами).

Оголите 10-20 см кабеля и накрутите его вокруг карандаша. Эта медная спираль — готовый катод.

Чтобы увеличить поверхность катода, вы можете присоединить к нему кусок меди.

Шаг 3: Собираем заглушку контейнера

На этом этапе вам понадобится крышка контейнера, воронка, дрель, анод, катод и пистолет с горячим клеем.

Просверлите отверстие в крышке контейнера, отверстие должно быть достаточно большим, чтобы вмещать кончик воронки. Проденьте кончик воронки в отверстие и закрепите его горячим клеем. (Тут нужно быть внимательным — клей не должен быть настолько горячим, чтобы расплавить пластик крышки и воронки).

После того, как клей остынет, приклейте катод внутри воронки, а анод снаружи.

Просверлите небольшие отверстия в крышке, пропустите через них провода и запаяйте все горячим клеем.

Шаг 4: Дорабатываем источник питания

Перед доработкой блока питания, проверьте, что он никуда не подключен!

Сама доработка очень проста. Вам нужно соединить зелёный кабель с чёрным (земля). Не спаивайте кабели друг с другом, ведь в случае короткого замыкания вам нужно будет их разъединить, а потом, для продолжения работы, соединить снова (хорошей идеей будет соединить кабели при помощи выключателя).

Блок питания начнёт работать, как только вы соедините зеленый и черный кабель. Теперь у нас есть блок питания.

Для использования блока питания, оголите синий кабель (-12V) и желтый кабель (+12V). Закрепите оголенные провода в завинчивающихся клеммах.

Шаг 5: Финальная настройка

Теперь, когда всё соединено, осталось лишь наполнить контейнер водопроводной водой и добавить в неё немного соли, а затем закрыть крышку.

Присоедините провода к блоку питания и подайте электричество (на этом этапе вы должны заметить небольшие пузырьки, поднимающиеся от электродов).

Последним этапом будет добавить воздушный шарик поверх воронки, в него будет захватываться водород.

Шаг 6: Предостережения

НИКОГДА не подключайте генератор водорода к обычной розетке! Используйте ТОЛЬКО токи малого напряжения.

Водород крайне ВОСПЛАМЕНИМ, поэтому во время работы генератора и при хранении водорода предпримите все меры предосторожности.

Шаг 7: Образовательная часть

Если вы не собираетесь сооружать генератор водорода, но вам интересна сама химическая реакция, то прочитайте этот материал.

Электролиз:
Электролиз это эндотермическая реакция. Это означает, что реакция произойдет только тогда, когда в систему будет подаваться энергия. Мы достигаем этого с помощью блока питания. Блок питания отталкивает электроны от анода и подталкивает их к катоду.

Электроны находятся в молекулах водорода. Блок питания подталкивает молекулы воды (HHO) к разделению на положительно заряженные ионы водорода (H+) и отрицательно заряженные гидроксид-ионы(OH-).

Из-за электромагнитных сил, положительно заряженные ионы водорода притягиваются к катоду, а гидроксид-ионы притягиваются к аноду.

Катод передаёт ионам водорода электроны, и они становятся газом водорода.

Так как анод притягивает электроны, то он забирает их у гидроксид-ионов и они становятся ионами водорода и газом кислорода (OO). Затем ионы водорода перемещаются к катоду.

Зачем использовать графитовый сердечник в качестве анода?
Мы используем графитовые сердечники в качестве анода, так как металлы (за исключением платины), окисляются в силу электрохимических реакций в контейнере. Это значит, что если вы будете использовать железный анод, он просто заржавеет в процессе создания водорода. То же самое касается и меди — она станет оксидом меди. Это замедлит получение водорода в домашних условиях и придаст воде неприятный оттенок.

Новый генератор водорода работает от одной пальчиковой батарейки

В 2015 году компании Toyota и Honda обещают выпустить первые серийные автомобили на водородных двигателях. Технология транспорта на водороде в первую очередь отличается от обычных двигателей внутреннего сгорания своей экологической чистотой. Ведь единственный выхлоп в такой системе — водяной пар. В то же время критики указывают на то, что при получении водорода из природного газа выделяются парниковые газы, которые способствуют глобальному потеплению.

Но учёные Стэндфордского университета считают, что в скором времени водород для автозаправок будут получать более безвредным методом. Исследователи разработали недорогое устройство на пальчиковых батарейках, которое без вредных выбросов производит этот газ путём электролиза воды, то есть расщепления её на водород и кислород. В отличие от других подобных генераторов электроды нового устройства выполнены не из драгоценных металлов, а из доступного сочетания железа и никеля.

«Используя дешёвые материалы мы смогли создать достаточно активные катализаторы, чтобы расщеплять воду при комнатной температуре от одной 1,5-вольтовой батарейки, — говорит профессор химии Хуцзе Дай (Hongjie Dai). — Это первый случай, когда для подобных реакций используются доступные металлы, а не платина или иридий».

Водородный двигатель, который уже используется в прототипах различных транспортных средств, получает энергию от реакции обратной расщеплению воды, в которой газообразный водород соединяется с кислородом из воздуха.

Проблема состоит в том, что при существующих технологиях дешевле получать водород путём смешивания природного газа с очень горячим водяным паром. Этот процесс требует больших затрат энергии, а его побочным продуктом является углекислый газ, чрезмерные выбросы которого считают основной причиной глобальных климатических изменений.

«Уже несколько десятилетий учёные стремятся создать недорогие электрокатализаторы с высокой активностью и длительным сроком службы, — рассказывает Дай в пресс-релизе. — Поэтому, когда мы узнали, что электроды на основе никеля так же эффективны, как платина, это стало полной неожиданностью».

Учёные открыли структуру из металлического никеля и его оксида, которая оказалась гораздо лучшим катализатором, чем каждый из элементов по отдельности. В будущем такие электроды смогут экономить производителям водородного топлива миллиарды, которые сегодня тратятся на электроэнергию.

Сейчас авторы устройства, описанного в журнале Nature Materials, работают над продлением его срока службы. Электроды довольно стабильны, но со временем распадаются. В текущей версии их хватает всего на несколько дней безостановочной работы. Помимо этого учёные планируют создать генератор водорода на солнечных батареях, чтобы сделать весь процесс максимально экологичным.

Стоит добавить, что помимо получения водорода устройство может быть использовано для производства газообразного хлора и гидроксида натрия, которые также имеют важное промышленное значение.

Также по теме:
Совершён прорыв в производстве солнечного водорода
Кишечную палочку научили производить бензин
Нанотехнологии улучшили способность растений к фотосинтезу
Автомобили можно будет заправлять водорослями
Угольная котельная стала экспериментальной площадкой для альтернативного топлива

Водородный генератор для отопления. Что такое генератор водорода и как его сделать своими руками? Можно ли сделать своими руками

Уже давно прошло время, когда обогрев частного загородного дома осуществлялся только лишь сжиганием в печи дров ли угля. Нынешние отопительные агрегаты используют различные виды топлива. Но постоянный рост цен на топливо, вынуждает идти на поиски более дешевых вариантов отопления. Но буквально у нас под носом лежит неиссякаемый источник энергии – водород. И в данной статье мы расскажем, как в качестве топлива можно использовать обычную воду, собрав водородный котел отопления своими руками.

Применение водорода в виде топлива для обогрева жилища – довольно заманчивая идея, ведь его теплотворность составляет 33,2 кВт/м3, в то время как у природного газа она всего 9,3кВт/м3, а это более чем в 3 раза. Теоретически добыть водород можно из воды, для того чтобы его потом сжечь в котле, можно воспользоваться водородным генератором для отопления дома.

Как энергоноситель с водородом ничто не может сравниться, а его запасы практически бесконечны. Как уже говорилось выше, при сгорании водород выделяет очень много тепловой энергии, намного больше, чем любое углеродосодержащее топливо. Вместо вредных выбросов в атмосферу, которые выделяются при использовании природного газа, водород, сгорая, образует обычную воду в виде пара. Только есть одна проблема, данный элемент не встречается в природе в чистом виде, а только в соединении с другими веществами.

Одним из таких соединений является обычная вода, которая представляет собой окисленный водород. Для того чтобы расщепить на составляющие ее элементы многие ученые потратили не один год. И не безрезультатно, техническое решение по выделению из воды ее составляющих все же было найдено. Это так называемая химическая реакция электролиза, в результате которой вода распадается на кислород и водород, получаемую смесь прозвали гремучим газом или газом Брауна.

Ниже можно увидеть схему водородного генератора (электролизера), который работает от электричества:

Электролизеры поставлены на серийное производство и служат для газопламенных (сварочных) работ. Ток определенной частоты и силы подается на группы металлических пластин, которые погружены в воду. Из-за протекающей реакции электролиза выделяются кислород и водород вперемешку с водяным паром.

Для того чтобы отделить газы от пара все пропускается через сепаратор, после которого подается на горелку. Чтобы предотвратить обратный удар и взрыв, на подаче монтируется клапан, который пропускает горючее только в одну сторону.

Водородная установка для обогрева жилища включает в себя следующие составляющие: котел и трубы диаметром 25-32 мм (1-1,25 дюймов). Трубы можно установить дома своими руками, но необходимо выполнить одно условие – после каждого разветвления диаметр должен уменьшаться.

Диаметр уменьшается по следующему принципу – труба D32, труба D25. После разветвления – D20, и последней монтируется труба D16. При соблюдении этого условия водородная горелка будет работать качественно и эффективно.

Для того чтобы следить за уровнем воды и своевременно подпитывать ею устройство, в конструкции есть специальный датчик, который отдает команду в нужный момент и вода впрыскивается в рабочее пространство электролизера. Для того чтобы давление не подпрыгивало до критической точки внутри сосуда, агрегат оборудуется аварийным выключателем и сбросным клапаном. Для обслуживания генератора водорода, необходимо только время от времени добавлять воду и все.

Преимущества водородного отопления

У водородного отопления есть несколько серьезных достоинств, которые влияют на распространенность системы:

  1. Экологически чистые системы. Единственный побочный продукт, который выбрасывается в атмосферу во время работы – вода в парообразном состоянии. Что никоим образом не вредит окружающей среде.
  2. Водород в системе отопления работает без применения огня. Тепло образуется из-за каталитической реакции. При соединении водорода с кислородом, образуется вода. Из-за этого идет большое выделение тепла. Сам поток тепла, температура которого равняется около 40оС, идет в теплообменник. Для системы теплый пол – это идеальный температурный режим.
  3. Довольно скоро отопление на водороде своими руками сможет вытеснить традиционные системы, тем самым освободив человечество от добычи других видов топлива – нефти, газа, угля и дров.
  4. Минимальный срок службы – 15 лет.
  5. КПД отопления частного дома водородом может достигать 96%.

Добыча водорода – это вполне доступный процесс. Все, на что необходимо будет тратиться это электричество. А при использовании генератора отопления включить в работу системы еще и солнечные батарею, то траты на электроэнергию можно свести к минимуму. Исходя из этого, можно заключить что, эта система наиболее экологически чистая и эффективная для отопления жилища.

Как собрать генератор водорода собственноручно?

Зачастую котел, работающий на водороде, используется для обогрева полов. Эти системы в наше время встречаются самой разной мощности. Мощность котлов бывает самая разная, начиная от 27Вт и до бесконечности. Можно взять один очень мощный котел для обогрева сразу всего дома, а можно несколько небольших. Устанавливаются они своими силами, но, как сделать водородный генератор своими руками?

