Гидроиспытания трубопроводов: оптимальное давление и необходимое оборудование, правила и стенды
оптимальное давление и необходимое оборудование, правила и стенды
На чтение 10 мин.
Обновлено
Гидроиспытания трубопроводов – это наиболее часто применяемый вид неразрушающей проверки, которая устанавливает степень прочности и плотности трубопровода, функционирующего под давлением.
В большинстве стран принята такая практика, что магистрали и оборудование, работающие под напором, должны проходить гидравлическое тестирование в таких случаях:
- после изготовления деталей сети, готовящихся к установке;
- по завершению прокладки трубопровода;
- при контроле сети в процессе испытания.
Все технологические трубомагистрали проходят гидроиспытания под давлением в соответствии с нормами СНИП III-Г.9 – 62 и НИТУХП – 62. Кроме этого проводят тестирование пневматическим методом. Причем, последний выполняют в таких ситуациях, когда гидроиспытания провести нельзя по следующим причинам:
- Минусовый показатель температуры воздуха.
- Когда нет воды.
- Несущие опасность напряжения в магистрали от массы жидкости.
Кроме этих методов сети испытывают посредством воздуха или инертного газа.
Испытания конструкций проводят под наблюдением изготовителя или мастеров, и в строжайшем соответствии с предписаниями проекта или инструкций с требованиями Госгортехнадзора.
До проведения работы вся длина магистрали условно делится на отдельные куски. Затем всю сеть тщательно осматривают и проверяют технические документы. На этом этапе также монтируют сливные и воздуховыводящие краны и временные заглушки.
Использование при этом запорной арматуры запрещено. Проверяемая магистраль подводится к гидронасосу, прессу или к другому устройству, при помощи которого получают нужный уровень напора.
Давление при проведении испытаний трубопроводов
Давление при гидроиспытании трубопроводов проверяют манометрами, их предварительно нужно проверить и опломбировать.
Соответственно ГОСТу 2405-63, эти механизмы должны характеризоваться классом точности не меньше 1,5. Объем их корпуса не может быть меньше 15 см, а шкала на номинальный показатель напора должна быть не меньше трех четвертей от измеряемого.
Путем гидроиспытания системы тестируют не только на уровень прочности, но и плотности. При этом цифру испытательного давления избирают разную. Например:
- Стальные и чугунные системы напорного типа – для них показатель прописанный в проекте это коэффициент 1,25. Поднятие проверочного давления над уровнем рабочего не может превышать 5 кг/см2, а уровень проверочного давления не может превышать 10 кг/см2.
- Асбестоцементные системы напорного типа – это не выше уровня рабочего давления на 5 кг/см2.
- Системы из полимеров проверяются под напором, указанным ГОСТом или ТУ для определенного типа труб, и этот показатель не разрешают снижать ниже рабочего уровня.
Чтобы создать требуемое давление при гидроиспытаниях используют:
- Гидравличекие прессы.
- Поршневые насосы ручного типа.
- Приводные шестеренчатые насосы.
- Эксплуатационные насосы.
Как проходит тестирование
Видео
Проведение гидроиспытаний трубопроводов делят на следующие этапы:
- Подведение гидронасоса.
- Монтаж манометров.
- Наполнение водой (во время этой процедуры воздушники нужно ставить открытыми до того момента, когда в них появится вода, это станет свидетельством того, что воздушные образования из сети вытеснили полностью). Кода заливается вода, магистраль внимательно осматривают, о наличии дефектов будут свидетельствовать протечки.
- Создание рабочего напора посредством пресса или насоса и поддержка сети под ним определенный период.
- Понижение уровня напора до показателя рабочего.
- Освобождение сети от жидкости и ее вторичный осмотр.
- Проведение демонтажа манометра и насоса.
Сети под проверочным давлением держат на протяжении пяти минут. Исключение при проведении тестирования становят только стеклянные конструкции, их выдерживают двадцать минут.
Проведение осмотра системы выполняют после уменьшения давления до рабочего уровня. Проверяя стальные системы сварные соединения с обеих сторон (на расстояние два сантиметра) простукивают закругленным молоточком, который имеет массу не больше полтора килограмма.
Магистраль из цветных металлов простукивают деревянным молотком, весящим не больше 0,7 кг. Проведение простукивания конструкций из других материалов не рекомендовано.
Проведение процедуры гидроиспытания технологических трубопроводов
Гидроиспытания технологических трубопроводов делают для того, что определить плотность при чеканке и течи в трубопроводе. Впервые сеть тестируют до того, как произвести засыпку углублений и поставить арматуру.
Последующее испытание проводится на финальном этапе уже после полной засыпки траншей и окончания действий на этом участке технологических систем. Предварительное тестирование можно проводить тогда, когда соединения набирают нужную прочность.
Считают, что любой из технологических трубопроводов прошел контроль, если в нем не произошел разрыв, и не нарушилась герметичность. Также, если остались целыми стыки, и не образовались протечки.
По завершении испытания технологических систем, их сразу засыпают землей и выполняют финальное тестирование. Во время данного мероприятия в технологических системах выполняется промывка водой, а проверяемые зоны отсекают от функционирующей системы посредством фланцев или заглушек.
Перед проведением испытания сеть и раструбные стыки заливают водой и выстаивают сутки. Финальное испытание выполняют без предохранительных вентилей и гидрантов. Вместо них ставят заглушки.
Задвижки при этом полностью открывают, только сначала проверяют состояние набивки сальников. Применять задвижки для отсечения проверяемой зоны от функционирующей нельзя.
Схема тестирования
Схема гидроиспытаний трубопроводов состоит из следующих компонентов.
- Проверяемая система.
- Опоры.
- Фланцы.
- Вентиль, который служит для вывода воздушных образований.
- Подводка для временной подачи воды.
- Пресс (гидравлического типа).
- Манометр.
- Кран регулировки.
- Побочный кран.
- Мерный бачок.
При тестировании, конечные части магистрали, указанной в схеме, прикрывают фланцами «глухого» типа и крепят упорами. После этого основную систему заполняют жидкостью из временной магистрали (она тоже есть в схеме).
Смотрите видео
Выполняя эти действия, внимательно следят за тем, чтобы через кран выходил воздух. Данный вентиль ставят в наиболее высокой точке магистрали (это тоже указано в схеме).
Также в схеме указанны насосы, посредством которых образуют необходимый уровень давления.
ВАЖНО! При тестировании важно учесть, что может произойти разрыв труб, и могут разлететься осколки. Следовательно, необходимо предпринять меры, чтобы избежать травматизма людей.
Тестирование и СНИП
После того, как заканчиваются монтажные работы, проводят гидроиспытания трубопроводов в соответствии к СНИП III-Г.9 – 62 и НИТУХ – 62.
В СНИП указывают, что система обязательно должна проходить испытания. Также нормативными документами СНИП устанавливается температурный уровень для проведения работ, это от пяти до двадцати градусов.
Нормативы СНИП не запрещают проведение предварительной проверки строительно – монтажной организацией без участия заказчиков. Но, по вышеуказанным нормам, результаты испытания заносят в журнал работ.
Смотрите видео
СНИП определяют инструкцию по гидроиспытаниям трубопроводов на финальном этапе. Порядок действий при этом такой: создание давления, равного рабочему и поддержка его в течение двух часов.
После этого повышают напор до нормы испытательного, его также выдерживают два часа. Магистраль считают выдержавшей конечное испытание, если при последней двух-часовой выдержке снижение напора не превысило 0,02 МПа.
ВАЖНО! Согласно инструкции сеть под теплонагрузку подключают только после завершающей засыпки.
Если в инструкции не указано точное время выполнения тестирования, то оно определяется продолжительностью осмотра системы. Если при осмотре обнаружены дефекты, то согласно инструкции устранять их можно только после снижения напора до показателя атмосферного.
Далее инструкция гласит, что после устранения обнаруженных дефектов, тестирование повторяют снова.
Необходимое оборудование
Оборудование для гидроиспытаний трубопроводов позволяет произвести проверку герметичности вторично проложенной сети, также оно дает возможность создать нужный уровень давления для испытания сети на предмет плохо выполненных соединений.
Оборудование для этого вида контроля отличается обширным кругом использования. Например, чтобы выбрать опрессовщик, нужно вначале определить самое большое давление, необходимое для проверки.
Вторым значащим моментом становиться привод гидронасоса. В данной линейке оборудования он может быть ручного и электрического вида.
Видео
Первые варианты используют для опрессовки короткого участка сети. Это оборудование более легкое и весит меньше, если сравнить с электрическими аналогами. Но, при работе с такими механизмами нужно потратить много физической силы и времени.
Электрические насосы для гидроиспытаний трубопроводов. Их применяют для получения напора до 40 кг/см2. Эти устройства отличаются универсальностью и применяются при больших габаритах системы. По своей сути эти устройства это высоконапорные гидронасосы, оснащенные глицериновыми манометрами.
Также данное оборудование имеет емкость для заливания воды и шланг, быстро подключаемый к фитингу. На реле ставят нужный уровень давления, и насос будет остановлен автоматически по достижении нужных показателей.
Тестирование отопительных систем
Гидроиспытания трубопроводов отопления позволяют обеспечить нормальное функционирование сети в отопительный сезон. Это своего рода экзамен и техническая проверка отопления.
Каждый тип помещения имеет индивидуальные показатели напора. От него зависит циркуляция носителя тепла и обогрев помещения. По мере передвижения носителя тепла возникают разнообразные гидравлические процессы, и иногда очень тяжелого характера.
По этой причине трубопровод отопления проверяют под давлением, превышающим в сорок раз рабочее.
Видео: гидроиспытания трубопроводов отопления
При проверке сети отопления:
- Выполняют испытания кранов.
- Для повышения герметичности ставят дополнительные сальниковые уплотнения.
- Реставрируют изоляцию на трубах.
- Глухими заглушками дом отсекают от общей сети.
- При монтажных действиях магистраль сильно засоряется, поэтому промывка и опрессовка – это важные этапы на пути к эффективному функционированию сети отопления.
Испытания в зимнее время
Гидроиспытания трубопроводов зимой отличается от аналогичной процедуры в более теплое время года. Если нужно проверить магистраль зимой при отрицательных температурах, то нужно принять меры, направленные на предупреждение промерзания воды в сети.
При этом систему надежно освобождают от воды следующими способами:
- Предварительно нагревают магистраль или прогоняют по ней горячую воду. Ее температура не может быть больше 60 градусов. При этих действиях утепляют дренажные штуцеры и спусковые ветки.
- Проверка магистрали водными растворами, замерзающими ниже 0 градусов. После этого сразу следует промывка труб прогретой водой и воздушная продувка. Если для испытания зимой берут раствор хлористого кальция, то тестирование выполняют на участках не больше 1000м (УД до 10 см).
- Проверять зимой магистраль с объемом до 25 см можно на участке до 250 м.
Нужное количество воды для тестирования зимой можно посмотреть в специальных таблицах.
Правила проверки
Правила гидроиспытания трубопроводов следует выполнять в точной последовательности. Эти правила содержат полную информацию о нормах давления, температуры и о времени выдержки. Также здесь изложена информация о ходе процедуры проверки.