Прежде чем начать сооружать топливную ячейку необходимо иметь под руками следующие инструменты:

  • ножовку по металлу;
  • дрель с набором свёрл;
  • набор гаечных ключей;
  • плоская и шлицевая отвёртки;
  • угловая шлифмашина («болгарка») с установленным кругом для резки металла;
  • мультиметр и расходомер;
  • линейка;
  • маркер.

Более того, если вы решите самостоятельно заниматься сооружением ШИМ-генератора, то для его настройки понадобятся осциллограф и частотомер.

Для того чтобы изготовить водородный генератор для отопления частного дома рассмотрим абсолютно «сухую» схему электролизера с применением электродов из пластин нержавеющей стали.

Представленная ниже инструкция показывает процесс конструирования водородного генератора:

  1. Сооружение корпуса топливной ячейки. Роль боковых стенок каркаса играют пластины оргалита или оргстекла, нарезанные по размеру будущего генератора. Стоит заметить, что он размеров агрегата напрямую зависит его производительность, но и затраты на получение ННО будут намного выше. Для сооружения топливной ячейки оптимальными являются габариты от 150×150 мм до 250×250 мм.
  2. В каждой из платин сверлятся отверстия под входной и выходной штуцера для воды. Кроме этого, необходимо сверление в боковой стенке для выхода газа и четыре отверстия по углам для того чтобы соединить элементы реактора между собой.
  3. С помощью болгарки из листа нержавейки марки 316L, вырезают пластины электродов. Они по размеру должны быть меньше стенок на 10-20 мм. Более того, при изготовлении каждой детали, в одном из углов необходимо оставлять небольшую контактную площадку. Это необходимо для того чтобы соединить отрицательные и положительные электроды в группы перед их подключением к питанию.
  4. Для получения необходимого количества ННО, нержавейку необходимо обработать мелкой наждачной бумагой с двух сторон.
  5. В каждой пластине сверлятся два отверстия: сверлом чей диаметр должен быть 6-7 мм – для подачи в пространство между электродами воды и диаметром 8-10 мм – для отвода газа Брауна. Точки сверления рассчитывают с учетом мест монтажа соответствующих подводящих и выходного патрубков.
  6. Приступают к сборке генератора. Для этого в оргалитовые стенки монтируют штуцеры служащие для подачи воды и отбора газа. Места их присоединений тщательнейшим образом герметизируют автомобильным или сантехническим герметиком.
  7. После этого одну из прозрачных корпусных деталей устанавливают на шпильки, после этого укладывают электроды. Укладка электродов должна начинаться с уплотнительного кольца. Обратите внимание: плоскость электродов должна быть абсолютно ровной, в противном случае элементы с разноименными зарядами будут касаться, что вызовет короткое замыкание!
  8. Пластины нержавейки отделяют от боковых поверхностей реактора с помощью уплотнительных колец, изготовленных из силикона, паронита или других материалов. Важно чтобы он был не толще 1 мм. Подобные детали используют как дистанционные прокладки между пластинами. В процессе укладки следят, чтобы контактные площадки разноименных электродов были сгруппированы по разные стороны генератора.
  9. После того как уложена последняя пластина устанавливают уплотнительное кольцо, после чего генератор закрывается второй оргалитовой стенкой, а саму конструкцию соединяют с помощью гаек и шайб. Делая эту работу, внимательно следите за равномерностью затяжки и отсутствием перекосов между пластинами.
  10. С помощью полиэтиленовых шлангов генератор подключается к емкости с водой и бабблеру.
  11. Контактные площадки электродов соединяются между собой любым методом, после чего к ним подводят провода питания.
  12. На топливную ячейку подается напряжение от ШИМ-генератора, после чего приступают к настройке и регулировке аппарата по максимальному выходу газа ННО.

Для того чтобы получить газ Брауна в необходимом количестве которое будет достаточным для приготовления пищи и отопления, устанавливают несколько генераторов водорода которые работают параллельно.

  1. Самостоятельно модернизировать подобное оборудование, даже при наличии подробного и профессионального инженерного чертежа – категорически запрещается. Это может поспособствовать вероятности утечки водородной смеси из генератора в открытое пространство, что довольно опасно.
  2. Рекомендуется смонтировать специальные датчики температурного режима внутри теплообменника, это даст возможность следить за вероятным превышением уровня температуры нагрева воды.
  3. В саму конструкцию горелки можно включить запорную арматуру, которая будет подключена непосредственно к самому датчику температуры. Необходимо также обеспечить нормированное охлаждение котла.
  4. И наконец, на чем необходимо сделать особое ударение это безопасность. Необходимо помнить о том, что смесь водорода и кислорода не зря назвали гремучей. ННО это опасное химическое соединение, которое при небрежном обращении может повлечь взрыв. Следуйте правилам безопасности и будьте предельно аккуратны в экспериментах с водородом.

При правильном обращении водородный котел может прослужить не 15 лет, как это обычно положено, а 20 или даже 30. Однако помните, что чем больше мощность котла, тем больше расход электроэнергии!

Сложно найти такого человека, который не стремился бы снизить траты на эксплуатацию современных отопительных систем. Для этой цели широко используются разного рода экономичные приборы, с высокими показателями теплоотдачи, а также надежные трубопроводные системы. В качестве альтернативной категории энергоносителя многие рассматривают эффективное водородное отопление дома своими руками. Всё больше потребителей рассматривают вариант установки водородного генератора для отопления частного дома.

Что собой представляет водородный генератор?

Это идеальная альтернатива отоплению обычным природным газом, так как средний температурный режим может достигать 3000 градусов. Для этого требуется провести установку специальной работающей на водороде горелки для отопления, которая без проблем выдержит подобную достаточно высокую температуру.

Стандартный водородный генератор состоит из определенных элементов. В первую очередь это максимально эффективный работающий на водороде генератор. Он обрабатывает смесь при помощи разложения обычной воды на определенные составляющие. Чтобы оптимизировать данный процесс, часто применяются катализаторы. Присутствует также горелка трубопровод, который ведет от генератора – они требуются для создания открытого огня. Важно наличие котла, который играет в конструкции роль теплообменного приспособления. Горелка расположена в топке и посредством нее осуществляется нагрев основного теплоносителя в системе.

Когда стоит установить водородный генератор?

Для каждого потребителя огромное значение имеют особые эксплуатационные качества и свойства современного прибора отопления. Заводские установки, а также все виды водородных котлов отопления своими руками, между собой отличаются по показателям эффективности.

Существует несколько иных надежных схем, которые помогают эффективно провести сбор и установку оборудования своими руками. Чтобы общая расчетная мощность не сильно отличалась от фактической, чтобы не был снижен показатель КПД, организацию водородного качественного отопления стоит делать посредством применения надежных котлов, а также генераторов строго заводского исполнения.

Осуществить установку генератора стоит в случае, если достигаются цели, связанные со значительной экономией. Современные отопительные приборы такого плана в состоянии обеспечить следующие преимущества:

Профессионалы отлично понимают, что в процессе работы водородного генератора, предназначенного для отопления, газ, полученный в оборудовании такого плана, может быть отнесен к категории гремучих. Он отличается полным отсутствием неприятного запаха и цвета. Газ совершенно безвреден, его присутствие невозможно определить даже специальными устройствами.



Важно! Газ имеет свойство воспламеняться при температуре 540 градусов, что характеризует его, как взрывоопасный. Именно по этой причине все подобные установки должны быть тщательно проверены на степень корректности производимой работы.

Если генератор приобретается в готовом виде, стоит поинтересоваться о присутствии у него котла или особого теплообменного прибора. Оно обязательно должно быть рассчитано на влияние высокого температурного режима.

Большое количество преимуществ, присущих водородным котлам отопления и генераторам, будет способствовать росту конкуренции всем традиционным системам отопления. Многих собственников частных домов привлекает низкая стоимость оборудования, а также высокая производительности.

Водородный генератор — пошаговая инструкция по установке

За главную основу работы современного отопления на водороде берется методика выделения достаточно большого объема качественной тепловой энергии. Это достигается посредством взаимодействия молекул кислорода и водорода. Для максимально практичного применения устройства изначально были разработаны специальные промышленные варианты качественных и надежных отопительных котлов. При установке водородного генератора в обязательном порядке потребуется выполнить такие условия:

  1. Обеспечение подключения к основному источнику жидкости
    . Часто это бывает стандартная водопроводная коммуникация. Расход воды при этом прямо зависит от общей мощности устройства.
  2. Важно обеспечить качественное электропитание
    . Чтобы поддержать реакцию эффективного электролиза потребуется осуществить подключение устройства к стандартной электрической сети.
  3. Время от времени проводится замена установленного катализатора
    . Время использования каждого прямо зависит от используемой модели, а также от мощности котла.

Нагрев горелки в состоянии достигать 3000 градусов, потому стоит позаботиться о том, чтобы были использованы материалы, способные выдержать подобные нагрузки. Последовательность действий при обустройстве оборудования следующая:

  • К крышке взятой за основу емкости необходимо присоединить специальный штуцер, который потом будет отводит газ – смесь кислорода и водорода;
  • Штуцер присоединяется к теплообменнику и горелке;
  • Потребуется создать запасное хранилище для готового газа, так как котел не в состоянии работать одинаково. Кроме того, это обеспечит оптимальную безопасность в процессе эксплуатации.

Несмотря на достаточно большое количество вариантов домашних разработок и установок водородных генераторов, найти стоящий образец достаточно сложно. Вне зависимости от вида и категории подобной установки работа подобного теплообменника требует постоянного поддержания необходимого уровня температурного режима, а также давления в системе. Если следовать всем представленным вниманию инструкциям и советам, можно установить оборудование, которое будет характеризоваться высокими показателями стабильности. Это позволит использовать их в постоянном режиме, обеспечив дом теплом.

Мы привыкли считать самым доступным видом топлива природный газ. Но оказывается, у него есть достойная альтернатива – водород, получаемый при расщеплении воды. Исходное вещество для выработки этого топлива мы получаем вообще бесплатно. А если еще и сделать водородный генератор своими руками, экономия будет просто потрясающей. Так ведь?

Желающим собственноручно соорудить генератор дешевого, но весьма продуктивного горючего мы предлагаем обстоятельно изложенную инструкцию. Приводим рекомендации по грамотной эксплуатации. В качестве информативных дополнений, наглядно объясняющих принцип действия, использованы фото-приложения и видео.

На уроках химии средней школы когда-то давались пояснения на тот счёт, как получить водород из обычной воды, вытекающей из под крана. Есть в химической сфере такое понятие – электролиз. Именно благодаря электролизу имеется возможность получать водород.

Простейшая водородная установка представляет собой некую ёмкость, заполненную водой. Под слоем воды размещаются два пластинчатых электрода. К ним подводится электрический ток. Так как вода является отличным проводником электрического тока, между пластинами устанавливается контакт с малым сопротивлением.

Проходящий сквозь малое водяное сопротивление ток способствует образованию химической реакции, в результате которой образуется водород.

Схема экспериментальной водородной установки, которая в прежние времена изучалась в программе средней школы на уроках химии. Как выясняется, для практики современных житейских потребностей уроки те не были лишними

Казалось бы, всё просто и остаётся совсем немного – собрать образовавшийся водород, чтобы применить его в качестве энергетика. Но в химии никогда не обходится без тонких деталей.

Так и здесь: если водород соединяется с кислородом, при определённой концентрации образуется взрывоопасная смесь. Этот момент является одним из критичных явлений, ограничивающих возможности построения достаточно мощных домашних станций.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.

Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.

Пример реально действующей промышленно изготовленной станции мощностью до 5 кВт. Подобные установки в перспективе планируется делать под оснащение коттеджей и кондоминиумов

Российская промышленность тоже начала заниматься этим перспективным видом добычи топлива. В частности, «Норильский никель» осваивает технологии производства водородных установок, в том числе бытовых.

Планируется использовать самые разные типы топливных элементов в процессе разработки и производства:

  • протонно-обменные мембранные;
  • ортофосфорно-кислотные;
  • протонно-обменные метанольные;
  • щелочные;
  • твердотельные оксидные.

Между тем процесс электролиза является обратимым. Этот факт говорит о том, что есть возможность получать уже нагретую воду без сжигания водорода.

Кажется, это очередная идея, ухватившись за которую можно запускать новый виток страстей, связанных с бесплатной добычей топлива для домашнего котла.

Выводы и полезное видео по теме

Экспериментируя дома с самодельными моделями, нужно приготовиться к самым неожиданным результатам, но негативный опыт – это тоже опыт:

Водородные генераторы для дома, изготовленные своими руками, – это пока что проект, существующий на уровне одной идеи. Практически реализованных проектов водородных генераторов своими руками нет, а те, что позиционируются в сети – воображения их авторов или же чисто теоретические варианты.

Так что остаётся рассчитывать только на промышленный дорогостоящий продукт, который обещает появиться уже в ближайшем будущем.

Интерес к генераторам водорода, HHO и газа Брауна, продолжает расти как на дрожжах, но самым радостным фактом является огромное количество людей, которые начинают или планируют собирать генераторы водорода своими руками. Причем совершенно не важно, какой генератор человеку нужен, генератор водорода для авто или генератор водорода для котла или сварки, принцип его действия все равно будет одним и тем же. Чтобы помочь практикам, осваивающим эту нелегкую отрасль, мы начинаем готовить ответы на часто задаваемые вопросы по сборке генераторов водорода своими руками.

Предлагаем Вам первую часть ответов на часто задаваемые вопросы по сборке генератора водорода своими руками. Все ответы, приведены «как есть», то есть без какой-либо вуали, подтекста и скрытых целей, нами преследуемых.

Часть 1. Общие вопросы

В данном выпуске:

1.

А зачем это нужно? Можно ведь пойти и купить в магазине генератор водорода, такой, какой нужен
?

2.

А разве существуют способы постройки генератора водорода, который будет работать с КПД выше единицы?

5.

Вы публикуете сверхединичные генераторы водорода от Александра ( ). Он тоже никогда не поделится своими схемами и наработками?
.

7. Какую нужно использовать воду?

8. Какой необходим металл? В различных руководствах говорится о необходимости использовать только очень редкие марки…
.

9

. Насколько хватает пластин электродов?

10.

Как правильно подготовить пластины для электродов?

11

. Каковы температурные режимы электролизера и воды?

12

. Возможен ли полный перевод автомобиля на газ Брауна?

13

. Какие пропорции газа Брауна в топливе безвредны для ДВС?

14

. Сколько литров газа Брауна в минуту нужно для работы ДВС?

1. А зачем это нужно? Можно ведь пойти и купить в магазине генератор водорода, такой, какой нужен.

Пока выбор генераторов водорода в магазинах очень скуден. Цена на них неоправданно высока, КПД их работы редко превышает 50% и никогда не превышает даже 90%. Для того, чтобы получить эффективный генератор водорода, работающий с КПД более единицы, на данный момент существует только один путь: сделать его самому.

2. А разве существуют способы постройки генератора водорода, который будет работать с КПД выше единицы?

Конечно существуют! Причем построенные на совершенно разных принципах работы и КПД которых превышает единицу не на доли процентов, что можно списать на погрешности измерений, а превышает единицу в разы!

3. Я хорошо учился в школе и университете, а потому не верю, что бывают генераторы водорода, работающие с КПД больше единицы, как мне в этом убедиться?

Для начала предлагаем посмотреть на уже для всеобщего обозрения генераторы водорода с проведенными . Также Вы можете воспользоваться нашими , для расчетов КПД водородных генераторов и выделяемой тепловой мощности.

4. Существуют ли на данный момент хорошо описанные и повторяемые схемы для сборки сверхединичных генераторов водорода?

Нет не существует! Абсолютное большинство выложенных в интернете схем для сборки сверхэффективных генераторов водорода нерабочие. Поэтому не получится найти схему, собрать по ней генератор и радоваться. Прежде придется много поэкспериментировать самому.

5. Вы публикуете сверхединичные генераторы водорода от Александра (). Он тоже никогда не поделится своими схемами и наработками?

Александр очень активно помогает на форуме практикам, отвечая на их вопросы. Просто у него есть конкретные и четкие цели по доведению своих разработок до логического завершения, а на это нужны средства. Потому Александр до окончания работ по этой теме не планирует отвечать на определенный круг вопросов, в основном это касается электронной схемы управления электролизером.

6. Где и что можно почитать или посмотреть, а также где задавать вопросы?

7. Какую нужно использовать воду?

Практически любую, от водопроводной до дистиллированной. Наилучшая эффективность достигается при использование раствора гидроксида натрия в дистиллированной воде в пропорциях одна столовая ложка на десять литров воды.

8. Какой необходим металл? В различных руководствах говорится о необходимости использовать только очень редкие марки…

Это одно из заблуждений! Подойдет любая нержавеющая сталь! Наилучшие результаты достигаются со сталью, которая не притягивается постоянным магнитом (не является ферромагнетиком), так как на нее ничего не налипает в процессе работы, но и этот момент непринципиален. Главное, чтобы сталь была нержавеющей и, соответственно, чтобы она не окислялась в воде.

9. Насколько хватает пластин электродов?

В процессе работы пластины не разрушаются, поэтому менять их на новые не нужно.

10. Как правильно подготовить пластины для электродов?

Все пластины необходимо тщательно промыть перед сборкой, сначала в мыльном растворе, потом спиртом или водкой. Потом необходимо «погонять» электролизер определенное время, периодически заменяя воду на чистую, и так в течение нескольких дней, пока не выест всю грязь и железо.
Впоследствии вода будет оставаться чистой. Чем чище вода, тем меньше нагрев установки.

11. Каковы температурные режимы электролизера и воды?

При правильно собранном электролизере, пластины и вода не должны нагреваться.
Также крайне желательно электролизер и пластины не перегревать выше 80 градусов.
Если температура на нечистой воде поднимется выше, чем 65 градусов, то грязь и металы с минералами пристанут к пластинам и Вы уже их не удалите и не сможете очистить от них пластины! Их придется удалять только при помощью абразивной обработки, с помощью наждачной бумаги и т.д.

12. Возможен ли полный перевод автомобиля на газ Брауна?

Да, теоретически возможен. Практически любой ДВС работает на газе Брауна совершенно спокойно и устойчиво без каких-либо переделок. Однако необходимо помнить, что продуктом сгорания газа Брауна, является вода, которая без принятия соответствующих мер будет накапливаться в картере двигателя, превращая масло в эмульсию, что приведет к быстрому износу деталей, которые будут с ней соприкасаться в процессе эксплуатации. Поэтому для долгосрочной работы ДВС на газе Брауна необходимо подобрать специальные присадки и решить проблему с удалением воды из масла.

13. Какие пропорции газа Брауна в топливе безвредны для ДВС?

В случае с бензиновыми двигателями возможно до 90% топлива заменить на газ Брауна, оставив только лишь 10 процентов бензина. В случае с дизельным топливом, количество газа Брауна в топливе не должно превышать 75-80%. При соблюдении приведенных выше пропорций применение газа Брауна не будет наносить ДВС никакого видимого урона, а его мощность видимо возрастет.
.

14. Сколько литров газа Брауна в минуту нужно для работы ДВС?

В первую очередь все зависит от объема двигателя, инжекторный двигатель или карбюраторный, какой год службы автомобиля… Если просто взять за основу к примеру жигули «копейку», то ей достаточно 17-18 литров в минуту на холостых оборотах и 20-24 литра на рабочем ходу. Это с расчетом того, что 90% топлива заменены на газ Брауна. Вес такой установки будет порядка 55-60 килограмм с учетом залитой воды.

Как мы уже писали Выше, это только первая часть вопросов. По мере их поступления, мы будем публиковать новые статьи с ответами на поступившие вопросы.

А теперь подарок для студентов вузов, которые слишком сильно увлеклись поиском свободной энергии и совсем забыли про учебу. Есть место, где Вам помогут, а при желание даже сделают

В современном обществе бытует мнение, что наиболее доступным по цене топливом является природный газ. На самом деле, ему существует альтернатива — водород. Его можно получить при расщеплении воды. Причем этот вид топлива будет бесплатным, если не учитывать тот факт, что придется собрать водородный генератор, компоненты которого нужно покупать.


Теоретическая основа

Водород является очень легким газообразным веществом. У него высокая химическая активность. Окисляясь, он дает большое количество тепловой энергии и при этом образует воду.

Водород обладает следующими свойствами:

Стоит отметить, что hydrogen и oxygen соединяются очень легко, а вот разделить их непросто. Для этого придется использовать электричество для запуска непростой химической реакции.

Простейший газогенератор для добычи водорода представляет собой емкость с жидкостью, внутри которой располагаются две пластины с подключением к электрической сети. Поскольку вода хорошо проводит ток, электроды вступают в контакт с малым сопротивлением. При прохождении электричества через пластины возникает химическая реакция, сопровождающаяся появлением водорода.

Водород. Учебный фильм для школьников по химии

Лучше всего собирать устройство для получения газа Брауна своими руками по схеме, которую называют классической. Здесь электролизер состоит из нескольких ячеек. В каждой из них находятся контактные пластины. Производительность установки определяется площадью поверхности электродов.

Ячейки следует поместить
в хорошо изолированный корпус с заранее подключенными патрубками для водоснабжения и отведения водорода. Кроме того, на емкость должен иметься разъем для подключения электрической энергии.

Также нужно будет установить водяной затвор и обратный клапан. Они предотвратят поступление газа Брауна назад в резервуар. По такой съеме можно собрать гидролизер как для отопления дома, так и для автомобиля.

Собрать водородный электрогенератор для дома можно, но рентабельной затею назвать сложно. Дело в том, что для получения достаточных объемов газа придется использовать мощную электрическую установку. Она будет потреблять много дорогой энергии. Однако это не останавливает энтузиастов.

Чтобы собрать электролизер для получения водорода своими руками в домашних условиях, понадобится специализированный инструмент. Например, не обойтись без осциллографа и частотомера.

Вооружившись чертежами, первым делом нужно собрать ячейку гидролизера. Ее ширина и длина должны быть чуть меньше габаритов корпуса. Высота — не более 2/3 основной емкости.

🔴Водород в отоплении дома🔴🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥

Ячейку обычно делают из толстого текстолита с помощью эпоксидного клея. При сборке нижняя часть корпуса остается открытой.

На верхней стороне емкости насверливаются отверстия. Через них наружу выводятся хвостовики электродов. Также понадобится 2 дополнительных отверстия. Первое совсем маленькое для датчика уровня жидкости. Второе диаметром в 15 мм для штуцера. Последний следует закрепить механически. Все отверстия для пластин после установки последних заливаются эпоксидной смолой. Модуль размещается внутри корпуса и основательно герметизируется все той же эпоксидной смолой.