Видео
Правила строго запрещают нахождение персонала рядом с проверяемым оборудованием, когда то перебывает под высоким напором.
Далее правила гласят, что трубопровод считают выдержавшим контроль, если в ходе тестирования не обнаружили течи жидкости, разрывов труб, других видимых деформаций, и падение давления не превысило требуемые нормы.
При проведении данного вида тестирования строго соблюдаются правила техники безопасности.
Стенды для проверок
Стенды для гидроиспытаний трубопроводов используют в таких сферах:
- Гидравлические проверки запорной арматуры на показатель прочности и герметичности.
- Отпрессовка деталей оборудования для корпуса.
- Оценка магистрали на степень прочности и герметичности и многое другое.
Стенды для гидро – тестирования комплектуются деталями от лучших мировых изготовителей. А это является доказательством их высокого качества, длительного периода использования и удобства в работе.
Конструктивное решение стендов бывает:
- На рамном основании для размещения в помещении.
- Цельным блоком-контейнером для размещения на улице.
Технические характеристики, которые имеют стандартные типовые стенды следующие:
- В качестве рабочей среды используется вода для технических нужд.
- Давление образуется посредством поршневой насосной установки или ручным насосом.
- Габариты под фланцы от Ду 25 до Ду 1500.
- Уровень самого высокого напора – это 4500 бар.
- Если необходимо стенды для проверки комплектуют функцией предочистки.
Видео
Следует четко понимать, что гидроиспытания трубопроводов – это обязательная мера предостережения от внезапной аварийной ситуации, которая может привести к сбою системы.
Для осуществления этой проверки нужно проделать мероприятия, которые включают подготовку труб, проверку нужного оборудования. По окончании тестирования результат заносят в паспорт, туда же прописывают разрешение на запуск системы.
Гидравлические испытания трубопроводов
Гидравлические испытания проводятся в соответствии со СНиП. После их окончания составляется акт, указывающий на работоспособность системы.
Ручной опрессовщик для испытания трубопроводов
Они выполняются на разных этапах эксплуатации коммуникаций. Параметры проверки вычисляются для каждой системы отдельно, в зависимости от ее типа.
Cодержание статьи
Зачем и когда проводить гидравлические испытания?
Гидравлические испытания – это вид неразрушающего контроля, который осуществляется для проверки прочности и плотности трубопроводных систем. Им подвергается все работающее оборудование на разных этапах эксплуатации.
В целом, можно выделить три случая, в которых испытания должны проводиться в обязательном порядке, в независимости от назначения трубопровода:
- после завершения производственного процесса по выпуску оборудования или деталей трубопроводной системы;
- после завершения установочных работ трубопровода;
- во время эксплуатации оборудования.
Испытания гидравлическим способом – это важная процедура, которая подтверждает или опровергает надёжность эксплуатируемой системы, работающей под давлением. Это необходимо для предотвращения аварии на магистралях и сохранения здоровья граждан.
Осуществляется проведение процедуры на гидравлическое испытание трубопроводов в экстремальных условиях. Давление, под которым оно проходит, называют проверочным. Оно превышает обычное, рабочее давление в 1,25-1,5 раза.
Особенности гидравлических испытаний
В систему трубопровода пробное давление подается плавно и медленно, чтобы не спровоцировать гидроударов и образования аварийных происшествий. Величину давления определяют не на глаз, а по специальной формуле, но на практике, как правило, оно на 25% больше рабочего давления.
Гидравлические испытания выявляют ненадежные соединения
Силу подачи воды контролируют на манометрах и каналах измерения. Согласно СНиП, допускаются скачки показателей, так как возможно быстрое измерение температуры жидкости в трубопроводном сосуде. При его наполнении нужно обязательно следить за скоплением газа на разных участках системы.
Такую возможность следует исключить еще на начальном этапе.
После заполнения трубопровода наступает, так называемое, время выдержки – период, во время которого испытуемое оборудование находится под повышенным давлением. Важно следить, чтобы оно находилось на одном уровне во время выдержки. После его окончания давление минимизируют до рабочего состояния.
Пока проходит испытание, возле трубопровода не должно находиться никого.
Обслуживающий его персонал должен ждать в безопасном месте, так как проверка работоспособности системы может быть взрывоопасна. После окончания процесса наступает оценка полученных результатов согласно СНиП. Трубопровод осматривается на наличие течей, взрывов металла, деформаций.
Параметры гидравлических испытаний
При проведении проверки качества трубопровода необходимо определить показатели следующих параметров работ:
- Давления.
- Температуры.
- Времени выдержки.
Нижняя граница проверочного давления вычисляется по следующей формуле: Ph = KhP. Верхняя граница не должна превышать сумму общих мембранных и изгибных напряжений, которая достигнет 1,7 [δ]Th. Формула расшифровывается так:
- Р – расчетное давление, параметры которого предоставлены изготовителем, или рабочее давление, если испытания осуществляются после монтажа;
- [δ]Th – номинальное напряжение, которое допускается при температуре испытаний Th;
- [δ]T – допускаемое напряжение при расчетной температуре T;
- Kh – условный коэффициент, принимающий разное значение для разных объектов. При проверке трубопроводов он равен 1,25.
Температура воды не должна опускаться ниже 5˚С и не подыматься выше 40˚С. Исключением являются лишь те случаи, когда температура гидро компонента указана в технических условиях исследуемого объекта. Как бы там ни было, температура воздуха при проведении проверки не должна опускаться ниже тех же 5˚С.
Воздушный компрессор для опрессовки систем водоснабжения или отопления
Время выдержки должно быть указанно в проектной документации на объект. Оно не должно быть меньше 5 мин. Если точные параметры не предусмотрены, то время выдержки рассчитывается, исходя их толщины стенок трубопровода. Например, при толщине до 50 мм, проверка под давлением длиться не менее 10 мин, при толщине свыше 100 мм – не менее 30 мин.
Испытания пожарных гидрантов и магистралей водоснабжения
Гидрант – оборудование, отвечающее за быстроту устранения пожарных воспламенений, поэтому оно должно всегда находиться в рабочем состоянии. Главная задача пожарных гидрантов – обеспечить оптимальное количество воды для борьбы с пожаром на его начальном этапе.
Гидравлические испытания пожарного оборудования осуществляются на этапе его монтажа, а также два раза в год на протяжении всего срока эксплуатации, преимущественно весной и осенью.
Испытания пожарных гидрантов должны выявить уровень водоотдачи, которую может обеспечить сеть. При этом во внимание берётся расход жидкости, сила напора и рабочий радиус действия. Также они направлены на выявление целостности рукавов тушения.
Что качается проведения проверки магистралей водоснабжения, то их стоит проверять сразу после монтажа, перед засыпкой траншеи и еще раз после засыпки, но до установки арматуры. Вместо нее можно использовать временные заглушки.
Проверка напорных трубопроводов происходит в соответствии со СНиП В III-3-81.
Трубы, изготовленные из чугуна и асбеста, испытываются при длине трубопровода не более 1 км за один прием. Полиэтиленовые магистрали водопровода проверяются участками по 0.5 км. Все остальные системы водоснабжения проверяются отрезками не более 1 км. Время выдержки для труб водоснабжения из металла и асбеста должно составлять не менее 10 м, для полиэтиленовые – не меньше 30 м.
Испытания систем отопления
Проверка тепловых сетей производится сразу после окончания их монтажа. Заполнение водой систем отопления происходит через обратный трубопровод, то есть снизу вверх.
Гидравлические испытания трубопроводов магистралей центрального отопления
При таком способе жидкость и воздух идут в одном направлении, что, согласно законам физики, способствует отводу воздушных масс из системы. Отвод происходит одним и способов: через выпускные устройства, бак или вантузы систем отопления.
Если наполнение тепловых сетей происходит слишком быстро, возможно возникновение воздушных мешков из-за заполнения стояков водой быстрее, чем нагревательных приборов систем отопления. Гидравлические испытания тепловых сетей проходят под нижним значением рабочего давления в 100 кило Паскаль и проверочного – 300 кило Паскаль.
Проверка тепловых сетей происходит только при отсоединённом котле и расширительном баке.
Контроль систем отопления не проводится в зимнее время. Если они проработали без поломок до около трех месяцев, то принятие тепловых сетей в эксплуатацию может проводиться без гидравлических испытаний. При проверке закрытых систем отопления, работы по контролю нужно проводить до закрытия борозд. Если планируется изоляция тепловых сетей, то – перед ее установкой.
Согласно СНиП после окончания испытаний систем отопления, их промывают, а в их нижней точке монтируется муфта с сечением от 60 до 80 мм2. Через нее происходит спуск воды. Промывание тепловых сетей осуществляется холодной водой несколько раз, до приобретения ею прозрачности. Одобрение систем отопления наступает в случае, если на протяжении 5 мин проверочное давление в трубопроводе не изменится больше, чем на 20 кило Паскаль.
Гидравлическое испытание системы отопления и водоснабжения (видео)
Гидравлические испытания тепловых сетей и систем подачи воды
После завершения гидравлических испытаний систем отопления по СНиП, составляется акт гидравлических испытаний тепловых сетей и систем подачи воды, указывающий на соответствие параметров трубопровода.
Согласно СНиП его бланк содержит такую информацию:
- название должности руководителя предприятия, оказывающего обслуживание тепловых сетей;
- его подпись и инициалы, а также дату проверки;
- данные о председателе комиссии, а также ее членах;
- информацию о параметрах тепловых сетей: протяжности, наименования и т.д.;
- выводы о проведении контроля, заключение комиссии.
Регулировка характеристик магистралей отопления осуществляется СНиП 3.05.03-85. Согласно указанному СНиП его правила действуют в отношении всех магистралей, которые транспортируют воду температурой до 220˚С и пара – до 440˚С.
Испытания трубопроводов на герметичность в тепловом пункте
Для документального завершения гидравлических испытаний водопровода составляется акт для наружного водопровода в соответствии со СНиП 3.05.01-85. Согласно СНиП акт содержит следующую информацию:
- наименование системы;
- название организации технического надзора;
- данные о величине проверочного давления и времени испытания;
- данные о падении давления;
- наличии или отсутствии признаков повреждении трубопровода;
- дату проверки;
- вывод комиссии.
Акт заверяется представителем организации надзора.
Гидравлические испытания трубопроводов: этапы проверок, составление акта
Гидравлические испытания трубопроводов — это комплекс мероприятий, которые могут проводиться на разных этапах эксплуатации трубопроводов, но чаще всего эти испытания выполняются сразу после прокладки коммуникации, перед её запуском. Сети, которые работают под давлением, в обязательном порядке должны проверяться (в соответствии с положениями СНиП) на различные дефекты. Это нужно для того, чтобы предотвратить возникновение аварийной ситуации.
Гидравлические испытания — это проверка состояния и работоспособности магистрали при помощи давления, превышающего рабочее
Для чего проводят гидравлические испытания?
Во время гидравлических испытаний определяется прочность и герметичность конструкции, также определяется её объём. Подобные проверки проходят все виды трубопроводов на разных эксплуатационных этапах.