Перед установкой ячеек корпус водогенератора следует подготовить:

После загрузки топливных ячеек, подключения питания, соединения штуцера с приемником и установки крышки на корпус, сборку генератора можно считать завершенной. Остается заполнить емкость жидкостью и подключить дополнительные модули.

Собрать генератор кислорода своими руками — половина дела. Нужно подключить к нему дополнительные устройства, без которых он работать не будет. Например, датчик уровня жидкости нужно соединить с помпой для подачи воды через контроллер. Последний отслеживает сигналы датчика и при необходимости запускает подачу жидкости внутрь топливных ячеек.

Не обойтись и без устройства, позволяющего регулировать частоту тока на клеммах ННО генератора. Кроме того, вся электрическая часть должна иметь защиту от перегрузки. Для этого обычно используется стабилизатор напряжения.

Как сделать генератор водорода своими руками/How to make a DIY hydrogen generator

Что касается коллектора оксиводорода, то его простейший вариант представляет собой трубку, на которой закреплены: запорная арматура, обратный клапан и манометр.

По идее газ из коллектора можно сразу закачивать в печь системы отопления. На практике это невозможно, так как водород выделяет слишком много тепла. Поэтому перед использованием его смешивают с другим топливом.

Своими руками собрать такое устройство не так уж и сложно. Помогут в этом чертежи с пошаговыми инструкциями. Также нужно будет приготовить необходимые материалы: контейнер из пластика или корпус от старого аккумулятора, трубку длиной не менее метра, крепежные болты и гайки, герметик, лист нержавеющей стали, несколько штуцеров, фильтры и обратный клапан.

Процесс изготовления водородного генератора для автомобиля выглядит следующим образом:

Простейший гидролизатор для авто готов. Но перед установкой в транспортное средство нужно его проверить. Для этого устройство заполняется водой до уровня крепежных болтов на пластинах. К штуцеру подключается полиэтиленовый шланг. Его свободный конец опускается в заранее подготовленную емкость с жидкостью.

После подачи энергии на электроды поверхность воды во втором контейнере должна покрыться пузырьками газа. Если это произошло, то генератор готов к эксплуатации. Остается жидкость в нем заменить на щелочной электролит для повышения объемов производимого газа.

Следует понимать,что самодельный генератор водорода не является заменой традиционному топливу. Его устанавливают на автомобили в основном для экономии бензина. Она может достигать 50%. Кроме того, при использовании HHO снижаются вредные выхлопы, повышаются эксплуатационные сроки, уменьшается температура силового агрегата. И все это при ощутимом повышении мощности мотора. Всеми любимая нержавейка — доступное, но недолговечное решение. Топливные ячейки на них довольно быстро выйдут из строя.

Также при сборке гидролизатора нужно соблюдать монтажные размеры. Чтобы их получить, нужно произвести сложные расчеты с учетом качества воды, необходимой мощности на выходе и т. д.

При изготовлении устройства значение имеет даже сечение проводов, по которым на электроды подается ток. Речь идет не о производительности генератора, а о безопасности его эксплуатации, но и этот важный нюанс нужно учитывать.

Главная проблема таких приборов
— большие затраты электричества для получения оксиводорода. Они превышают энергию, которую можно получить от сжигания такого топлива.

Из-за низкого КПД цена водородной установки для дома делает производство этого газа и его последующее использование для отопления невыгодным. Чем впустую расходовать электричество, проще установить любой электрокотел. Он будет эффективнее.

Что касается автомобильного транспорта, то здесь картина не сильно отличается. Да, можно сделать гидролизер для экономии топлива, но при этом снижается безопасность и надежность.

Единственное, где водород можно эффективно применять как топливо, — газосварка. Аппараты на hydrogen весят меньше, они компактнее, чем кислородные баллоны, но намного эффективнее. К тому же стоимость получения смеси здесь не играет никакой роли.

HyTech Power, возможно, решил водород, одну из самых сложных проблем в чистой энергии

Это странный химический поворот в том, что топливо встроено в самое обычное вещество на Земле: воду.

Водород — символ славы h3O — оказался чем-то вроде универсального элемента, швейцарского армейского ножа для получения энергии. Его можно производить без парниковых газов. Он легко воспламеняется, поэтому может использоваться в качестве топлива для сжигания. Его можно подавать в топливный элемент для производства электричества напрямую, без сжигания, с помощью электрохимического процесса.

Может храниться и распространяться в виде газа или жидкости. Его можно комбинировать с CO2 (и / или азотом и другими газами) для создания других полезных видов топлива, таких как метан или аммиак. Его можно использовать в качестве химического сырья в различных промышленных процессах, помогая производить удобрения, пластмассы или фармацевтические препараты.

Довольно удобно.

И это самый распространенный химический элемент во Вселенной, так что можно подумать, что у нас есть все, что нам нужно. К сожалению, это не так просто.

Выделять водород из других элементов, хранить его и преобразовывать обратно в полезную энергию — это дорого как с точки зрения денег, так и энергии.Ценность, которую мы получаем от этого, никогда полностью не оправдывала того, что мы вкладываем в его производство. Это одна из тех технологий, которая, кажется, постоянно находится на грани прорыва, но никогда не достигает цели.

Уроженец Сиэтла Эван Джонсон считает, что он может это изменить. Он думает, что наконец-то понял, как разблокировать водородную экономику.

Джонсон — далеко не первый и не единственный человек, ставший этой целью. Но после 10 лет экспериментов, испытаний и подготовки он разработал ряд технологий и практический бизнес-план, который проложил путь к реальному коммерческому масштабу использования водорода.

И хотя HyTech Power, где Джонсон является техническим директором, очевидно, стремится к финансовому успеху, Джонсон рассматривает свои продукты как нечто большее: способ использовать водород для немедленного уменьшения загрязнения при одновременном увеличении и сокращении затрат, достаточных для внесения более фундаментальных изменений в энергетику. система.

Стационарный дизель-генератор с водородными форсунками HyTech. HyTech Power

HyTech нацелена на большой рынок, чтобы выйти на еще больший

HyTech Power, базирующаяся в Редмонде, штат Вашингтон, намеревается представить три продукта в течение ближайшего года или двух.

Первый будет использовать водород для очистки существующих дизельных двигателей, повышая их топливную эффективность на треть и устраняя более половины их загрязнения воздуха, со средней окупаемостью за девять месяцев, сообщает компания. Это потенциально огромный рынок с большим существующим спросом, который, как надеется HyTech, позволит капитализировать свой второй продукт — модернизацию, которая превратит любой автомобиль внутреннего сгорания в автомобиль с нулевым уровнем выбросов (ZEV), позволив ему работать на чистом водороде. В первую очередь это будет нацелено на крупные флоты.

И это станет третьим продуктом — тот, на который Джонсон положил глаз с самого начала, тот, который может революционизировать и децентрализовать энергетическую систему — стационарный продукт для хранения энергии, предназначенный для конкуренции и, в конечном итоге, вытеснения с такими большими батареями, как Powerwall Теслы.

По крайней мере, таков план.

Мир энергетики, конечно, полон громких стартапов, и путь от прототипа к рыночному успеху долог и опасен. Для успеха HyTech потребуется нечто большее, чем просто умные технологии.Потребуется хорошее исполнение.

С этой целью компания недавно привлекла поддержку нескольких опытных руководителей Boeing, в том числе Джерри Аллина, который проработал 30 лет в Boeing и в декабре вышел на пенсию, чтобы возглавить расширение HyTech в качестве главного операционного директора.

Мягкая и неторопливая, с аккуратно подстриженной бородой, Аллин занимает небольшой офис на втором этаже бежевого здания HyTech, которое в основном занято огромным гаражом / мастерской. «Я очень скептически относился к технологии, как и обычно», — говорит он, но «как только я смог увидеть ее собственными глазами и понять физику, я подумал, о боже.Это действительно интересно! »

Его привлекло то, что исходные продукты не требуют новых рынков или инфраструктуры. «Теперь они действительно могут изменить мир», — говорит он. Ключевым моментом является в первую очередь дизельные двигатели. Их миллионы, они грязные и дорогие, и политики стараются их очистить. Это большой спрос. Компания «ожидает совершить много ошибок», — говорит Аллайн, но потенциальный рынок почти неизмеримо велик.

Работа в гараже HyTech, переоборудование больших дизельных грузовиков. HyTech Power

И ставки выше быть не могут. В последние годы стало ясно, что какое-то топливо с нулевым содержанием углерода, пригодное для хранения, горючее, если не необходимо, для полной декарбонизации энергетической системы, по крайней мере, чрезвычайно полезно.

Перед тем, как углубиться в продукты HyTech, стоит объяснить, почему доступный водород является такой заманчивой перспективой для тех, кто озабочен устойчивой энергетикой.

Проблема с водородом: его дорого собирать, хранить и преобразовывать.

Около 95 процентов мирового производства водорода осуществляется за счет парового риформинга метана (SMR), продувки природного газа высокотемпературным паром под высоким давлением.Это энергоемкий процесс, который требует использования ископаемого топлива и оставляет после себя поток углекислого газа, поэтому его использование для обезуглероживания энергетической системы ограничено.

Но также можно извлечь водород непосредственно из воды с помощью электролиза — это процесс поглощения воды (содержащей различные «электрокатализаторы») электричеством, стимулируя химическую реакцию, которая расщепляет водород и кислород. Если электролиз проводится с использованием возобновляемой электроэнергии с нулевым выбросом углерода, полученный водород является топливом с нулевым выбросом углерода.

Это решает проблему углерода, но есть и другие. Водород в воде на самом деле не хочет выпускать кислород (они «прочно связаны»), поэтому их расщепление требует довольно много энергии. Полученный водород необходимо хранить, либо сжимая его в виде газа с помощью больших насосов, либо (слабо) связывая его с чем-то еще и храня в виде жидкости. Для этого газа или жидкости потребуется распределительная инфраструктура. Наконец, водород должен быть извлечен из хранилища и преобразован обратно в энергию путем его сжигания или пропуска через топливный элемент.

К тому времени количество энергии, вложенной в процесс, значительно превышает то, что может быть возвращено обратно.

Это был барьер. Если сложить все затраты на преобразование энергии, «добыча» водорода для использования в энергетической системе с нулевым выбросом углерода, как правило, была убыточным бизнесом. Полезные услуги, предоставляемые водородом, не могут компенсировать энергию (и деньги), необходимые для ее производства и использования. По крайней мере, не на сегодняшний день.

Вот почему, хотя люди добывают и сжигают водород с 17-го века, двигатели и топливные элементы, работающие на водороде, существуют примерно с 19-го, а водород прошел через многочисленные циклы ажиотажа, вплоть до 21-го века. — разрекламированная «водородная экономика» так и не получила широкого распространения.

Таких не так уж и много. Shutterstock

Еще в конце 2000-х годов большинство экспертов в области энергетики списали водород со счетов. С тех пор изменились две вещи.

Доступный водород может устранить основные препятствия на пути к устойчивой энергетике

Главное, что изменилось, — это глобальный переход на чистую энергию. Чтобы решить проблему изменения климата, мир фактически согласился полностью декарбонизировать энергетическую систему в течение столетия.Это вызвало интенсивное исследование инструментов, необходимых для создания системы с нулевым выбросом углерода.

Мы знаем, как производить электричество с нулевым выбросом углерода (возобновляемые источники, гидроэнергетика, атомная энергия), поэтому одним из ключевых шагов в декарбонизации является «электрификация всего» или, по крайней мере, как можно большего количества видов энергии.

Но широкомасштабная электрификация — непростая задача. Существует множество существующих приложений, работающих на горючем жидком топливе. Помимо практически всего транспорта, подумайте о миллионах и миллионах зданий по всему миру, отапливаемых нефтью или природным газом.

Значительная часть транспорта может быть электрифицирована, и все эти печи теоретически можно заменить электрическими альтернативами, такими как тепловые насосы, но сделать все это за оставшееся время для обезуглероживания — поистине монументальная задача.

Конечно, было бы неплохо выиграть время, если бы у нас было жидкое топливо с нулевым выбросом углерода, которое мы могли бы просто использовать в этих существующих системах, чтобы сократить выбросы от транспортных средств и приборов, которые мы уже используем. (Великобритания экспериментирует с отоплением домов водородом; Норвегия запретит любое использование мазута для отопления домов к 2020 году.)

Кроме того, если переменная возобновляемая энергия (солнце и ветер) должна обеспечивать большую часть или всю нашу энергию, нам понадобится какой-то способ хранить эту энергию, когда солнце и ветер не хватает. Нам потребуется не просто посекундное или почасовое хранение (которое вполне может обеспечить батареи), но и ежедневное, ежемесячное или ежегодное хранение (для которого батареи не подходят), чтобы гарантировать защиту от долговременных колебаний солнца и ветра. . Было бы неплохо, если бы мы могли хранить много резервной энергии в виде стабильного жидкого топлива.

Короче говоря, в наших планах по устойчивой энергетике есть дыра в форме водорода.

Второе, что изменилось, это то, что исследования, разработки и ранние рыночные испытания неуклонно снижали стоимость и повышали долговечность основных компонентов водородной технологии.

В общем, потребность в сочетании с инновациями может, наконец, означать, что под рукой есть рентабельные продукты. Вот почему «во всем мире наблюдается возрождение водородной активности», — говорит Адам Вебер, руководитель группы преобразования энергии в Национальной лаборатории Лоуренса Беркли.

Или, как недавно сказал Пьер-Этьен Франк, секретарь торговой группы Hydrogen Council, «2020-2030 годы будут для водорода такими же, как 1990-е годы для солнца и ветра».

Несмотря на все недавние инновации, Джонсон снова и снова обнаруживал, что каждый раз, когда он отказывался от стандартных компонентов и создавал свои собственные — практически каждый элемент в продуктах HyTech спроектирован и изготовлен по индивидуальному заказу, сырье заказывается через Интернет — « цена пошла вниз. Не знаю почему.”

Джонсон высокий, худощавый и светловолосый, заядлый творец и строитель, глаза которого загораются, когда он говорит о технике. После учебы в Тихоокеанском университете Сиэтла он провел первые 10 лет своей 20-летней карьеры в области сжатия видео. Но работа в Норвегии с Innovation Norway над хранением водородной энергии привела к тому, что у него возникла проблема с водородом. С тех пор он стал истинным верующим. «Ставка на водород в будущем — лучшее, что вы можете сделать», — говорит он.

«Если электролиз действительно настолько дешевле, это меняет правила игры»

Начинается с электролизера, который извлекает водород из воды.Джонсон не смог найти такой дешевый, простой и эффективный, как он хотел, поэтому он построил свой собственный.

Электролизер HyTech (в данном случае присоединенный к стационарному дизель-генератору). HyTech Power

Ничего особенного, просто трубка, наполненная дистиллированной водой. Примерно в центре подвешена небольшая титановая пластина, покрытая специальной смесью электрокатализаторов, оптимизированных для разделения водорода и кислорода.Газы поднимаются с пластины непрерывным потоком пузырьков. Он полностью закрыт металлом, в нем нет движущихся частей, поэтому он чрезвычайно прочен и не требует значительного обслуживания.

В целом, по словам Джонсона, система «очень проста и бессмысленна». (Это тема, к которой он часто возвращается — предпочтение замкнутых, простых, полностью перерабатываемых систем.) Но благодаря эффективности электрокатализаторов, добавляет он, «очень точно, сколько энергии необходимо для производства необходимый водород.”

Джонсон может похвастаться тем, что его электролизер может производить водород примерно в три или четыре раза быстрее, чем электролизеры с аналогичной площадью основания, используя примерно треть электрического тока. Это означает постепенное снижение затрат.

«Очевидно, я не могу проверить их экономику издалека, — сказал мне Джеймс Бреннер из Национального центра исследований водорода при Технологическом институте Флориды, — но если электролиз действительно намного дешевле, это меняет правила игры».

Теперь давайте посмотрим, что HyTech планирует с этим делать.

Модернизация. HyTech Power

Способ очистки дизельных двигателей для рынка, который остро нуждается в одном

Первый продукт, дебют которого запланирован на апрель, — ключ ко всему остальному.

Это называется «Система внутреннего сгорания» (ICA), модификация двигателей внутреннего сгорания, которая позволяет им существенно повысить эффективность использования топлива и уменьшить загрязнение воздуха. Это достигается путем добавления к топливу крошечных количеств газообразного водорода и кислорода непосредственно перед его сгоранием в цилиндрах двигателя.Смесь HHO придает интенсивность сгоранию, позволяя топливу сгорать более полно, генерируя больше энергии и меньше загрязнений.

Система ICA технически может работать на любом двигателе внутреннего сгорания, но для начала HyTech нацелена на самые грязные двигатели с самой быстрой окупаемостью инвестиций, а именно на дизельные двигатели — в транспортных средствах, таких как грузовики, грузовые автофургоны, автобусы и вилочные погрузчики, а также большие стационарные дизельные генераторы, которые по-прежнему обеспечивают резервное (и даже основное) питание миллионов людей во всем мире.

Все эти дизельные двигатели выделяют канцерогенный дым, содержащий твердые частицы (сажа) и оксиды азота (NOx), которые наносят вред здоровью человека. Штаты и города по всему миру борются с загрязнением воздуха дизельным топливом.

Но дизельные сажевые фильтры (DPF), которые задерживают частицы, дороги, требуют технического обслуживания и требуют частой замены. Жидкости для селективного каталитического восстановления (SCR), добавляемые в выхлопные газы для удаления NOx, сами по себе являются загрязнителями, и их необходимо часто менять.

Короче говоря, есть много дизельных двигателей, они очень грязные (ответственны за до 50 процентов загрязнения городского воздуха зимой), и многие люди тратят много денег, пытаясь их очистить. Это большой рынок.

Предложение

HyTech на этом рынке весьма примечательно: оно утверждает, что его ICA может повысить топливную экономичность дизельного двигателя на 20–30 процентов, снизить содержание твердых частиц на 85 процентов и сократить выбросы NOx на 50–90 процентов.Вместе с сажевым фильтром DPF и некоторым количеством SCR он может дать дизельный двигатель, который соответствует официальным калифорнийским стандартам для автомобилей со «сверхнизким уровнем выбросов».

Стоимость преобразования грязного дизельного двигателя в относительно чистый: около 10 000 долларов на установку, которые, по оценке HyTech, окупятся за девять месяцев за счет сокращения расходов на топливо и техническое обслуживание.

Устройство помощи внутреннего сгорания (ICA) HyTech, установленное на большом дизельном двигателе.(Видите маленький ряд форсунок?) HyTech Power

HyTech — не первая и не единственная компания, разработавшая систему присадок HHO, но ничто на рынке не может сравниться с такими цифрами.

ICA достигает этой эффективности благодаря компьютеризированному контроллеру времени, который определяет и анализирует вращение коленчатого и распределительного валов, чтобы определить точное время и размер впрыска HHO. Предыдущие системы HHO более или менее заполняли двигатель HHO через воздухозаборник, но HyTech использует «впрыск через порт» с отдельным инжектором на впускном клапане каждого цилиндра, управляемым таймером.Каждый инжектор (размером примерно с человеческий волос) впрыскивает крошечные, точно отмеренные струи HHO в цилиндр именно тогда, когда это необходимо.

Такой уровень точности позволяет ICA использовать гораздо меньше водорода, чем его конкуренты, гораздо более эффективно. Небольшой бортовой электролизер производит более чем достаточно.

Это смелые заявления, но пока они остаются верными. ICA был включен в список EPA как кандидат на технологию сокращения выбросов; Уважаемая испытательная фирма SGS обнаружила, что ICA повысила топливную экономичность грузовика FedEx на 27.4 процента; FedEx в настоящее время проводит дорожные испытания ICA на автопарке грузовиков и обнаруживает, что экономия топлива на 20–30 процентов выше, а затраты на техническое обслуживание сажевого фильтра значительно снизились. При стороннем тестировании и при ограниченных местных продажах в районе Редмонда ICA выполнила свои обещания.

Если он сможет сделать это в масштабе HyTech — надежно повысить экономию топлива на треть и снизить загрязнение почти до нуля с окупаемостью за девять месяцев — возможностей не будет конца. Компания оценивает рынок очистных работ в 100 миллиардов долларов, включая портовые грузовики, грузовые суда, рефрижераторы, грузовики дальнего следования, автобусы, генераторы и все другие грязные дизельные двигатели.

ICA не полагается на новую инфраструктуру или субсидии. Это способ выйти на большой рынок, немедленно сократить выбросы и накопить финансирование для долгосрочных усилий по полной замене дизельного топлива.

HyTech также хочет очистить существующие автомобили

Позже в этом году HyTech представит свою вторую линейку продуктов: модифицированные водородом автомобили с ДВС. Проще говоря, он будет переключать любой двигатель, работающий на дизельном топливе, бензине, пропане или СПГ, на 100-процентный водород.(В настоящее время компания находится в процессе сертификации своего модифицированного продукта Калифорнийским советом по воздушным ресурсам как не имеющий выбросов.) Это позволит любому водителю получить автомобиль с нулевым уровнем выбросов по значительно меньшей цене, чем стоимость покупки нового электрического или электрического двигателя. автомобиль на водородных топливных элементах.

Джонсон признает, что, если бы он проектировал автомобиль с нуля, он бы спроектировал его на основе водородного топливного элемента без сгорания, но «мы не заинтересованы в том, чтобы становиться автомобильной компанией», — говорит он.Вместо этого HyTech хочет очистить существующие автомобили.

Не каждый может позволить себе автомобиль Toyota Mirai на водородных топливных элементах (от 58 365 долларов). Shutterstock

Для такого применения с чистым водородом (в отличие от смешанного HHO) электролизер немного отличается. Водород проходит через мембрану, которая лишает его остатков кислорода или азота, оставляя чистый водород для сгорания транспортного средства.(Это делает электролизер протонообменной мембраной, или PEM, электролизером, вариант, знакомый любителям водорода.)

По своему обыкновению, Джонсон разработал свою собственную мембрану, смешав сырье, чтобы создать что-то более эффективное и дешевое, чем другие продукты PEM на рынке.

Есть еще одно отличие, которое представляет собой еще одну из основных технологических разработок Джонсона.

Потребляемая мощность двигателя транспортного средства варьируется и может быстро увеличиваться и уменьшаться, поэтому системе необходимо хранить немного водорода в качестве буфера на случай, если он потребляет больше, чем может произвести электролизер.

Обычные автомобили на водородных топливных элементах (например, Toyota Mirai) хранят водород в виде сильно сжатого газа при давлении около 8000 фунтов на квадратный дюйм. Но со сжатым газом возникают самые разные проблемы. Для сжатия газа требуется много энергии, для этого требуется собственная специализированная инфраструктура, заправочные станции для сжатого газа чрезвычайно дороги в строительстве, а сжатый водород, ну, взрывоопасен, поэтому каждый полный бак, заполненный им, является потенциальной бомбой.