Существует три варианта, когда гидравлические проверки выполняются в обязательном порядке, независимо от направленности коммуникации:
- в процессе производства труб в обязательном порядке проводится проверка на качество. Также соответствующие испытания проходят прочие комплектующие к трубопроводам;
- после монтажа трубопроводной конструкции также проводят соответствующие испытания, проверяя коммуникацию на работоспособность;
- испытание трубопроводов также производится во время эксплуатации в профилактических целях.
Такие испытания способны выявить определённые несоответствия труб или комплектующих к ним со стандартами качества, прописанными в законах. Проведение проверочных мероприятий является необходимым пунктом эксплуатации оборудования, работающего под давлением.
Как правило, процедура проверки включает в себя несколько важных пунктов. Для гидравлического испытания создают экстремальные условия, чтобы точно определить надёжность трубопроводной магистрали. Проверочное давление в таком случае может быть больше обычного в 1,25–1,5 раза.
Особенности гидравлических испытаний
Проверочное давление нагнетается в трубопровод медленно и плавно, чтобы не вызвать гидроудар или не создать другую аварийную ситуацию. Показатели давления, как уже было сказано выше, превышают стандартные эксплуатационные нормы.
Оборудование для испытаний комплектуется приборами, позволяющими контролировать давление в системе
Сила подачи жидкости фиксируется на измерительных приборах (манометрах), поэтому можно осуществлять контроль и регулировать процесс. По СНиП, подача жидкости сопровождается скоплением газа в разных точках коммуникации. Это очень важный момент, который необходимо контролировать, чтобы избежать непредвиденных ситуаций.
После наполнения трубопроводной конструкции водой оборудование находится под повышенным, проверочным давлением. Этот период называют временем выдержки.
Важно! Существует одно важное правило — во время выдержки оборудования необходимо исключить возможность скачков проверочного давления. Показатели проверочного давления должны быть неизменными.
По окончании выдержки производится работа по снижению давления до обычных показателей. Во время проверки запрещается находиться кому-либо в непосредственной близости от испытуемого трубопровода. Рабочий персонал располагается в безопасном месте.
Когда гидравлическое испытание проведено, производится осмотр коммуникации на наличие повреждений и оценка полученной информации в соответствии со СНиП.
В каких условиях необходимо проводить гидравлическую проверку трубопроводов?
Гидравлические испытания трубопроводов являются сложным мероприятиям, которое требует определённой подготовки. Испытания должны соответствовать строительным нормам и правилам, поэтому такие проверки производят только высококвалифицированные специалисты.
Испытания проводятся строго по принятым нормам и правилам и к процессом руководят специалисты
Для проведения такой проверки трубопроводной магистрали необходимо придерживаться следующих условий:
- точки пользования в стояке активизируются одновременно для испытания, однако, это положение не всегда является обязательным и определяется индивидуально в зависимости от конкретного случая;
- характеристики устройств для сушки полотенец проверяются при испытании систем горячего водоснабжения;
- температурные замеры выполняются только по крайним точкам в конструкции;
- после проведения испытательных работ необходимо полностью удалить воду из системы;
- наполнение коммуникации производится снизу вверх. Такое правило необходимо для правильного вытеснения воздуха и позволяет избежать аварийных ситуаций, связанных с переизбытком давления, а также воздушных пробок.
- начальный этап по заполнению коммуникации относится только к главному стояку, и только на следующих этапах производится наполнение стояков, ответвляющихся от главного.
- во время гидравлических испытаний температура окружающей среды не должна быть ниже, чем +5 °C.
Эти условия должны быть соблюдены независимо от типа трубопровода и рабочей среды, которую он транспортирует.
Гидравлические проверки проводят для следующего оборудования:
- внутренних пожарных водопроводов;
- систем горячего и холодного водоснабжения;
- отопительных систем.
Испытаниям подвергаются разные типы трубопроводов, в том числе отопительные и сети ГВС
Последовательность проведения работ
Мероприятия по гидравлической проверке выполняются в определённой последовательности. Рассмотрим основные этапы этого процесса:
- Очистка трубопроводной сети.
- Монтаж кранов, заглушек и измерительного оборудования (манометров).
- Подключение воды и гидравлического пресса.
- Наполнение коммуникации водой до нужного уровня.
- Проверка трубопроводной конструкции на наличие повреждений (деформированные места отмечаются).
- Ремонт проблемных участков.
- Выполнение повторной проверки.
- Отключение от трубопровода и удаление жидкости из системы.
- Демонтаж кранов, заглушек и манометров.
Все эти манипуляции необходимо производить в соответствии со строительными нормами и правилами, чтобы исключить халатность и аварийные ситуации.
Подготовительные работы
Перед проведением гидравлических испытаний обязательно нужно выполнить ряд подготовительных этапов. Рассмотрим последовательность проведения подготовительных работ:
- Трубопровод разделяют на условные части.
- Производится поверхностный визуальный осмотр коммуникации.
- Выполняется проверка технической документации.
- На конструкцию фиксируют в (местах условных делений) вентили, а также необходимые заглушки.
- К прессовочным аппаратам и наполнителям присоединяется временная коммуникация.
- Испытуемый участок отключают от магистрали и оборудуют необходимой запорной арматурой (заглушками).
- Далее испытуемый сегмент трубопровода отключают от оборудования.
Для работ используют оборудование для увеличения давления в трубах — насосы, компрессоры и прочие приборы
Важно! Категорически запрещается оборудование испытуемого участка коммуникации запорной арматурой того же трубопровода.
Для проверки показателей прочности трубопроводной конструкции её подключают к различной гидравлической аппаратуре (компрессорам, насосным станциям и т. д.), которая способна создавать необходимое давление в трубопроводе на расстоянии двух вентилей.
Испытания на прочность и герметичность
Предварительную проверку коммуникации на прочность и показатели герметичности проводят в такой последовательности:
Проверка прочности. Для этого в трубопроводе создают проверочное, усиленное давление и выдерживают его около 10 минут. Как уже было сказано выше, во время выдержки нельзя допускать, чтобы давление понижалось. Как правило, проверка нарушается, если давление понижается более чем на 0,1 МПа. По истечению времени проверочное давление понижают до стандартных показателей и поддерживают их с помощью непрерывной подкачки жидкости. После этого выполняется осмотр конструкции, который направлен на выявление повреждений. Если дефекты не обнаружены — выполняется второе испытание на прочность. При обнаружении деформаций в трубопроводной конструкции — их устраняют и проводят повторное испытание. Отдельные части трубопроводной коммуникации проверяются в разное время. Продолжительность гидравлической проверки не может быть меньше, чем 10 минут.
Проверка на герметичность. После того, как коммуникация прошла испытания на прочность, производится проверка на герметичность трубопровода. Герметичность проверяется так:
- Производится фиксация времени начала проверки.
- В измерительном бачке определяется начальный уровень жидкости.
- Когда первые два пункта выполнены, начинается наблюдение за уменьшением показателя давления в конструкции.
Во время испытания необходим строгий контроль давления, его показатель не должен меняться весь период выдержки
При гидравлических испытаниях трубопроводов необходимо чётко следовать этой последовательности.
Определение дополнительного объёма воды
После выполнения проверки на герметичность, как правило, следует расчёт дополнительного объёма жидкости в системе. Этот процесс проходит в такой последовательности:
- Уровень давления в конструкции снова увеличивают за счёт подкачки жидкости из измерительного бачка. Показатель давления должен быть таким же, как и при гидравлической проверке, то есть превышать стандартные показатели в 1,25–1,5 раза.
- Время, когда закончилась проверка на герметичность, необходимо запомнить.
- На третьем этапе производится замер конечного уровня воды в измерительном бачке.
- Далее определяется временной отрезок, который заняла проверка коммуникации (в минутах).
- Расчет объёма жидкости, подкачанной из измерительного бачка (для 1 случая).
- Высчитывание разницу между подкачанной и удалённой из трубопровода жидкости (для 2 случая).
- Вычисление фактической траты дополнительно закачанной жидкости по формуле: qn=Q/(Tk-Tn).
Составление акта
После проведения гидравлических испытаний необходимо составить акт, указывающий, что проверки проходили с учётом строительных норм и правил, а также содержащий отчёт о том, что трубопроводная конструкция выдержала их. Этот документ составляется инспектором.
По результатам испытаний составляется акт, который подтверждает исправность трубопровода и безопасность его эксплуатации
Акт, в обязательном порядке, должен включать в себя следующие позиции:
- название трубопровода;
- наименование компании, которая осуществляет технадзор;
- необходимые данные, повествующие о показателях проверочного давления и длительности испытаний;
- данные об уменьшении давления;
- описание дефектов, выявленных при проверке или же запись об их отсутствии.
- дату испытаний;
- заключение комиссии.
Гидравлические проверки могут проводиться двумя способами:
- Манометрический. Проверка проходит с использованием специальных измерительных приборов. Они фиксируют показатели давления во время всех испытательных манипуляций.
Манометрический способ проверки трубопровода позволяет инспектору произвести необходимые расчёты и вымерять давление в конструкции во время тестирования.
- Гидростатический. Проверка таким методом показывает, как именно поведёт себя коммуникация в нестандартных эксплуатационных условиях (при повышенном давлении и т. п.). Такой способ является наиболее популярным.
Испытания внутреннего пожарного водопровода
Готовые и уже эксплуатируемые пожарные водопроводы проверяются посредством создания проверочного давления. Условия для проведения испытания пожарного водопровода, соответствуют гидравлическим условиям.
Испытания противопожарного водопровода также проводятся под высоким давлением
Важно! Гидравлические проверки готового пожарного трубопровода нужно проводить не менее 2 раз в год.
Такие испытания производятся и в уже эксплуатируемых зданиях, поэтому для проверки противопожарной коммуникации используют пониженный показатель давления. Кроме этого, испытательная процедура включает в себя замеры на специальном кране, который называют диктующим.
Также проводятся проверки, которые определяют водоотдачу в противопожарной системе, они необходимы для самых удалённых от источника воды пожарных кранов. В обязательном порядке выполняется проверка, которая направлена на выявление возможных протечек в противопожарной системе. Все полученные данные заносятся сначала в испытательный журнал, а затем — в акт. После этого они сравниваются с прописанными в СНиП нормативами.
Испытания систем водоснабжения
Проверка систем водоснабжения тоже производится в соответствии со строительными нормами и правилами. Гидравлические испытания проводят: после прокладки коммуникации, перед засыпкой канала, после засыпки канала (до монтажа соответствующих комплектующих). Проверка трубопроводных коммуникаций, которые относятся к напорным, проводится в соответствии со СНиП В III–3–81.
Трубы, выполненные из чугунного материала или асбоцемента, проверяются в случае, если длина трубопровода не превышает 1 километра (за 1 испытание). Полиэтиленовые (ПЭ) трубопроводы испытываются отрезками по 500 метров. Трубопроводы из любых других материалов проверяются отрезками, которые имеют длину до 1 километра.