Джонсон не хочет иметь с этим ничего общего. Итак, он пошел другим путем.Его система хранит водород, слабо связанный с металлами в виде «гидридов», в инертном жидком растворе без давления (~ 200 фунтов на квадратный дюйм).

Проблема с гидридами была двоякой: а) создание связи, достаточно слабой, чтобы ее можно было разорвать без излишней энергии, когда необходимо высвободить водород, и б) увеличение плотности энергии образующейся жидкости. (На сегодняшний день большинство гидридных жидкостей имеют меньшую энергетическую плотность, чем сжатый водород, и намного меньше ископаемого топлива. Они весят слишком много для той энергии, которую они производят.)

Джонсон думает, что решил обе проблемы. Он не раскрывает подробностей о задействованных гидридах, но у него достаточно высокое соотношение мощности к весу, чтобы побить литий-ионные батареи (которые очень тяжелые), и достаточно слабую гидридную связь, чтобы ее можно было разорвать, используя только перенаправляем отходящее тепло от двигателя (не требуется дополнительного тепла или давления).

Более того, он работает с командой над наноматериалами для гидридов и ожидает «огромного скачка» в соотношении мощности к весу в ближайшие годы; в конечном итоге, по его словам, он хочет, чтобы плотность энергии была конкурентоспособной с ископаемым топливом.

Эффективный электролиз плюс эффективное накопление гидридов означает, что в результате модернизации Hy-Tech будет создан автомобиль с нулевым уровнем выбросов (ZEV) со средней дальностью полета 300 миль, сравнимый с электромобилями высокого класса, но способный работать с любым существующим транспортным средством. Когда я посетил завод HyTech в Редмонде, Джонсон отвез меня на обед в гигантском пикапе Ford Raptor, работающем на водороде.

Ford Raptor, работающий на чистом водороде. HyTech Power

Есть два способа «заправить» автомобиль.Медленный способ — включить его на ночь, чтобы электролизер мог заполнить бак. Самый быстрый способ — заполнить его раствором гидрида, который можно получить на месте, дома или на заправочной станции, не имея ничего, кроме электролизера, немного дистиллированной воды и резервуара.

Пока не существует инфраструктуры, поддерживающей такую ​​быструю заправку, но это не похоже на сжатый водород под высоким давлением, подчеркивает Джонсон. Это не опасно; не производит токсичных побочных продуктов; он не требует множества государственных правил безопасности и правоприменения; Теоретически, на заправочных станциях «мама и папа» можно было бы довольно дешево запустить насос.

Несколько утопическое видение Джонсона состоит в том, что в конечном итоге в каждом доме и на предприятии будет электролизер и полный бак связанного водорода, который можно будет использовать либо для выработки электроэнергии для здания (подробнее об этом в третьем этапе), либо для топлива водородных транспортных средств.

По словам Джонсона, цель — оставить двигатели внутреннего сгорания, но «это все равно, что бросить курить — каждый хочет остыть индейки». Этого просто не произойдет «. Модернизация существующих транспортных средств за небольшую часть стоимости нового транспортного средства с нулевым уровнем выбросов позволит компании быстро начать сокращение транспортных выбросов.

Святой Грааль HyTech: долгосрочное и доступное хранилище энергии

Наконец, получив финансирование и капитализацию за счет продуктов для модернизации, HyTech приступит к производству аккумуляторов энергии. Его масштабируемое хранилище энергии (SES) предназначено для конкуренции с большими батареями, такими как Powerwall от Tesla, либо в качестве локального хранилища для домов и предприятий, либо в качестве хранилища в масштабе сети, подключенного к крупным солнечным и ветряным электростанциям.

Идея хранения водородной энергии заключается в том, что когда-нибудь скоро будут регулярные периоды, когда ветер и солнце вырабатывают электроэнергию, значительно превышающую спрос.Эти излишки энергии будут стоить очень дешево — по сути, мы будем искать способы не тратить их зря.

Одной из набирающих популярность идеей является «преобразование энергии в газ», то есть преобразование этой избыточной энергии в водород и его хранение. «Водород — это, вероятно, самое простое, что вы можете сделать при низких ценах на электроэнергию», — говорит Вебер.

Часть этого водорода можно закачать в существующие газопроводы, что снизит углеродоемкость газа. Некоторые из них могут быть объединены с диоксидом углерода для создания другого жидкого топлива.И некоторые из них можно было бы напрямую преобразовать обратно в энергию с помощью топливных элементов. «Стационарное хранение — это прекрасных потенциальных возможностей для водородных топливных элементов», — говорит Леви Томпсон, директор Лаборатории технологий водородной энергетики Мичиганского университета.

Проблема, опять же, заключалась в том, что сквозная эффективность накопления водородной энергии на основе электролиза обычно была меньше половины, чем достигается литий-ионной батареей.

Плохой рисунок, иллюстрирующий накопление водородной энергии. Shutterstock

И снова Джонсон думает, что сломал его.

Вот как работает система SES HyTech: энергия поступает (в идеале от солнечных панелей или ветряных турбин) для запуска электролизера. Произведенный водород либо поступает в топливный элемент (да, Джонсон построил свой собственный), либо связывается в виде гидридов и хранится в резервуаре. Когда требуется энергия, гидридные связи разрываются с использованием отработанного тепла системы, высвобождая больше водорода для топливного элемента.

Избегая сжатия и обнаружив, что гидридная связь достаточно слабая, чтобы ее можно было разорвать отходящим теплом, Джонсон заметно повысил эффективность.Он еще больше повысил эффективность с помощью другой умной техники. В большинстве хранилищ водорода используются огромные электролизеры и топливные элементы, которые не могут точно масштабировать производство энергии в соответствии с потребностями. Джонсон построил свою систему по модулям: она содержит стопки электролизеров и топливных элементов меньшего размера, которые можно запускать по одному по мере роста спроса. «Глупо просто», — говорит он с улыбкой.

Внешне SES работает как большая батарея, но есть отличия и компромиссы.

С другой стороны, несмотря на то, что он значительно увеличил сквозную эффективность по сравнению с водородными конкурентами, Джонсон все еще не совсем соответствовал эффективности батарей.Он говорит, что на данный момент эффективность SES составляет около 80 процентов. По крайней мере, когда они новые, традиционные свинцово-кислотные батареи составляют около 90 процентов, а литий-ионные батареи — около 98 процентов или выше, хотя все батареи со временем изнашиваются. (Джонсон ожидает, что эффективность SES будет продолжать расти по мере разработки новых материалов для своих электролизеров и топливных элементов — он думает, что 85 или 90 процентов находятся в пределах досягаемости.)

С другой стороны, SES прослужит намного дольше, чем батарея, пройдя более 10 000 циклов зарядки и разрядки, по сравнению с примерно 1000 для литий-ионной батареи.Это приблизит срок ее службы к сроку службы типичной солнечной панели, что позволит более удобно соединять их в пару.

В отличие от аккумуляторов, которые нельзя полностью зарядить или разрядить из-за опасения ухудшения характеристик, SES может перейти от 100-процентной емкости до 0 и обратно без повреждений.

И когда он действительно изнашивается, в отличие от батарей, SES полностью подлежит переработке. Металлы плавятся, перетираются и используются повторно; вода перегоняется.

Лучше всего то, что раствор гидрида может храниться неограниченное время без обслуживания или потери потенциала.Его не нужно сжимать или охлаждать, как сжатый водород. Он не разлагается, как электрохимический заряд аккумуляторов. Гидриды можно хранить столько, сколько необходимо.

Это делает SES фантастическим кандидатом на долгосрочное хранение энергии, святым Граалем по-настоящему устойчивой энергетической системы. Если бы электричество было дешевым и достаточно обильным, в принципе не было бы ограничений на количество резервной энергии, которую можно было бы накапливать.

Это также делает SES идеально подходящим для распределенной энергетической системы.Без движущихся частей, надежных компонентов, устойчивых к экстремальным температурам и погодным условиям, и 98-процентной возможности вторичной переработки, это был бы чрезвычайно простой способ для любого, у кого есть несколько солнечных панелей, получить степень энергетической независимости. Это может быть особенным благом для удаленных, автономных сообществ.

Жутко горящий электролизер. HyTech Power

Какова бы ни была судьба HyTech, потребность в водороде повлечет за собой инновации

Распределенная безуглеродная водородная экономика — это то, о чем размышляет Джонсон, когда дает себе время подумать.Но в наши дни перед нами стоит более неотложная задача: запустить HyTech.

Ни один из экспертов по водороду, с которым я разговаривал, не обнаружил каких-либо особых тревожных сигналов в технических заявлениях HyTech, но все они проявили с трудом завоеванный скептицизм «шоу-не-говори». В водородном мире произошло много новых событий. История усеяна трупами многообещающих стартапов, которые не смогли воплотить свои инновации в жизнеспособные рыночные продукты.

Тем не менее, Hytech, похоже, занимает хорошие позиции, имея надежную команду руководителей, некоторое раннее финансирование, положительные результаты испытаний, партнерские отношения с такими крупными игроками, как FedEx и Caterpillar, а также целевой рынок с продемонстрированным спросом на ее продукцию.Скорее всего, через год или два мы узнаем, справились ли они с этим.

В любом случае, по мере того, как стремление к созданию устойчивой энергетической системы всерьез набирает обороты, потребность в водороде будет только расти. Нам нужно топливо с нулевым выбросом углерода и нам нужно долгосрочное хранение энергии. Водород подходит обоим счетам.

Когда есть большая социальная потребность и деньги, люди становятся умными. Если Джонсон сможет добиться нескольких поэтапных достижений в водородной технологии, совершая покупки в Интернете и возясь в своей лаборатории, скоро другие сделают то же самое.А по мере выхода продуктов на рынок масштабирование приведет к снижению затрат, как это произошло с ветряной и солнечной энергией.

Во многих смыслах доступный водород — это последняя часть головоломки устойчивой энергетики, энергоноситель, который может заполнить трещины в системе, работающей в основном на ветровой и солнечной энергии. За прошедшие годы его несколько раз оставляли умирать, но, поскольку мир серьезно относится к декарбонизации, водород, наконец, может выиграть свой день на солнце.

Как работает генератор водорода?

Типы генераторов водорода

Генераторы водорода могут быть генераторами, работающими на водороде, или генераторами, производящими водород.Генератор, работающий на водороде, будет использовать газ или водородный топливный элемент для выработки электроэнергии для использования генератором. Генератор, производящий водород, будет делать это либо за счет использования процесса электролиза или воды, либо путем извлечения и преобразования чистого водорода из химического вещества, богатого водородом, такого как боргидрид натрия, аммиак, метанол или бензин. Метод водного электролиза дает мало отходов, которые нужно утилизировать, f в то время как в процессе экстракции и реформирования образуются многочисленные побочные продукты, которые необходимо утилизировать или переработать с помощью какого-либо другого процесса.

Как это работает

Независимо от того, использует ли водородный генератор воду или извлекает и реформирует водород из других химикатов, основной принцип работы генератора остается неизменным. Исходная жидкость или химикат помещается в емкость с двумя металлическими пластинами. Затем пластины «заряжаются» (либо посредством подачи электричества, либо посредством химической реакции), в результате чего элементы источника разделяются на h3 и побочный продукт, который не используется генератором. Затем h3 удаляется из контейнера.

Текущие приложения

Многие водородные генераторы, использующие технологию электролиза воды, продаются населению как часть систем повышения топливной эффективности для установки в частных транспортных средствах. Генератор водорода сверхвысокой чистоты, работающий в системе электролиза воды, используется в медицинских и исследовательских областях для производства водорода высокой чистоты для газовой хроматографии и других целей. Генераторы экстракции и преобразования обычно используются на заправочных станциях для водородных автомобилей (они извлекают водород из природного газа, хранящегося на станциях) и в водородных топливных элементах, которые устанавливаются в гибридных транспортных средствах, которые объединяют элемент с обычным двигателем внутреннего сгорания.

Возможные области применения

Многие страны активно развивают технологию генераторов водорода, поскольку они признают, что генераторы водорода могли бы радикально снизить количество токсичных выбросов в атмосферу, если бы системы были размещены во всех транспортных средствах, будь то водородные топливные элементы в гибридный автомобиль или в качестве дополнительной поддержки топливной экономичности в стандартном автомобиле, и генераторы водорода были добавлены в электрические сети их страны. Использование генераторов водорода в транспортных средствах может резко снизить зависимость от ископаемого топлива.Тот факт, что водородный генератор может быть легко построен из предметов повседневного обихода и производить достаточно электроэнергии и газа h3 для питания домов, транспортных средств и других приложений, может изменить характер мировой экономики, сделав электричество и мощность доступными для всех, независимо от того, установлен ли он. электрические сети. И Управление энергетической информации правительства США, и Национальный исследовательский совет Канады поддерживают веб-сайты для продвижения и документирования своих усилий, направленных на полное использование их технологий в течение следующих 20 лет.Обе страны поддерживают исследования по раскрытию потенциальной способности водородного генератора «перерабатывать» химические вещества и использовать простую воду в качестве источника энергии и превращать ее в источник бесконечного возобновляемого электричества.

h3 Energy предлагает доступный генератор водорода для домашнего использования

Недорогой водородный генератор от h3 Energy Renaissance скоро появится, чтобы избавиться от ископаемого топлива.

Поистине удивительно, что технологии и изобретения чистой энергии, которые казались взятыми из научно-фантастического фильма всего 10 лет назад, теперь доступны на рынке и доступны каждому.Развитие происходит быстро, постоянно появляются все более совершенные и более мощные технологии.

В течение некоторого времени солнечная энергия была доминирующим возобновляемым источником энергии для домашнего использования . Да, у него есть свои ограничения, но он доступен по цене, прост в установке и относительно не требует обслуживания. Немногие другие источники энергии могли конкурировать с этим, по крайней мере, до сих пор.

Вот и новичок в районе, который собирается бросить вызов всему, что в настоящее время присутствует на рынке энергии, начиная с ископаемого топлива.Встречайте первый в истории доступный водородный генератор , разработанный h3 Energy Renaissance .

По словам производителей, водородный генератор может производить энергию, которая намного дешевле, чем ископаемое топливо. Это происходит благодаря идеальной синергии между различными физическими и химическими процессами, которые вместе производят водорода в без выбросов парниковых газов и доступным способом. Технология, лежащая в основе генератора h3 Energy Renaissance , теперь запатентована.Он состоит из основных металлов и водного раствора.

Генераторы производят водород по очень низкой цене, а конечные пользователи могут получать электроэнергию по цене от 5 до 12 центов за киловатт. Это примерно на 50% дешевле, чем затраты на электроэнергию во многих странах, бросая вызов атомной энергии и углю.

Водородный генератор можно использовать практически везде. Он может питать домов, офисных зданий, а также различные виды транспорта, такие как автомобили, поезда и корабли. И что самое приятное, он скоро появится на Indiegogo, так что каждый сможет получить его в свои руки.

В рамках краудфандинговой кампании будут предложены две разные модели. Первый специально разработан для электроснабжения домов. Это примерно 10 дюймов в ширину, 12 дюймов в высоту, 12 дюймов в длину и весит приблизительно 50 фунтов. Второй, более крупный (15 дюймов в ширину, 20 дюймов в высоту и 32 дюйма в длину, 250 фунтов), предназначен для заправки поездов, грузовиков, кораблей и других транспортных средств.

Цель состоит в том, чтобы продукт был как можно более дешевым и охватил как можно больше людей. Цена должна быть в пределах от 2 до 7 тысяч долларов для домашних устройств.Если h3 Energy удастся сотрудничать с крупной компанией, затраты будут низкими, и будут доступны варианты финансирования.

Мне очень повезло, что я смог поговорить с генеральным директором h3 Energy Кириллом Гичунцем. Он не только ответил на все мои вопросы (см. Интервью ниже), но и предложил эксклюзивную скидку для всех читателей «Зеленого оптимизма». Каждый может подписаться здесь и получить скидку 50 долларов на покупку водородного генератора.

1. Где и когда возникла идея создания этих генераторов водорода?

Изобретение первой модели произошло в 2009 году на золотом руднике в Калифорнии.Это было случайное изобретение. Было произведено много водорода. Сразу стало ясно, что эту технологию можно использовать для обеспечения мира чистым топливом. С тех пор технология претерпела полную трансформацию через 7 моделей в то, что есть сегодня.

2. Сколько людей участвовало в разработке концепций и воплощении их в жизнь?

11 человек участвовали в разработке концепции и воплощении в жизнь водородного генератора h3 Energy Renaissance. В нем приняли участие 5 ученых с докторской степенью из ведущих исследовательских университетов, NASA и Boeing.

3. Чем эта технология лучше всего, что есть сейчас?

Никогда прежде водород не был так дешев для производства почти в любом месте, где необходимы электричество, тепло или топливо. Наша технология является источником доступного, чистого и безуглеродного топлива. Лучше двумя способами:

1.Как производится водород h3 Energy Renaissance

Процесс производства водорода делает его доступным. В наших генераторах используется электрогидравлический удар для удаления оксидной пленки с алюминия, а затем 16 физических и химических процессов работают в унисон для устойчивого производства водорода.Технология потребляет всего 100-150 Вт электроэнергии вместе с водным раствором и алюминием. Генераторы работают на водопроводной воде и могут быть подключены к стене, получать электричество от небольшой солнечной панели или мини-ветряной турбины. Технология полностью безопасна.

2. Как используется водород h3 Energy Renaissance

Генератор — это уникальная экологически чистая технология, поскольку он является источником чистого топлива. Водородный генератор h3 Energy Renaissance может быть соединен с топливным элементом, двигателем, комбинированным теплоэнергетическим агрегатом, котлом или турбиной, практически любой технологией, производящей тепло, электричество или механическую энергию.Таким образом, наш генератор можно разместить в любом месте, где необходимо электричество, тепло или топливо. Локальное использование генератора делает эту технологию идеальной для домов, автомобилей, грузовиков, кораблей, заводов, коммерческих центров, ферм и всего остального.

Самое лучшее — это цена, потому что конечные пользователи сэкономят до 50% и более на затратах на электроэнергию: 1 кВт / ч электроэнергии может быть произведен по цене от 3 до 10 центов, а 1 килограмм h3 (1 галлон газового эквивалента) стоит около 1 доллара. . На 1 килограмме h3 автомобиль может проехать 60 миль.

А теперь самое лучшее. При сгорании водород превращается в воду. Есть 0% парниковых газов.

4. Каков профиль вашего потенциального клиента или, другими словами, какова ваша целевая группа?

Одна целевая группа — это все, кто хочет сэкономить на своих расходах на электроэнергию. В другую группу входят люди, которым небезразлично здоровье нашей планеты. Эта технология поможет сделать наш воздух и воду чище и поможет обратить вспять изменение климата.

5.Каков следующий шаг для получения энергии h3? У вас уже есть концепция «нового и улучшенного» водородного генератора? И если не секрет, не могли бы вы рассказать нам, какой именно аспект генератора вы хотите улучшить?

Наш водородный генератор готов к лицензированию. Наш следующий шаг — передать лицензию на технологию крупной компании. Всегда есть возможность передать производство на аутсорсинг, но у крупной компании будет открытое производственное предприятие, выход на рыночные каналы и варианты финансирования для потребителей.Таким образом, многие люди смогут использовать наш водородный генератор, и купить эту технологию будет проще простого. В настоящее время мы ведем переговоры с несколькими крупными корпорациями.

В качестве следующего шага мы хотели бы купить электрогенератор с водородным двигателем и подключить наши «источники топлива» для демонстрационной установки. Мы также хотели бы интегрировать датчики, связанные с компьютером. Все это практическая техническая интеграция и будет стоить около 150 тысяч долларов. Когда у нас будет интегрированное подразделение, мы продемонстрируем его потенциальным лицензиарам.Вот почему мы идем на Indiegogo. Вскоре люди смогут использовать водородные генераторы в своем транспорте, дома и на работе.

6. Каким вы видите следующие 10 лет для энергии h3. Какова ваша личная цель и желание?

Водород — чистый и безопасный источник энергии. Наша технология делает водородную энергию более доступной по сравнению с ископаемым топливом и ядерной энергией, но при этом позволяет использовать ее в широком масштабе. Водород можно использовать практически для всего, что требует энергии.Автомобили, грузовики, корабли и поезда могут использовать водород. Дома, небоскребы, фабрики, фермы и все остальное могут использовать эту технологию. Островные страны, такие как Япония, и развивающиеся страны, такие как Китай, могут заменить использование угля и ядерной энергии чистым водородом и снизить загрязнение воздуха и воды. Учитывая такую ​​широту применения, я ожидаю, что водород станет ключевым признанным источником энергии на транспорте и в производстве электроэнергии в течение следующих десяти лет.

Обнадеживающей тенденцией является тот факт, что лидеры в своей области все больше осознают заботу об окружающей среде.Например, Марк Цукерберг и Билл Гейтс сформировали Breakthrough Energy Coalition, к которой присоединились легендарные бизнесмены, такие как Джордж Сорос, Джефф Безос, Ричард Брэнсон, Том Стайер и другие, чтобы способствовать открытию безуглеродных источников энергии. Приятно видеть, как Леонардо Ди Каприо обращается к угрозе изменения климата во время своей речи на Оскар. Я хочу сказать: «У нас есть решение, приходите к нам и посмотрите, как оно принесет результат».

Пятнадцать лет назад я решил посвятить свою карьеру и свою жизнь применению лучших деловых практик для помощи людям.Я чувствую, что несу огромную ответственность за спасение жизней и планеты, продвигая вперед эту технологию. Я желаю другим присоединиться к такому важному делу и поддержать его.

Кирилл Гичунц, генеральный директор h3 Energy Renaissance

Изображение (c) h3 Energy

(Посещали 26031 раз, сегодня 6 посещений)

Водород — кислород не включен Wiki

Эта статья не редактировалась для текущей версии ( CS-442712 ).Последний раз он обновлялся для LU-356355 . Он может содержать неточности.

Эта статья не редактировалась для текущей версии ( CS-442712 ). Последний раз он обновлялся для LU-356355 . Он может содержать неточности.

Водород является одним из ресурсов в игре «Кислород не включен». Это трудный для дыхания газ, он очень легкий и поднимается выше всех остальных газов. Это значит, что он поселится наверху комнат и других открытых площадках.

Водород можно легко разделить по плотности с помощью обратной воронки наверху вашей базы и собрать с помощью насоса, когда уровень станет слишком высоким.