Время выдержки зависит от материала, из которого изготовлены трубы испытуемой магистрали
А также стоит отметить, что время выдержки для металлических и асбоцементных труб составляет не менее 10 мин, а для ПЭ труб — не меньше 30 мин.
Испытания систем отопления
Гидравлические испытания отопительных коммуникаций производятся непосредственно после их установки. Наполнение коммуникации водой выполняется снизу вверх. Это способствует спокойному выводу воздуха из системы. Важно знать, что наполнение системы водой не должно происходить слишком быстро, иначе могут возникнуть воздушные пробки.
Проверки отопительных коммуникаций выполняются с учётом СНиП и предполагают задействование следующих показателей давления:
- стандартное, рабочее давление, составляющее 100 кПа;
- проверочное давление со значением 300 кПа.
Важным моментом считается то, что испытание трубопроводов теплосетей должно производиться при отстыкованном котле. Также необходимо заранее отсоединить расширительный бак. Проверочные мероприятия, направленные на выявление и устранение дефектов в системах отопления, не проводятся в зимний период. Если теплосеть нормально функционировала в течение 3 месяцев — ее эксплуатация может производиться без гидравлических проверок. Проверка закрытого отопительного трубопровода выполняется до засыпки траншеи, а также до монтажа теплоизоляционного материала.
Обратите внимание! Измерительная аппаратура должна в обязательном порядке подвергаться проверке перед началом гидравлических испытаний.
Согласно со строительными нормами и правилами, после проведения всех этапов испытаний, теплосеть промывают и устанавливают в её нижней точке специальный соединительный элемент — муфту (с сечением от 60 до 80 мм). Через эту муфту производится удаление жидкости из системы. Промывка отопительной коммуникации выполняется несколько раз холодной водой.
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской област |
Проведение гидроиспытания трубопроводов на прочность: Обзор +Видео
Гидроиспытания трубопроводов. Для профилактики работы водопроводных сетей коммуникации периодически подвергаются проверке на прочность и герметичность. На это направлены гидроиспытания трубопроводов, состоящие из ряда мероприятий, которые осуществляют контроль работы на разных этапах функционирования систем.
Это является обязательным требованием для трубопроводов, которые работают под высоким давлением.
Содержание статьи:
Основные принципы проведения гидроиспытаний
Гидравлические испытания как метод проверки используют чаще всего, потому что они не разрушают конструкцию трубопроводов. Целью проведения мероприятий становится предотвращение аварий на линиях водопровода, системы отопления, также выявление отклонений от прописанных в нормативных документах требований.
Водопроводные системы, работающих под давлением, нуждаются в проверке если:
- Изготовленные детали для трубопроводов готовятся к установке.
- Прокладка трубопроводов закончена.
- Нужен контроль системы во время испытаний.
Требования к тестированию магистралей прописаны в СНиП III –Г. 9-62, НИТУХП-62
Наряду с гидравлическим методом применяют пневматический способ, если невозможно провести первый в таких ситуациях, как:
- во время минусовых показателей температуры окружающей среды;
- нет возможности применить воду;
- возрастающая опасность из-за нагрузки от объема жидкости.
Также магистрали тестируют с помощью воздуха, либо применяя инертный газ. Тестовые проверки проходят под строгим контролем специалистов, согласно требованиям Госгортехнадзорных органов и особенностей проекта. Во время испытаний всю систему делят на определенные участки, трубы внимательно осматривают, изучают технические характеристики сети. Во время проведения проверки устанавливают краны для слива и вывода воздуха, также монтируют заглушки.
Внимание! Нельзя во время теста пользоваться запорной арматурой. К участку трубопровода подключают пресс либо насос для подачи воды и устанавливают необходимый напор. Давление в трубах может превышать обычные нормы до полутора раз.
Регулировка давления во время испытательных мероприятий
Для контроля за давлением во время тестирования системы устанавливают манометры, которые заранее подвергаются проверке и опломбировке. Класс точности устройства должен соответствовать минимум 1.5 по ГОСТ 2405 – 63. Размер корпуса манометра должен составлять более 15 сантиметров, размер шкалы номинального показателя уровня напора должна ровняться минимум трем четвертям из измеряемого. Гидравлические испытания выявляют прочность и плотность системы.
Давление для испытания сетей отличается в зависимости от типа магистрали:
- Для напорных систем из стали и чугуна соответствует показатель 1.25 для обычной работы, прописанный в документах. Для них проверочное давление не должно превышать над рабочим более пяти килограмм на кубический сантиметр, а максимальное давление во время проверки может достигать 10 килограммам на сантиметр кубический.
- Напорные сети из асбестоцемента не должны подвергаться большему давлению во время проверки более 5 килограмм на сантиметр кубический.
- Полимерные трубопроводы подвергаются давлению, прописанному в Гостстандартах, уровень нельзя уменьшать до рабочего.
Чтобы нагнетать необходимое давление во время тестирования, допускают к использованию:
- гидравлических прессов;
- поршневых ручных насосов;
- приводных шестеренчатых насосов;
- насосы для эксплуатации.
Подготовительный этап перед проверкой
Перед тестированием системы трубы осматривают, чтобы выявить неполадки визуально. Так определяют готовность трубопровода к проведению испытательных мероприятий.
Для подготовки к испытаниям:
- Тщательно осматривают стыки.
- Определяют правильность установки арматуры.
- Проверяют опорные конструкции, подвески.
- Тест проходят запорные устройства на то, как свободно они закрываются и открываются.
- Определяют, как быстро можно удалить воздух из трубопровода.
Подходящая температура воздуха во время испытания не ниже 15 градусов выше ноля. Наружные трубопроводы до начала работ продувают для удаления загрязнений внутри системы.
Основные этапы тестирования
Гидравлические испытания проводят в несколько этапов:
- Подводят насос для подачи воды.
- Устанавливают манометры.
- Наполняют систему водой. В это время воздушники остаются в открытом виде, пока в них не покажется вода. Это будет показателем того, что воздух удален из системы. Во время наполнения системы трубы просматривают на наличие протечек и дефектов конструкции.
- Заставляют работать систему при повышенном давлении с помощью насоса некоторое время.
- Снижают давление до рабочей нормы.
- Удаляют воду из труб, снова осматривают систему.
- Снимают манометры и убирают насос.
Проверка работы сети под давлением занимает пять минут. Лишь стеклянные трубопроводы подвергаются тестированию в течение двадцати минут.
Справка! Просматривая трубопроводы из стали, стыки, сделанные с помощью сварки, простукивают с помощью закругленного молоточка по обе стороны соединения. Вес молоточка составляет около 1.5 килограмм. Сети, выполненные с помощью цветного металла, проверяют посредством деревянного молотка весом около 700 грамм. Простукивать магистрали, выполненные с помощью иных материалов, нельзя.
Основные принципы проведения испытаний технологического трубопровода
Трубопроводы проходят первые испытания на этапе укладки перед засыпкой траншей и оснащением арматурой. Тестирование проводят для определения плотности во время чеканки и протечек системы. Дальнейшим испытаниям трубы подвергаются после покрытия магистрали землей и полного окончания монтажных работ технологического трубопровода. Проверку проводят только после полного установления прочности в соединениях. При сохранении герметичности конструкции, не сделав разрывов в системе, не обнаружив протечки стыков, можно говорить, что трубопровод прошел предварительную проверку.
Как только завершается первое тестирование, можно засыпать трубы грунтом и далее проводить повторный контроль системы. Проводя финальные мероприятия технологические сети промывают с помощью воды, каждый тестируемый участок изолируют от остальной рабочей системы при помощи фланцев либо заглушек. До начала проверки проводят подготовку труб к испытанию: систему с раструбами заполняют водой на целые сутки. Окончательное тестирование не предполагает использование защитных гидрантов либо вентилей, на их место устанавливают заглушки.
Внимание! Проводя финальное испытание необходимо полностью открыть задвижки, и проверить исправность набивки в сальниках. Нельзя с помощью задвижек отсекать испытуемую часть системы от работающей.
В схеме указано: при тестировании из крана должен удаляться воздух. Вентиль монтируют в наивысшей точке трубопровода. Также силу давления регулируют с помощью насосов.
Внимание! Во время гидравлических испытаний надо соблюдать технику безопасности, потому что под давлением может разорвать трубы и ранить осколками людей.
Основные принципы во время проведения испытаний отопительных сетей
Трубопроводы для отопления проходят испытания, чтобы они бесперебойно работали всю зиму, и служат в качестве технической проверки качества отопления. Разные функциональные помещения отапливаются при индивидуальном напоре в системе. С помощью напора изменяют уровень прогрева помещения и циркуляцию теплового носителя. В трубах возникают разного рода гидравлические реакции, которые могут повредить систему. Трубопровод необходимо тестировать при давлении, которое в 40 раз больше рабочего.
Во время испытательных работ проводят следующие манипуляции:
- Испытывают краны.
- Чтобы увеличить герметичность конструкции, устанавливают уплотнители сальникового типа.
- Проверяют изоляцию трубопровода.
- Помещение отсекают от остальной магистрали с помощью глухих заглушек.
- Во время строительства отопительный трубопровод может засоряться, важно проводить промывку, опрессовку системы для ее качественной работы.
Особенности тестирования зимой
Обычно рекомендуют проводить испытания при температуре до плюс 15 градусов. Если приходится тестировать систему зимой, надо соблюдать некоторые правила, чтобы вода не замерзла в трубах. Систему надо освобождать от воды для проверки.
Как проверяют систему:
- Заранее проводят прогревание сети с помощью горячей воды не более шестидесяти градусов. Во время прогрева надо утеплить штуцера для дренажной системы, спусковые участки.
- Магистраль проверяют с помощью жидкостей, которые замерзают при температуре ниже ноля. Затем сразу же прогоняют теплую воду по трубам, промывая их и продувают посредством воздушного напора.
Если испытывают трубопровод с помощью хлористого кальция, то тестированию подлежат участки длиной до одного километра при УД, равном не более 10 сантиметрам.
Внимание! В холодный период можно тестировать участки протяженностью до двухсот пятидесяти метров, имеющих объем не более 25 сантиметров.
Специальные таблицы содержат данные по объему воды, которое подходит для проверки зимой.
Как часто надо проводить гидроиспытания
Время проведения обязательных испытаний трубопроводов приходится на начало сезона, когда включают отопление и на его конец. Канализационные сети проходят тестирование один раз за год, во время прохождения техобслуживания. Также трубопроводы испытывают на прочность после окончания строительных либо ремонтных мероприятий, или по указанию контролирующих органов.
Последствия при нарушении систематического проведения испытаний
Если не проверить работу новой магистрали и не заполнить акт о проведении испытаний, то контролирующие органы не разрешат ввести в эксплуатацию данный объект. При несоблюдении сроков испытаний для действующего трубопровода, это может повлечь поломку всей системы и принесет еще большие убытки. Только во время проверок системы под давлением можно увидеть мелкие неполадки в виде протечек в местах стыков. Протечки могут привести к ремонту труб и отключению всей сети.
Во время укладки современных сетей, у которых эксплуатационный срок равен более пятидесяти лет, можно провести одно испытание по окончанию монтажных либо ремонтных работ. В России почти все центральные магистрали смонтированы много десятилетий назад, поэтому нуждаются в постоянной проверке. Данные мероприятия позволят вовремя провести ремонт коммуникаций либо полностью заменить элементы конструкции.
Гидравлические испытания
На основании «Правил технической эксплуатации тепловых энергоустановок» (утв. приказом Минэнерго РФ от 24 марта 2003 г. №115) предприятия тепловых сетей при эксплуатации систем тепловых сетей должны обеспечить надежность теплоснабжения потребителей, подачу ему теплоносителей (воды и пара) с расходом и параметрами в соответствии с температурным графиком регулирования и перепадом давления на вводе.
В процессе эксплуатации все действующие тепловые сети должны подвергаться испытаниям на прочность и плотность для выявления дефектов не позже, чем через две недели после окончания отопительного сезона.
Гидравлические испытания трубопроводов водяных тепловых сетей с целью проверки прочности и плотности следует проводить пробным давлением с внесением результатов в акт.
Давление пробное — избыточное давление, при котором должно производиться гидравлическое испытание тепловых энергоустановок и сетей на прочность и плотность.
Минимальная величина пробного давления при гидравлическом испытании составляет 1,25 рабочего давления, но не менее 0,2 МПа (2 кгс/см2).
Максимальная величина пробного давления устанавливается расчетом на прочность по нормативно-технической документации, согласованной с Госгортехнадзором России.
Величину пробного давления выбирает предприятие-изготовитель (проектная организация) в пределах между минимальным и максимальным значениями.
Гидравлические испытания осуществляет ответственный за безопасную эксплуатацию тепловых сетей совместно с персоналом, допущенным к эксплуатации тепловых сетей.
Гидравлические и пневматические испытания
Приборы: 2 манометра (рабочий и контрольный) класс выше 1,5%, диаметр манометра не ниже 160мм, шкала 4/3 от давления испытания.
Порядок проведения гидравлических испытаний:
- Отключить испытуемый участок заглушками
- Сальниковые компенсаторы заменить заглушками или вставками
- Открыть все байпасные линии и задвижки, если их нельзя заменить заглушками
- Устанавливается пробное давление =1,25Рраб, но не более рабочего давления трубопровода Ру
- Выдержка 10 минут
- Давление уменьшается до рабочего, при этом давлении осуществляется осмотр.
Утечки контролируются по: падение давления на манометре, явные утечки, характерный шум, запотевание трубы. Одновременно контролируется положение трубопроводов на опорах.
Пневматические испытания запрещается проводить для:
Допускается при низких давлениях испытывать арматуру из ковкого чугуна.
- Приборы: 2 манометра, источник давления – компрессор.
- Заполнение со скоростью 0,3 МПа/час.
- Визуальный осмотр при давлении Р ≤ 0,3Риспытан., но не более 0,3 МПа. Рисп = 1,25Р раб.
- Давление повышается до Риспытан, но не более 0,3 МПа.
- Выдержка 30мин.
- Снижение давления до Рраб, осмотр.
- Утечки определяются по признакам: уменьшение давления на манометрах, шум, пузырение мыльного раствора.
Техника безопасности:
во время осмотра запрещается спускаться в траншею;
не попадать под струю воздуха
ДЛЯ ЧЕГО НУЖНЫ ГИДРАВЛИЧЕСКИЕ ИСПЫТАНИЯ ТРУБОПРОВОДОВ?
Гидравлические испытания проводятся в соответствии со СНиП. После их окончания составляется акт, указывающий на работоспособность системы. Они выполняются на разных этапах эксплуатации коммуникаций. Параметры проверки вычисляются для каждой системы отдельно, в зависимости от ее типа.
Зачем и когда проводить гидравлические испытания?
Гидравлические испытания – это вид неразрушающего контроля, который осуществляется для проверки прочности и плотности трубопроводных систем.
Испытанием подвергается всё работающее оборудование на разных этапах эксплуатации.
В целом, можно выделить три случая, в которых испытания должны проводиться в обязательном порядке, в независимости от назначения трубопровода:
после завершения производственного процесса по выпуску оборудования или деталей трубопроводной системы;
после завершения установочных работ трубопровода;во время эксплуатации оборудования.
Испытания гидравлическим способом – это важная процедура, которая подтверждает или опровергает надёжность эксплуатируемой системы, работающей под давлением. Это необходимо для предотвращения аварии на магистралях и сохранения здоровья граждан.
Осуществляется проведение процедуры на гидравлическое испытание трубопроводов в экстремальных условиях. Давление, под которым оно проходит, называют проверочным. Оно превышает обычное, рабочее давление в 1,25-1,5 раза.
Особенности гидравлических испытаний
В систему трубопровода пробное давление подается плавно и медленно, чтобы не спровоцировать гидроударов и образования аварийных происшествий. Величину давления определяют не на глаз, а по специальной формуле, но на практике, как правило, оно на 25% больше рабочего давления. Гидравлические испытания выявляют ненадежные соединения.
Согласно СНиП, допускаются скачки показателей, так как возможно быстрое измерение температуры жидкости в трубопроводном сосуде.
При его наполнении нужно обязательно следить за скоплением газа на разных участках системы.
После заполнения трубопровода наступает, так называемое, время выдержки – период, во время которого испытуемое оборудование находится под повышенным давлением.
Важно следить, чтобы оно находилось на одном уровне во время выдержки.
После его окончания давление минимизируют до рабочего состояния.
Пока проходит испытание, возле трубопровода не должно находиться никого.
Обслуживающий его персонал должен ждать в безопасном месте, так как проверка работоспособности системы может быть взрывоопасна.
После окончания процесса наступает оценка полученных результатов согласно СНиП.
Трубопровод осматривается на наличие течей, взрывов металла, деформаций.
Параметры гидравлических испытаний
При проведении проверки качества трубопровода необходимо определить показатели следующих параметров работ:
- Давления.
- Температуры.
- Времени выдержки.
Нижняя граница проверочного давления вычисляется по следующей формуле: Ph = KhP.Верхняя граница не должна превышать сумму общих мембранных и изгибных напряжений, которая достигнет 1,7 [δ]Th. Формула расшифровывается так:Р – расчетное давление, параметры которого предоставлены изготовителем, или рабочее давление, если испытания осуществляются после монтажа;
[δ]Th – номинальное напряжение, которое допускается при температуре испытаний Th;[δ]T – допускаемое напряжение при расчетной температуре T;
Kh – условный коэффициент, принимающий разное значение для разных объектов.
При проверке трубопроводов он равен 1,25.
Температура воды не должна опускаться ниже 5˚С и не подыматься выше 40˚С. Исключением являются лишь те случаи, когда температура гидро компонента указана в технических условиях исследуемого объекта. Как бы там ни было, температура воздуха при проведении проверки не должна опускаться ниже тех же 5˚С.Время выдержки должно быть указанно в проектной документации на объект. Оно не должно быть меньше 5 мин.
Если точные параметры не предусмотрены, то время выдержки рассчитывается, исходя их толщины стенок трубопровода. Например, при толщине до 50 мм, проверка под давлением длиться не менее 10 мин, при толщине свыше 100 мм – не менее 30 мин.
Гидравлические испытания тепловых сетей и систем подачи воды
После завершения гидравлических испытаний систем отопления по СНиП, составляется акт гидравлических испытаний тепловых сетей и систем подачи воды, указывающий на соответствие параметров трубопровода.
Согласно СНиП его бланк содержит такую информацию:
- название должности руководителя предприятия, оказывающего обслуживание тепловых сетей;
- его подпись и инициалы, а также дату проверки;
- данные о председателе комиссии, а также ее членах;информацию о параметрах тепловых сетей:
- протяжности, наименования и т.д.;
- выводы о проведении контроля, заключение комиссии.
Регулировка характеристик магистралей отопления осуществляется СНиП 3.05.03-85. Согласно указанному СНиП его правила действуют в отношении всех магистралей, которые транспортируют воду температурой до 220˚С и пара — до 440˚С.
Для документального завершения гидравлических испытаний водопровода составляется акт для наружного водопроводав соответствии со СНиП 3.05.01-85. Согласно СНиП акт содержит следующую информацию:
Акт заверяется представителем организации надзора.
Испытания трубопроводов на герметичность в тепловом пункте
Гидравлические испытания трубопроводов и их особенности
Гидравлические испытания трубопроводов становится обязательным требованием для участка, монтаж которого недавно закончился, как и пневматические тесты. Такие проверки проводятся согласно регламенту и требованиям, определённым на законодательном уровне.
Когда и зачем их проводят?
Гидравлические испытания трубопроводов относятся к разновидностям неразрушающего контроля. Он нужен для того, чтобы проверить параметры прочности с плотностью в каждой системе. На разных этапах эксплуатации такие проверки проходят многие виды оборудования. Давайте опбратимся к Википедии, что она говорит о данной процедуре.
Есть три ситуации, в которых проведение проверок становится обязательным требованием. Не важно, с каким назначением возводится трубопровод.
- Во время эксплуатации.
- После того, как завершены установочные работы.
- Когда закончился процесс по производству оборудования или деталей для системы.
После проверок специалисты подтверждают надёжность системы, либо полностью опровергают её. Благодаря этому становится проще избежать аварий. Во время процедуры создаются экстремальные условия. Проверочным называют давление, которое включается в этот момент. Оно в полтора раза превышает обычные, рабочие показатели.
Какие особенности характерны для испытаний трубопроводов?
Полное давление подаётся к трубопроводу не сразу. Это происходит медленно и плавно. Иначе может произойти гидроудар, вследствие чего образуется авария. Величина давления
% PDF-1.4
%
1 0 obj
>>>
endobj
2 0 obj
> поток
2014-09-30T11: 58: 46 + 02: 002014-09-30T11: 58: 49 + 02: 002014-09-30T11: 58: 49 + 02: 00Adobe InDesign CC (Windows) uuid: a3c8a8b3-5e22-46a8- 8902-b1028f4e959aadobe: DocId: INDD: f9bd6ca5-3a09-11de-8093-a58caa473007xmp.id: 0f92e7a6-3136-374b-9e58-0afc47846913proof: pdfxmp.iid: 6b696f4e-60E3-D848-baa4-f6c058e0a3bdxmp.did: 9d885de2-3829- 984c-bd4d-b19d36ee4ceaadobe: docid: indd: f9bd6ca5-3a09-11de-8093-a58caa473007 по умолчанию
application / pdf Библиотека Adobe PDF 10.0.1False
endstream
endobj
3 0 obj
>
endobj
5 0 obj
> / Font> / ProcSet [/ PDF / Text / ImageC] / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >>
endobj
6 0 obj
> / Font> / ProcSet [/ PDF / Text] / Properties> / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >>
endobj
7 0 obj
> / Font> / ProcSet [/ PDF / Text] / XObject >>> / TrimBox [0.0 0.0 595.276 841.89] / Type / Page >>
endobj
8 0 объект
> / Font> / ProcSet [/ PDF / Текст] / Свойства> / XObject >>> / TrimBox [0.6L2m ט г ~ dP⯊, 8Cy̰0 г
Y \ р ݘ 8 EҶE4
бб * 6M
ʓc’C ~: 3A»O> L`jblrN7B $ | gZ «bԆ» rgqG5H; FMLk \: Oaz3qNm?! & YLy2 @ ̰3ODsjz څ ȭQDKRT¼’h2kn27 ֥ 0! u ܣ y-7 & r $ H? D-kEMB4 * 20qMd $ ddnLĪUnl` \ LPVFF9mbtG #?
Пневматические испытания трубопроводов как альтернатива гидростатическим испытаниям> ENGINEERING.com
Сайт www.eng-tips.com — это технический форум для практикующих инженеров, где они могут обсуждать актуальные темы с другими практикующими инженерами.
Обсуждения статического тестирования появляются на eng-tips.com каждые несколько месяцев. Обычно они будут соответствовать формату:
Резьба 481-348164
мкм1209 (Нефть) (OP) 8 июля 13 9:13
Ребята
Я работаю в компании по строительству трубопроводов.
Я занимаюсь технологическим и трубопроводным обслуживанием с 1999 года.
Я пришел в эту компанию, чтобы основать подразделение по гидроиспытаниям.
Наш заказчик просит нас провести пневматическое испытание 7 миль 20-дюймового трубопровода.
Испытательное давление находится в районе 1300 фунтов на квадратный дюйм.
Я категорически против этого, но моя компания хочет двигаться вперед. Заказчик дал нам зеленый свет.
Ах да
Мы делаем этот тест в течение недели.
Мне нужны неопровержимые факты, чтобы моя компания не делала этого. Я искал информацию в сети, но не мог найти ничего конкретного. Или факты, чтобы я чувствовал себя лучше.
Я нашел
«437.4.3 Разрешено только для трубопроводных систем, эксплуатируемых при 20% или менее SMYS»
Нужна помощь
Обычно сразу после этого вопроса следует что-то вроде:
Резьба378-191668
JoeTank (Структурный) 9 июля 07 9:12
Моя личная практика для проверки воздуха — это находиться как минимум на расстоянии одного почтового индекса от сайта.
Джо Танк
Что довольно забавно и довольно запоминается. Сообщение? Эти пневматические испытания безответственны, и любой, кто их предлагает, — ковбой. Хотя это правильно и правильно, что у нас есть сильное предубеждение в пользу гидростатических испытаний, а не испытаний со сжатым газом, испытания с использованием сжатого газа далеко не безответственны и могут быть альтернативой с меньшим риском в определенных конкретных случаях.
Риск, о котором здесь идет речь, заключается в том, что сжатый газ содержит значительно больше потенциальной энергии, чем сжатая несжимаемая жидкость.Быстрое преобразование этой потенциальной энергии в кинетическую может быть жестоким и разрушительным событием.
Испытания трубопроводов на прочность
Когда новый трубопровод должен быть введен в эксплуатацию, различные нормы и стандарты компании требуют, чтобы он был подвергнут испытанию на герметичность и / или испытанию на прочность. Испытания на герметичность обычно проводятся при довольно низком давлении и предназначены только для подтверждения того, что труба действительно будет содержать жидкости. Риски, как правило, достаточно низкие, и испытания на герметичность проводятся без особого учета катастрофического отказа.
Испытание на прочность проводится при повышенном давлении, кратном превышающем 1,0 максимально допустимого рабочего давления системы (МДРД), и выдерживается в течение некоторого времени. Множественность давления и продолжительность значительно варьируются от одной регулирующей юрисдикции к другой, от одного кодового документа к другому и от одной компании к другой. Эти подробности, хотя и обильно разбросаны в сообщениях по этой теме, выходят за рамки этого обсуждения.
Основными видами испытаний являются «гидростатические» или «пневматические статические» (иногда называемые «пневмостатическими», но это слишком претенциозно).«Статический» просто означает, что во время успешного испытания жидкости под давлением не имеют чистого движения относительно конца трубы или ее средней линии.
Гидростатическое испытание проводится с использованием в значительной степени несжимаемой жидкости, такой как вода (отсюда и приставка «гидро»), масло, гликоль или некоторая смесь (например, гликоль часто добавляют в воду для гидростатических испытаний для предотвращения замерзания). В этих испытаниях трубопровод заполняется жидкостью, унесенные газы могут рассеиваться к вентиляционным отверстиям, а давление в системе повышается до требуемого испытательного давления и удерживается там в течение всего испытания.
Пневматический статический тест проводится с использованием газа, такого как сжатый воздух, азот, CO2 или метан (тесты с CO2 очень редки и очень трудны, потому что при повышенном давлении газ может переходить в «плотную фазу», которая ведет себя совершенно иначе, чем газ или жидкость). Проблемы, связанные с пневматическими статическими испытаниями, в основном связаны с накопленной энергией.
Энергия Участвует в испытании
Модуль объемной упругости (т.е. величина давления, необходимого для уменьшения объема жидкости на 1%) жидкостей очень велик, поэтому даже в самых агрессивных испытаниях жидкость будет иметь очень небольшую энергию сжатия (например,g., объемный модуль воды составляет порядка 319000 фунтов на квадратный дюйм [2200 МПа], поэтому испытание на 900 фунтов на квадратный дюйм [6,2 МПа] уменьшит объем примерно на 0,3%). При неудачном испытании выделение энергии от этой декомпрессии будет иметь тенденцию немного увеличивать любой разрыв в разрушенном материале, но вряд ли приведет к образованию каких-либо снарядов.
Рисунок 1 — 700 футов
перепад высот
С другой стороны, жидкости имеют значительную массу. Для вертикальных изменений линии увеличение высоты добавляет 0.433 фунтов на квадратный дюйм [9,81 кПа / м] до давления в самой низкой точке системы. Это означает, что в холмистой местности может быть очень сложно разработать гидростатическое испытание. Например, если перепад высот составляет 1000 футов [305 м], то давление внизу будет на 433 фунт / кв.дюйм [2,99 МПа] выше, чем давление вверху, для теста 150% на линии ANSI 150. Простое заполнение линии приведет к превышению испытательного давления в нижней части, а в верхней части останется атмосферное давление. Часто возможно сегментировать линию, чтобы сохранить изменения отметки в пределах сегмента ниже некоторого максимума, но не всегда (например,g., некоторые линии имеют недоступные сегменты на очень пересеченной местности [см. Рисунок 1], другие не имеют клапанов там, где это необходимо для выполнения сегментации).
Испытания с газом — полная противоположность. Плотность очень низкая, поэтому гравитационные силы гораздо менее значительны. Например, воздух под давлением 900 фунтов на квадратный дюйм будет оказывать давление 0,034 фунтов на квадратный дюйм [0,758 кПа / м], что можно безопасно игнорировать.
Хотя плотность газа низкая, сжимаемость достаточно высока, чтобы вызывать беспокойство. Сжатие воздуха от атмосферного давления до 900 фунтов на кв. Дюйм на уровне моря при постоянной температуре приведет к тому, что газ попадет в объем, составляющий 1/63 первоначального объема.Подумайте об этом, сжав пружину на 1/63 ее длины, и вы начнете видеть величину накопленной энергии.
Задачей при проведении пневматических испытаний является «взрывная декомпрессия». Несколько лет назад НАСА опубликовало документ, получивший название «Методология исследовательского центра НАСА Гленна». Этот документ был действительно первым случаем, когда кто-либо предпринял попытку количественно оценить риск попадания газа под давлением. Он был на веб-сайте НАСА в течение нескольких лет, но недавние попытки найти его оказались безуспешными.На основе документа НАСА было написано несколько правил и множество политик компании. В основном этот двухстраничный документ сказал:
- Отказ трубопровода можно правильно назвать «адиабатическим» процессом (т. Е. Он происходит при постоянной энтропии и является обратимым)
- Адиабатическая декомпрессия приводит к значительному выделению энергии.
- Весь материал в системе будет участвовать во взрывной декомпрессии
Расчет адиабатической энергии при пневматическом испытании
Адиабатическая энергия может быть рассчитана следующим образом (это версия НАСА, для вывода этого уравнения требуется «k» в числителе члена «k-1», но давайте придерживаться версии НАСА):
Где:
- Wgas -> Работа с газом (Н-м или фут-фунт-сила).Чтобы преобразовать в «тонны тротила», разделите число фут-фунт-сила на 3,086×109 или число Н-м на 4,184×109 (это число является наиболее распространенным преобразованием, но в некоторых источниках используется 4,8×109 Н-м / т тротила)
- Vsystem -> Объем системы (m3 ft3)
- Ptest -> Давление во время испытания (Па или фунт-сила / фут2) в абсолютных единицах
- Patm -> Местное атмосферное давление (Па или фунт-сила / фут2) в абсолютных единицах
- k -> Адиабатическая постоянная, состоящая из отношения удельной теплоемкости при постоянном давлении к удельной теплоемкости при постоянном объеме (нет единиц, воздух имеет значение 1.4)
Этот расчет может закончиться очень большим числом. Например, если вы испытывали 100 миль [161 км] 36-дюймового [914,4 мм] трубопровода Schedule 40 под давлением 900 фунтов на кв. Дюйм [6,2 МПа] на уровне моря (14,7 фунтов на квадратный дюйм [101,35 кПа]) со сжатым воздухом, объем размер системы будет 3,428×106 футов3 [9,706×104 м3]. Это приводит к общему накоплению энергии в 253,8 тонны в тротиловом эквиваленте, что соответствует масштабу тактического ядерного оружия. Страшные вещи. Я не уверен, что «следующий почтовый индекс» достаточно далеко.
Проблема с методологией исследования Гленна НАСА состоит в том, что взрывная декомпрессия длится очень быстро. Эксперименты, проведенные в Университете Небраски-Линкольн для Министерства энергетики в 2012 году, показывают, что температура газа при взрывной декомпрессии очень быстро падает до минимума, а затем увеличивается примерно до начальной температуры в течение следующих нескольких секунд. Этот минимум можно принять за конец взрывной декомпрессии и начало разгерметизации.В упомянутой статье не указывается продолжительность этого почти вертикального температурного переходного режима. Другие, менее формальные источники указывают, что это происходит при 10-50 мСм после открытия достаточно большого отверстия, которое может привести к закупорке потока.
Природные явления в объеме газа ограничены скоростью звука (1,0 Маха). Это ограничение связано с созданием стоячих «ударных волн» в потоке, которые препятствуют обмену данными от нисходящего потока к восходящему. До Маха 1.0 наличие более низкого давления на выходе сообщалось на входе через неспособность поддерживать более высокое давление на входе.При скорости 1,0 Маха ударная волна достаточна для поддержки давления на входе и позволяет течь только со скоростью звука.
Итак, если мы скажем, что вертикальный переходный процесс составляет 50 мс, и дадим половину доступного времени для сообщения о событии внутри системы и половину времени для энергии, которая теперь «знает», что произошла ошибка участвуют во взрыве со скоростью звука:
Где:
- vsonic -> Скорость звука (м / с или фут / с)
- Rgas -> Удельная газовая постоянная (Универсальная газовая постоянная / Молярная масса)
- T -> Температура газа (R или K)
Для воздуха при 60 ° F [15.6C] скорость звука составляет 1118 фут / с [341 м / с]. Это говорит о том, что за доступные 25 мСм ударная волна пройдет 28 футов [8,5 м]. Предположим, что отказ произошел бесконечно далеко (т. Е. Более 28 футов [8,5 м]) от конца трубы, поэтому длина задействованной трубы составляет 56 футов [17 м], поскольку в нем участвует накопленная энергия с обеих сторон разрушения. Это объем 364 фут3 [10,29 м3], поэтому, используя приведенное выше уравнение адиабатической энергии, энергия эквивалентна 54 фунтам на метр в тротиловом эквиваленте — не тривиальное событие, но далеко не тактическое ядерное оружие.Для сравнения, 54 фунта тротила в правильно сконструированном и правильно развернутом «кратерном заряде» приведут к образованию кратера глубиной 6 футов [1,8 м] и диаметром 25 футов [7,62 м], что составляет объем земли примерно 36,4 ярда3 [27,8 м3].
В теме Thread378-293859 член SNORGY, который часто участвует в этих обсуждениях, поделился электронной таблицей Excel, в которой используются расчеты НАСА для установки «ограниченного расстояния» (т. Е. Ближайшей безопасной точки подхода во время испытаний) в 5621 фут. [1.7 км] для этого теста. Изменение длины трубы до 56 футов, рассчитанных выше, изменяет ограниченное расстояние до 271 футов — все еще возмутительно, но не более одной мили. Этот калькулятор демонстрирует полную ошибочность этого подхода — если бы линия в 100 миль работала при давлении 300 фунтов на кв. Дюйм (половина МДРД), самое близкое расстояние, которое вы могли бы когда-либо подойти к действующей линии, было бы 3670 футов (1,12 км).
Рисунок 2 — Отказ после пневматического испытания
В обсуждении часто обсуждаются сбои, которые всегда включают изображение на рис. 3 (из Thread378-348164 , отправленного MJCronin).Этот сбой в Шанхае, Китай (в некоторых источниках говорится, что он был в Бразилии, но детали одинаковы независимо от полушария) произошел, когда испытание (которое не включало отказавшее судно) проводилось с закрытым клапаном, ведущим в судно.
Клапан протек, и давление в сосуде увеличилось настолько, что он резко отказал. Этот сбой призван продемонстрировать, насколько опасны и безответственны пневматические испытания.Другая точка зрения состоит в том, что вы никогда не проводите испытания с закрытым клапаном, не наблюдая за условиями на выходе. Сбой был одной из инженерных процедур и / или выполнения процедуры и не должен использоваться для обвинения в пневматических испытаниях.
Риски и стратегии снижения при гидростатических испытаниях
Гидростатические испытания регулярно проводятся безопасно и без последствий для окружающей среды. Успешными испытаниями засчитано:
- Сопротивление материалов.Указанный минимальный предел текучести (SMYS) — это мера напряжений, которые материал может выдержать, не начав деформироваться. Различные кодексы и политики компании определяют различную максимальную нагрузку в зависимости от SMYS. Системы сбора сырого газа часто ограничиваются 20% SMYS. Транспортировка переработанного газа по пересеченной местности часто допускает нагрузки, которые намного ближе к 100% SMYS. Линии с высоким потенциалом воздействия на население ограничиваются более низкой долей SMYS, чем линии на открытой местности.Перед принятием каких-либо решений по тестированию эти нагрузки должны быть количественно определены и учтены при принятии решения.
- Соображения по охране окружающей среды / безопасности.
- Вода для гидростатических испытаний (даже без химических добавок) должна рассматриваться как промышленные отходы и не должна сбрасываться в придорожную канаву. Успешные испытания решают эту проблему, определяя точку сброса и подтверждая, что это место будет принимать воду.
- Неудачный тест приведет к опорожнению всей или части жидкости, участвовавшей в тесте, рядом с местом отказа.Успешное испытание предполагает использование временных берм для защиты уязвимых мест (например, рек, сухих водоемов, парковок, офисных зданий и т. Д.).
- Гидростатические испытания по обезвоживанию стали причиной бесчисленных разливов и травм. Пересылка больших объемов жидкости через гибкий трубопровод, такой как пожарный шланг, может создавать очень большие выходные силы на выпускном патрубке, что может привести к резкому раскачиванию конца шланга с риском повреждения персонала и имущества.Успешные испытания определяют средства захвата концов шлангов.
- Нормативные требования. В некоторых юрисдикциях план тестирования должен быть одобрен регулирующим органом до его выполнения. В других юрисдикциях требуется уведомление, но не разрешение. Если дороги собираются закрыть во время испытания, обычно требуется разрешение. Успешные тесты требуют необходимых согласований / разрешений задолго до теста.
- Источник жидкости. Каждый источник жидкости содержит микробы и загрязняющие вещества, многие из которых представляют собой долгосрочную угрозу целостности трубопроводов.Успешные тесты показали, что очень часто после теста остается некоторое количество жидкости, и указываются необходимые химические вещества для обработки.
- Вес жидкости. При испытании трубопроводов с надземными участками важно подтвердить, что опоры для труб подходят для переноса трубы, полной жидкости (обрушившиеся стойки для труб являются частым источником неудач при испытаниях).
- Рельеф. Испытание должно гарантировать, что испытательное давление соответствует минимальной величине в высоких точках, но не будет «чрезмерным» в низких точках.Требуется инженерная оценка для определения «достаточно хорошо» (например, допустимо ли перейти к 160% МДРД в нижней точке, чтобы достичь 110% МДРД в верхней точке? Или лучше оставаться на уровне 150% от МДРД в верхней точке? MAWP в нижней точке и принять 90% MAWP в верхней точке? Или вы можете сегментировать линию, чтобы оставаться в пределах ± 10% от 150% MAWP?).
- Окончание линии. Если тестируемая система уже была подключена к трубопроводу / сосудам вверх / вниз по потоку, вам необходимо подумать, как вы собираетесь предотвратить включение этого внешнего трубопровода в тест.Если нет способа избежать испытания на запорный клапан, тогда вам потребуется контроль давления и защита от избыточного давления в подключенных системах.
- Определение точек впрыска / слива, тестирования и вентиляции. Все эти точки должны быть доступны и расположены где-нибудь, что может быть полезно. Например, если назначенная точка вентиляции находится в нижней точке системы, тогда будет сложно удалить газ, который может накапливаться в высоких точках.
- Заполнение системы. Любая введенная жидкость может увлечь за собой увлеченный газ.Этот газ очень сжимаем и может очень затруднить испытание на номинальную несжимаемость. Успешный тест будет предвидеть этот газ и указывать время выдержки после заполнения и частоту выпуска воздуха на этапе заполнения.
- Герметизация системы. Необходимо учитывать скорость повышения давления и минимальные температуры (как окружающей среды, так и температуры жидкости), чтобы предотвратить хрупкое разрушение трубопроводов, которые в противном случае прошли бы испытание.
- Выполнение теста. Все тесты, кроме самых коротких, будут испытывать некоторое изменение температуры.Вода изменит давление примерно на 100 фунтов на кв. Дюйм / ° F
[1241 кПа / C]. Достаточно небольшие изменения температуры вызывают значительные изменения давления. Успешный тест будет включать критерии приемки. Например, в гидростатических испытаниях, которые я разрабатываю, я указываю, что жидкость может быть удалена во время испытания, но не может быть добавлена, и что испытание проходит успешно, если конечное давление превышает МДРД. Другие указывают максимальный объем, который может быть добавлен для поддержания испытательного давления. Все сводится к инженерному решению. - Системный слив. После того, как испытательная жидкость попала в новый трубопровод, с ней следует обращаться как с промышленными отходами, поскольку почти наверняка она будет собирать масло, смазку и прокатную окалину. Вы не можете просто бросить его на землю. Кроме того, было несколько случаев, когда незакрепленные шланги болтались и травмировались. Эти риски необходимо предвидеть и минимизировать.
- Система сушки. Многие системы не будут стекать естественным образом из-за неровностей топологии трубопроводов.Обычно эту остаточную жидкость удаляют, пропуская скребки воздухом. Успешные испытания определяют, насколько сухой должна быть линия перед ее переключением на работу (например, «запускайте поролоновые скребки до тех пор, пока один из них не станет сухим», или «продуйте линию азотом при температуре -40 ° F до тех пор, пока содержание воды на трубке Дрегера не станет равным. менее 7 фунтов / MMSCF «).
- Убрать. Испытания всегда требуют некоторой модификации системы (например, установки глухих фланцев и оборудования для наполнения), которые должны быть отменены до того, как испытание будет названо «завершенным».Успешные тесты содержат подробные списки того, что необходимо сделать, и, если есть какие-либо временные зависимости, порядок, в котором они должны быть выполнены.
Риски и стратегии снижения при статических пневматических испытаниях трубопроводов
Многие из проблем, упомянутых выше при гидростатических испытаниях, идентичны пневматическим статическим испытаниям. Некоторые немного отличаются:
- Расчеты прочности материалов для пневматических статических испытаний такие же, как и для гидростатических испытаний, указанных выше.
- Соображения по охране окружающей среды / безопасности
- При высокой концентрации энергии в газе разрушение чревато запуском обломков с большой скоростью. Для заглубленных линий основным мусором является грязь и камни, но камни использовались в качестве снарядов с незапамятных времен. Для надземных конструкций мусором будут трубы или фитинги. Некоторые из самых разрушительных отказов связаны с запуском фланца с приварной шейкой и слепыми сотнями футов. Успешные испытания учитывают «запретные зоны» вокруг заглубленной трубы и комбинацию баррикад и запретных зон вокруг наземных сооружений.Также уделяется внимание проведению испытаний в периоды минимальной занятости проезжей части и сооружений.
- Нормативные требования аналогичны гидростатическим испытаниям, за исключением того, что есть юрисдикции, которые имеют сильное предубеждение против пневматических статических испытаний. В таких случаях обязательно, чтобы вы выполнили соответствующую подготовительную работу, чтобы продемонстрировать, почему вы предлагаете пневматический статический тест вместо гидростатического. «Удобство» или «стоимость» редко будут иметь большое значение в этом обсуждении.Вы должны продемонстрировать, что потенциальный результат гидростатического теста значительно хуже, чем потенциальный результат пневматического статического теста (например, «невозможно должным образом высушить», «точки сегментации недоступны»).
- Источник газа. Что касается газов, нас не беспокоят проблемы многофазности (например, газ в жидкости) или коррозия. Мы очень обеспокоены пригодностью газа для испытания. Если испытательной средой является сжатый воздух, то вам потребуется воздушный компрессор, который может перемещать огромные объемы при умеренном давлении в течение большей части периода заполнения, а затем меньшие объемы при высоком давлении в оставшееся время.Для азотного теста вы должны выбрать источник (например, баллоны или жидкий азот в больших объемах) и убедиться, что вы понимаете проблемы по вашему выбору (например, замена баллонов с азотом рискованна, баллоны могут опорожняться меньше по мере увеличения давления в системе азот находится в жидкой форме и должен быть нагрет перед впрыском).
- Вес жидкости не является проблемой для газа.
- Рельеф не является проблемой для газа
- Окончание линии.Все вопросы идентичны гидростатическим.
- Определение точек впрыска / слива, тестирования и вентиляции. Вам не нужно дегазировать газовую заливку, но вам все равно нужны точки наполнения / слива и контрольные точки.
- Заполнение системы. Температура окружающей среды и газа имеют гораздо большее значение при пневматических статических испытаниях, чем при гидростатических испытаниях. Необходимо указать и контролировать минимальную температуру окружающей среды и минимальную температуру впрыска. Кроме того, поскольку запасенная энергия при пневматическом статическом испытании намного больше, чем накопленная энергия при гидростатическом испытании, требуется указать время выдержки при определенных давлениях, чтобы позволить напряжениям уравновеситься.В недавно разработанном мною испытании мы заполнили систему при давлении от 5 до 50 фунтов на квадратный дюйм с последующим 30-минутным периодом выдержки. После выдержки давление увеличивалось до 10 фунтов на квадратный дюйм / мин с 30-минутными периодами выдержки при 150 фунтах на квадратный дюйм и 450 фунтах на квадратный дюйм. Эти давления, скорости заполнения и периоды выдержки были определены путем расчета накопления напряжения.
- Герметизация системы. По окончании периода заполнения система находится под давлением.
- Выполнение теста. Пневматические статические испытания намного меньше подвержены изменению давления из-за колебаний температуры.Из-за температурного уравновешивания испытательное давление редко значительно увеличивается или уменьшается. Как и гидростатическое испытание, успешное испытание будет включать критерии приемки.
- Системный слив. В конце теста газ обычно выпускается в атмосферу. Что касается воздуха и азота, то большую проблему при продувке вызывает охлаждение трубопровода Джоуля-Томсона до зоны хрупкого разрушения. В упомянутом выше испытании мы указали максимальную скорость сброса давления 25 фунтов на кв. Дюйм / мин (и указали, что скорость будет определяться каждые 60 секунд).Одно существенное исключение — это тесты с товарной продукцией. Если я тестирую линию CO2 с помощью CO2, я могу оставить систему под давлением для обслуживания после теста. То же самое с испытанием линии природного газа с помощью природного газа.
- Сушка системы не является проблемой при статических пневматических испытаниях.
- Проблемы с очисткой аналогичны описанным выше гидростатическим испытаниям.
Обсуждения на профессиональных форумах о тестировании трубопроводов
Рисунок 3 — Неисправность трубопровода в работе
(кратер ок.6 футов диаметром, 3 фута глубиной)
Просмотрев 20 тем на eng-tips.com , объединенных в 324 сообщения, я обнаружил несколько интересных наблюдений:
- Не было ни одного поста со ссылкой на личные сведения о выходе из строя трубопровода при пневматическом испытании. Был один очень интересный пост о клапане, вышедшем из строя в ходе пневматического испытания производителя, и один о трубных катушках, которые не прошли испытание на верфи. От первого лица не сообщалось о сбоях при тестировании конвейера (был один пост, в котором респондент указал, что «он знал парня, который…», но анекдот лишь поддержал официальное расследование).
- Во всех рассмотренных мною темах было всего лишь дюжина отчетливых упоминаний об отказах при пневматических испытаниях. Ни одно из звеньев старше 2007 года еще не действовало, но все звенья после 2007 года относились к одному из 4 отказов пневматических испытаний. В нескольких сообщениях упоминались смертельные случаи, связанные с гидростатическими испытаниями. В нескольких публикациях упоминались отказы и взрывы в системах под давлением, которые прошли через годы после статических испытаний (иногда спустя десятилетия).
- Каждый отдельный отказ пневматики с травмами / смертельным исходом может быть связан с техническим отказом (например,g., источник давления 2600 фунтов на квадратный дюйм был подключен к испытанию на 900 фунтов на квадратный дюйм без предохранительного клапана между источником очень высокого давления и испытываемым клапаном) или неспособность должным образом выполнить процедуру (например, отсутствие контроля температуры впрыска от резервуар с жидким азотом или начало испытания с трубопроводом ниже указанной минимальной температуры окружающей среды). Каждая травма, связанная с пневматическим статическим испытанием, может быть напрямую связана с этими двумя причинами. Если надлежащие процедуры написаны и соблюдены, то отказ трубы при пневматическом испытании — это просто отказ трубы, а не поездка на машине скорой помощи.
Мои выводы из прочтения этой сосредоточенной работы таковы: (1) многие люди считают, что гидростатические испытания безопасны по своей сути и не требуют какого-либо значительного анализа; и (2) многие люди считают, что статические пневматические испытания небезопасны по своей сути и не могут быть выполнены без создания неприемлемых опасностей. Первый вывод пугает, потому что гидростатические испытания связаны со значительными рисками для человека и окружающей среды. Им можно управлять, но бесцеремонное отношение к такой массе и энергии довольно опасно.Второй вывод исключает возможность компетентного рассмотрения действующей методики снижения рисков, связанных с гидростатическими испытаниями.
Разумно сказать, что если можно надлежащим образом управлять рисками утилизации, сушки и массы жидких испытаний, то предпочтительнее гидростатические испытания. С другой стороны, будет разумным сказать, что иногда лучший способ снизить риски гидростатических испытаний — это провести пневматические статические испытания.
Об авторе
Дэвид Симпсон, ЧП, инженер-консультант по нефтегазовой отрасли в Muleshoe Engineering .Дэвид является MVP на профессиональных форумах www.eng-tips.com и членом Гильдии инженерных писателей .
Следуйте за Дэвидом (zdas04) по телефону http://eng-tips.com/userinfo.cfm?member=zdas04
,
оборудование для испытания давления трубопровода гидравлического шланга гидравлического водяного насоса
Автоматический гидравлический испытательный насос для воды
DBS-4.0
Легкий портативный ручной насос для проверки давления по разумной цене
Если вы хотите спроектировать сами Также можете проконсультироваться.
Мы сделаем все возможное, чтобы вы остались довольны!
бывшие в употреблении электрические приборы
Этот товар DSB- 4.0 — это недавно разработанный на нашем заводе электрический испытательный насос. Он имеет три следующие характеристики:
1, продукт представляет собой три поршневых насоса, тип механизма использует полностью герметичное моторное масло для смазки, а часть масляного уплотнения была использована импортированная и высококачественная, чтобы машина имела длинный Срок службы.
2, это значительно повышает эффективность работы в тех же условиях за счет количества воды, сколько производительности 8 л в минуту после того, как машина использовала шестиполюсный двигатель.
3, насос представляет собой цельную конструкцию, каждая часть компактного соединения для уменьшения размера машины, кроме того, вес составляет половину от аналогичных продуктов, которые удобно носить с собой и снижают интенсивность труда.
Технические параметры
Модель | давление (МПа / бар) | Расход (л / мин) | Powe (Вт) | Напряжение (В) ) | Мощность (Вт) |
DSB-4.0 | 0-40 | 6.0 | 750 | 220 | 750 |
DSB-4.0 | 0-40 | 750 | 380 | 750 |
9000
, Ltd (, прежнее название — Yuyao City Weiye Machine Equipment Manufactur ), находится
в Вэй Цзяцяо, Шанъюй. Провинция Чжэцзян.
Наша компания, основанная в 2004 году, специализируется на производстве и продаже всевозможных трубопроводных инструментов,
, таких как гидравлический испытательный насос , дырокол, режущий станок, опрыскиватель и т. Д. .
Наша продукция экспортируется по всему миру, особенно в Европу, Средний Восток, Юго-Восточную Азию и т. Д.
имеет высокую репутацию на рынке благодаря высокому качеству и низкой цене .
Цвет может быть разработан самостоятельно, как и ваш логотип.
Мы сделаем все возможное, чтобы вы остались довольны.
,
Масло трубопровода Гидравлическое оборудование для испытаний под давлением Тестер давления
Описание тестер давления оборудования для испытания гидравлического давления трубопровода масла
При испытании трубопровода под давлением завершается сварка трубопровода для проведения стресс-тестов, стресс-тестов, в первую очередь, для определения допустимого давления и наличия испытательной трубки на микротеки, и баланс давления неопределенности, чувствительности и точности в настоящее время не могут заменить все инструменты, и поэтому баланс давления является одним из незаменимых инструментов для измерения давления в трубопроводах.
Подробные изображения масло из трубопровода гидравлическое оборудование для испытания давления тестер давления
Спецификация масла трубопровода гидравлического давления испытательного оборудования испытательного оборудования давления
Диапазон давления: (5 ~ 250) бар (10 ~ 500) бар или настроить другие диапазоны
Неопределенность: 0.05 0,02 0,01
Минимальное значение обнаружения утечки: 0,005 МПа (0,05 кг)
Токовый выход: от 4 до 20 мА (HART) Точность 0,05 (выход 485 опционально)
Вспомогательный индикатор давления: манометр
Вспомогательная индикация смещения: система цветовой индикации
Резьбовой соединение: M20 * 1,5, резьба
Применения масло трубопроводной трубы испытательное оборудование гидравлического давления тестер давления
Psiton баланс давления в основном используется в нефтяной промышленности, инструмент применяется для измерения давления жидкости, но намного точнее, чем манометр, используемый для проверки показания манометра или датчика давления.При испытании трубопровода под давлением завершается сварка трубопровода для проведения стресс-тестов, стресс-тестов, в первую очередь, для определения допустимого давления и наличия испытательной трубки на микротеки, а баланс давления неопределенности, чувствительности и точности в настоящее время не может заменить все инструменты и Таким образом, баланс давления является одним из незаменимых инструментов для измерения давления в трубопроводах.
Руководство по выбору масла из трубопровода гидравлическое оборудование для испытания давления тестер давления
Номер | диапазон | Точность | Площадь поперечного сечения | Количество весов | веса |
551-1 | 5 ~ 250бар | 0.05% 0,02% | 0,1 Квадратный см | Вес 0,1 бар 10P Вес 1 бар 9 P Вес 5 бар 3 P Вес 10 бар 2 P Вес 25 бар 8 P | Вес 1 бар около 0,1 кг Удельный вес Расчет удельного веса произведен в соответствии с расчетом местной силы тяжести Общий вес 25 кг |
551-2 | 10-600бар 5-600бар | 0 ,05 Квадратный см | Вес 50 бар 11 P Вес 10 бар 3 P Вес 1 бар 9 P Вес 0,1 бар 10P | Вес 1 бар около Удельный вес Расчет веса произведен в соответствии с местными расчет силы тяжести Общий вес | |
551-3 | 10 ~ 250 бар | 0,05 Квадратный см | Вес 0,1 бар 10 P Вес 1 бар 9 P 5 бар Вес P Вес 10 бар 2 P Вес 25 бар 8 P | Вес 1 бар около Удельный вес Расчет веса произведен в соответствии с расчетом местной силы тяжести Общий вес |
Сопутствующие товары
000
,