В текущей сборке игры у водорода есть несколько применений:

  • Его можно сжечь в водородном генераторе для получения мощности 800 Вт. См. «Генератор водорода № Практичность».
  • Его можно конденсировать в жидкий водород и использовать в качестве ракетного топлива для водородного двигателя, самого мощного типа ракетных двигателей.Конденсация водорода требует специальной системы охлаждения с использованием самых современных материалов.
  • Его можно складировать и использовать в качестве теплоносителя из-за его высоких тепловых параметров.
  • Dreckos и Glossy Dreckos должны проводить время в водородной атмосфере, чтобы вырастить чешуйки из тростникового волокна или пластика.
  • Это один из лучших газов для использования с терморегулятором из-за его высокой удельной теплоемкости, высокой теплопроводности и того факта, что он остается в газообразном состоянии до чрезвычайно низких температур.Тем не менее, для большинства применений теплопередачи Thermo Aquatuner более практичен.

Охлаждение [редактировать | править источник]

Водород можно использовать для питания антиэнтропийного термонуллификатора, который производит -80 кДТЕ / с при затратах всего лишь 10 г / с водорода. Выпуская дополнительный водород в холодный биом, а затем обратно, или используя естественную конвекцию, вы быстро охладите вашу базу.

Блокировка хрипов в помещении с водородной атмосферой увеличивает их эффективность охлаждения.

Терморегуляторы могут быть размещены в одной комнате, это предотвратит их перегрев, в то время как они используются для охлаждения других газов в вашей базе (например, вашего кислорода).

Более энергоэффективная установка, обеспечивающая постоянную контролируемую температуру, будет включать механизированный воздушный шлюз в сочетании с термодатчиком и масляно-металлическим буфером.

  • Пример системы производства кислорода с использованием генератора водорода, который работает на водороде, полученном в электролизере — в этой установке дубликатам редко придется работать на колесе, чтобы обеспечить дополнительную мощность.

  • Схема расположения труб для предыдущего примера — газовый фильтр настроен на фильтрацию водорода, а атмосфера верхней комнаты изолирована от остальной части основания.

  • Пример системы охлаждения с использованием терморегуляторов, хрипов и водорода.Драконам теперь требуется удобрение для роста, поэтому их нельзя высаживать на цветочном участке.

Недорогой водородный генератор высокого давления (Технический отчет)


Кропли, Сесилия С. и Норман, Тимоти Дж. Недорогой водородный генератор высокого давления . США: Н. П., 2008.
Интернет. DOI: 10,2172 / 926321.


Кропли, Сесилия К. и Норман, Тимоти Дж. Недорогой водородный генератор высокого давления . Соединенные Штаты. https://doi.org/10.2172/926321


Кропли, Сесилия С. и Норман, Тимоти Дж. Ср.
«Недорогой водородный генератор высокого давления». Соединенные Штаты. https://doi.org/10.2172/926321. https://www.osti.gov/servlets/purl/926321.

@article {osti_926321,
title = {Недорогой водородный генератор высокого давления},
author = {Кропли, Сесилия С. и Норман, Тимоти Дж.},
abstractNote = {Электролиз воды, особенно в сочетании с возобновляемыми источниками энергии, потенциально является рентабельным и экологически безопасным методом производства водорода на рассредоточенных площадках АЗС, таких как автозаправочные станции.Первичным сырьем для электролизера является электричество, которое может производиться из возобновляемых источников, таких как ветер или солнце, которые не производят выбросов углекислого газа или других парниковых газов. Однако современные системы электролизеров не являются экономически конкурентоспособными для производства водорода на заправках из-за их высоких капитальных и эксплуатационных затрат, особенно стоимости электроэнергии, используемой батареей электролизеров. В этом проекте компания Giner Electrochemical Systems, LLC (GES) разработала недорогую, высокоэффективную систему электролиза с протонообменной мембраной (PEM) для производства водорода при умеренном давлении (от 300 до 400 фунтов на квадратный дюйм).Электролизер работает при дифференциальном давлении, при этом водород образуется при умеренном давлении, а кислород выделяется при давлении, близком к атмосферному, что снижает стоимость подсистем подачи воды и обработки кислорода. Проект включал фундаментальные исследования катализаторов и мембран для повышения эффективности реакции электролиза, а также разработку передовых материалов и методов изготовления компонентов для снижения капитальных затрат на батарею электролизера и систему. Проект завершился доставкой прототипа модуля электролизера в Национальную лабораторию возобновляемых источников энергии для тестирования в Национальном центре ветроэнергетики.Эффективность электролизера 72% (исходя из более низкой теплотворной способности водорода) была продемонстрирована с использованием усовершенствованной высокопрочной мембраны, разработанной в этом проекте. Эта мембрана позволит системе электролизера превысить целевой показатель эффективности DOE 2012 в 69%. Компания GES значительно снизила капитальные затраты на батарею электролизера PEM за счет разработки недорогих компонентов и методов изготовления, включая сокращение количества деталей батареи на 60%. Экономический анализ показывает, что водород можно производить за 3 доллара.79 за гигабайт при затратах на электроэнергию 0,05 доллара США / кВтч с помощью более дешевого электролизера PEM, разработанного в этом проекте, при условии крупносерийного производства крупномасштабных электролизерных систем.
doi = {10.2172 / 926321},
url = {https://www.osti.gov/biblio/926321},
journal = {},
number =,
объем =,
place = {United States},
год = {2008},
месяц = ​​{4}
}

Нужна помощь в выборе водородного генератора?

Поскольку клиенты продолжают переходить на газовые генераторы в качестве основного источника водорода, к нам часто обращаются за помощью, чтобы помочь им сделать правильный выбор.В результате я решил написать этот пост, чтобы помочь нашим клиентам в их выборе.

.

В большинстве случаев выбрать подходящий генератор так же просто, как ответить на два вопроса:

1. Какая чистота вам нужна? Другими словами, собираетесь ли вы использовать водород в качестве газа-носителя для газовой хроматографии, топливного газа или того и другого?

Если вы собираетесь использовать водород только для топливного газа (или для каких-либо других целей, где чистота не критична), мы предлагаем генератор PEM Parker Balston®.

Если вы собираетесь использовать водород в качестве газа-носителя (где важна высокая чистота), мы рекомендуем генератор Parker Balston® h3PEMPD.

2. Какой расход и давление требуются? В конце концов, прежде чем вы сможете выбрать генератор, вам необходимо иметь эту информацию.

Для большинства установок ГХ редко бывает максимальный выход (подача) Давление критично, если только прибор (а):

A. Расположены в нескольких комнатах от генератора, где перепад давления в трубке может резко снизить давление подачи.

B. Используются длинные насадочные колонны, требующие высокого напора.

C. Используются колонки с малым внутренним диаметром или очень длинные капиллярные или микронасадочные колонки, которые требуют высокого давления на головке.

В большинстве случаев расход определяет, какой генератор вы выберете.

A. Чтобы рассчитать максимальный необходимый расход, вам необходимо внимательно посмотреть на каждый прибор, чтобы определить его общий расход водорода, используемый во время пикового потребления (который может включать топливный газ, газ-носитель колонки и водород, выходящий из разделенной вентиляционной линии. ).

B. После расчета расхода для каждого прибора сложите их, чтобы определить общий расход, необходимый для всех приборов.

C. Наконец, умножьте буферный коэффициент * от 1,5 до 2,0 на этот общий расход.

* Пример: если вы подсчитали, что общий расход водорода, необходимый для всех приборов, составляет 300 мл / мин, вам следует выбрать генератор с производительностью от 450 до 600 мл / мин. В этом случае мы бы предложили один из наших генераторов с производительностью 510 мл / мин (примечание: 1 мл / мин = 1 см3 / мин).

Чтобы узнать больше об этих генераторах, вы можете просмотреть раздел «Расходные материалы по газу для лабораторий газового хроматографа» и ответы на часто задаваемые вопросы по генераторам водорода. Если у вас остались вопросы, напишите нам в службу технической поддержки.

Спасибо за чтение.

Как получить водородный газ (4 метода)

Газообразный водород легко получить дома или в лаборатории, используя обычные бытовые материалы. Вот как безопасно получить водород.

Получение газообразного водорода — метод 1

Один из самых простых способов получить водород — это получить его из воды, H 2 O.В этом методе используется электролиз, при котором вода расщепляется на водород и кислород.

Необходимые материалы

  • вода
  • 9-вольтовая батарея
  • 2 скрепки
  • другая емкость с водой

Ступеньки

  1. Разогните скрепки и подсоедините по одной к каждой клемме аккумулятора.
  2. Поместите другие концы, не касаясь, в емкость с водой. Вот и все!
  3. На обоих проводах появятся пузыри.Тот, у которого больше пузырьков, выделяет чистый водород. Остальные пузырьки — это нечистый кислород. Вы можете проверить, какой газ является водородом, зажег спичку или зажигалку над контейнером. Пузырьки водорода загорятся; пузырьки кислорода не горят.
  4. Соберите газообразный водород, перевернув наполненную водой трубку или сосуд над проволокой, производящей газообразный водород. Причина, по которой вам нужна вода в контейнере, заключается в том, чтобы вы могли собирать водород, не получая воздуха. Воздух содержит 20% кислорода, который вы не должны попадать в контейнер, чтобы он не стал опасно воспламеняющимся.По той же причине не собирайте газ, отходящий от обоих проводов, в один и тот же контейнер, так как смесь может взорваться при возгорании. При желании вы можете собирать кислород так же, как водород, но имейте в виду, что этот газ не очень чистый.
  5. Закройте или закройте контейнер перед его переворачиванием, чтобы избежать контакта с воздухом. Отсоедините аккумулятор.

Получение газообразного водорода — метод 2

Есть два простых улучшения, которые вы можете сделать, чтобы повысить эффективность производства газообразного водорода.Вы можете использовать графит (уголь) в виде грифеля карандаша в качестве электродов, и вы можете добавить щепотку соли в воду, чтобы она действовала как электролит.

Из графита получаются хорошие электроды, поскольку он электрически нейтрален и не растворяется во время реакции электролиза. Соль полезна, потому что она диссоциирует на ионы, которые увеличивают ток.

Необходимые материалы

  • 2 карандаша
  • соль
  • картон
  • вода
  • батарея (может опуститься до 1.5 В с электролитом)
  • 2 скрепки или (еще лучше) 2 куска электрического провода
  • еще одна емкость с водой

Ступеньки

  1. Подготовьте карандаши, удалив стиральную и металлическую заглушки и заточив оба конца карандаша.
  2. Вы будете использовать картон, чтобы держать карандаши в воде. Положите картон на емкость с водой. Вставьте карандаши в картон так, чтобы грифель был погружен в жидкость, но не касался дна или стенок емкости.
  3. Отложите картон с карандашами на мгновение и добавьте в воду щепотку соли. Вы можете использовать поваренную соль, английскую соль и т. Д.
  4. Замените картон / карандаш. К каждому карандашу прикрепите провод и подключите его к клеммам аккумулятора.
  5. Соберите газ, как и раньше, в емкость, наполненную водой.

Получение газообразного водорода — метод 3

Вы можете получить газообразный водород, реагируя соляной кислотой с цинком:

Цинк + соляная кислота → хлорид цинка + водород
Zn (т) + 2HCl (л) → ZnCl 2 (л) + H 2 (г)

Необходимые материалы

  • соляная кислота (соляная кислота)
  • гранулы цинка (или железные опилки или полосы алюминия)

Пузырьки газообразного водорода будут выпущены, как только кислота и цинк будут смешаны.Будьте очень осторожны, чтобы избежать контакта с кислотой. Кроме того, эта реакция выделяет тепло.

Самодельный водородный газ — метод 4

Алюминий + гидроксид натрия → Водород + алюминат натрия
2Al (s) + 6NaOH (водн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *