Воздушная тяга: Тяга дымохода: методика расчета

Содержание

Тяга. Как она возникает и что это такое


Любой прибор, предназначенный для отопления дома, должен обеспечивать безопасную и эффективную работу. Дымоход в них помогает высвобождению токсичных продуктов горения. Если отопительный котел, камин, газовая колонка или печь дымит, то это значит, что возникла обратная тяга в дымоходе или системе вентиляции. Важно выяснить причины нарушения тяги, чтобы понять, как решить проблему.

Что такое и как возникает тяга?


В том случае, когда не оборудована искусственная вентиляция (представим себе обычные природные условия) поведение воздушных масс в данной ситуации следующим образом:

  • воздух идет по пути наименьшего сопротивления;
  • во время появления «помощи» в виде удлиненного «коридора» — повышается интенсивность движения воздушных потоков. Их движение принудительно направляется в ничем не занятое, пустое пространство.


Простыми словами, дымоходные каналы и трубы являются этими самыми коридорами. Это является результатом рукотворной деятельности человека, задачей которого является искусственно созданная тяга для удаления продуктов горения из помещений:

  • как результат конкретных инженерных расчетов, печная труба или труба колонки и котла обладает следующими параметрами, которые позволяют создавать направленный аэродинамический воздушный поток продуктов горения;
  • появление тяги происходит из-за разности давлений воздуха внутри печи и снаружи.


Ослабление или изменение направленности тяги провоцирует задымление комнаты, отравление угарным газом или пожары. При этом стоимость отопительного устройства никак не влияет на направление воздушных потоков. Тяга пропадает из-за плохого качества дымохода. Обратный ход потоков воздуха может проявиться даже при использовании престижных технических средств.

Как проверить направление тяги?


Для того чтобы отметить обратное движение потоков воздуха (не через специальный канал для отвода продуктов горения, а наоборот в помещение) есть термин который звучит как «опрокидывание тяги».


Из названия уже можно понять, что продукты горения поступают внутрь помещения, а не в дымоход. Каждый раз, как происходит пуск приборов отопления, необходимо проверять направление и силу тяги с отключенными устройствами вентиляции (если таковые имеются).

Существует несколько способов проверить, есть ли обратная тяга в вентиляции или дымоходном канале.

Народные способы.


Как выявить само наличие опрокидывания тяги:

  • если в топке установлена стеклянная дверца (например, у таких отопительных приборов как камин, данная деталь довольно широко распространена) – через стекло видно, насколько быстро она закапчивается. Как только открывается дверца, в помещение сразу же начнет валить дым;
  • можно просто приставить тонкий листок бумаги к открытому проему топки и увидеть направление его наклона. Аналогично можно наблюдать и за дымом подожженной сигареты вместо листка бумаги.

Профессиональные способы.
Есть специальная аппаратура, которая позволяет измерить тягу в дымоходе в единицах давления максимально точно. Нормой считаются показатели, варьирующиеся от 10 до 20 Па. Замеры производятся двусторонним способом:

  • у основания дымохода;
  • на выходе (вверху) дымохода.


Но в частном доме данный метод не особо популярен, большая часть домовладельцев пользуются народными средствами.


Анемометр не позволяет объективно определить данные, если скорость ветра менее 1 м/сек. Исходя из этого, можно сделать вывод, что использование данного прибора в тихую безветренную погоду бессмысленно.

При визуальном осмотре.


В случае нормального соотношения тяги и горения:

  • у пламени желто-золотистый оттенок;
  • при появлении дыма он тут же плавно и интенсивно, но без рывков уходит в дымоход.


В том случае, когда тяга слишком сильная, тоже не является хорошим признаком, так как по этой причине сгорание топлива будет происходить слишком быстро. О чрезмерной тяге говорит белый оттенок пламени и гул в дымоходе.

Как на тягу влияет вентиляция?


Часто возникает ситуация, когда с дымоходом все нормально, но все равно появляется обратная тяга в дымоходе, что же делать тогда? В чем причина? Скорее всего, дело в вентиляционной системе, которая работает по определенным природным закономерностям.


Плотность теплых воздушных потоков существенно ниже холодных масс, поэтому теплый воздух устремляется наверх. Если в это время в помещении открыты двери или окна, то воздушные массы направятся именно в распахнутые проемы, а не в дымоход отопительного прибора. Поэтому нужно следить, чтобы при включении прибора все двери и окна на улицу были закрыты.


Также огромное влияние на тягу оказывает внутренняя архитектура сооружения. Если в здании множество дверей или окон, есть проход на балкон или лестница на другой уровень, то непременно возникнет сквозняк. Поэтому нельзя держать распахнутыми окна и двери, расположенные выше уровня нахождения топочной камеры.


Часто случается ситуация, когда все проемы заперты, но при растопке обогревательного прибора зоны пониженного давления притягивают свежие воздушные потоки из дымохода, и в итоге происходит опрокидывание тяги. Решить проблему можно созданием необходимого оборота воздуха.

Для этого необходимо:

  • поставить внутристенные приточные клапаны;
  • оборудовать приточными клапанами окна;
  • установить в оконное стекло устройство принудительной вентиляции;
  • немного приоткрыть дверь, окошко или форточку.

Осуществление одной из предложенных мер приведет к снижению атмосферного давления в помещении и, соответственно, исчезновению обратной тяги.

Если же в качестве отопительного прибора используется газовая колонка, то здесь есть некоторые нюансы:

  • камера сгорания тянет воздушные потоки из помещения;
  • кислородный дефицит начинает чувствоваться в довольно скором времени;
  • воздух из дымохода начнет поступать обратно, что приведет к угасанию пламени и задымлению.

В этом случае стоит тщательно проверить эффективность работы вентиляционной системы.

Способы решения проблемы


Способ решения возникших неприятностей зависит от причин, которые привели к опрокидыванию воздуха в дымоходной трубе. Поэтому стоит еще раз уточнить, что делать, если возникает обратная тяга, и как противостоять ее опрокидыванию.

Если причина в конструкционных недочетах дымохода:

  • чрезмерно занижен верхний край трубы;
  • зауженные проходы;
  • много лишних изгибов и т.д.


Данные изъяны нужно устранить переделкой дымоходной системы.


В других случаях можно использовать различные стабилизирующие механизмы.


Надежный стабилизатор является одним из наиболее эффективных решений коррекции тяги. Современные устройства снабжаются автоматикой, благодаря которой достаточно просто включить прибор и проблема будет решена. А после этого устройство самостоятельно отключится, когда в нем не будет необходимости.


В этом случае на дымоходную трубу устанавливается расширение в виде зонта, под которым есть проем для поступления воздуха. Под колпаком зонтика монтируется термостат, который регулирует температуру газов, поднимающихся наверх. В результате плохой тяги газов накапливается слишком много и датчик отключается.


Также можно установить специальное металлическое крыло – флюгер, который вращается под воздействием ветра, всегда оказываясь с наветренной стороны. А результате обтекания флюгера ветрами, воздух возле дымохода разрежается, давление падает и тяга возрастает.


Еще один вариант – монтаж дефлектора. Назначение этого агрегата заключается в усилении тяги, благодаря отклонению воздушных масс, из-за чего давление снижается. Главный недостаток данного прибора — практически нулевая эффективность, если ветра нет. В безветренную погоду дефлектор может даже способствовать опрокидыванию.


Ротационные трубы – еще один стабилизатор. На вершине дымового канала монтируется турбина, внутри которой находится насадка, вращаемая энергией ветра. Поскольку насадка всегда вращается в одном направлении, то над дымоходом возникает разрежение. Важный минус ротационной трубы – неэффективность, в случае отсутствия ветра. При этом есть хороший плюс – полностью исключено попадание осадков и мусора в дымоходный канал.

Поворотный шибер для печи в бане


Довольно серьезное значение для регулировки силы тяги имеет конструкция шибера, которая выглядит как специальная горизонтальная пластина, при изменении положения которой увеличивается или уменьшается просвет дымохода. Данная пластина имеет специальное отверстие, благодаря которому невозможно абсолютно герметично закрыть просвет дымоходного канала. Это необходимо для соблюдения противопожарной безопасности.


Довольно часто подобная горизонтальная заслонка устанавливается в кирпичные печи, но не редко встречается и в стальных дымоходах. Поворотный шибер являет собой прикрепленную к оси пластину. Она регулируется при повороте. Из минусов такого типа заслонки можно назвать обгорание сварки, и подобное явление в последнее время проявляется все чаще.


У обеих моделей есть некоторые различия: при помощи горизонтальной заслонки можно регулировать непосредственно сам просвет дымоходного канала, в случае же с дросселем можно только либо открыть, либо закрыть канал. На крайней случай зафиксировать заслонку можно при помощи цепочки.


Чтобы не ошибиться при подборке заслонки для дымоходного канала, нужно определиться с тем какой будет вид печи, а кроме этого, учесть еще некоторые нюансы. Монтаж шибера делается на все виды печей, исключение составляют лишь некоторые новые модели, где процесс горения регулируется контролем подачи приточного потока воздуха, и для выполнения данной задачи применяется дефлектор.


Печь работающая на газе должна быть оборудована поворотной заслонкой, благодаря которой абсолютно исключается риск полного закрытия дымохода, из-за чего исключен случайный выброс пламени через зольник. В том случае, когда все же используется заслонка, нужно следить за наличием зазора не меньше 30-40% площади сечения дымоходного канала.




Не нужно монтировать поворотные шиберы для банной печи с периодичным действием, так как закрытая заслонка всегда будет пропускать пар при подаче. Но существует мнение, что в случае, когда поворотный шибер открыт, то дымоходный канал находящийся ниже уровня заслонки довольно трудно в дальнейшем чистить.


Обычно, вместе с дымоходом продается и шибер, так как это обязательная деталь конструкции. Но данный элемент продается и отдельно во всех профильных магазинах. Главное – знать его правильные размеры.

Регулярная чистка дымохода — обязательная мера

Для того чтобы предотвратить возникновение обратной тяги в отопительный сезон, необходимо постоянно проверять чистоту дымоходных каналов до начала использования печи. Основными причинами засоров могут стать большие отложения сажи, отслоение штукатурки с внутренней поверхности стенок дымохода, случайно залетевшие в канал птицы.


Для проверки чистоты необходимо всего лишь посмотреть в дымоход через специальный очистной люк при помощи зеркала, или просто заглянуть в трубу с крыши. В случае если обнаружатся какие-либо загрязнения их необходимо удалить, воспользовавшись специальной щеткой или специальными химическими средствами, которые имеются в свободной продаже во всех специализированных магазинах.


Для того чтобы очистка дымохода производилась, как можно реже, лучше всего будет принять на вооружение один из профилактических методов которые перешли к нам от наших прадедов.


Один из таких методов предполагает, что через каждые 10-12 топок в печи необходимо сжигать алюминиевые банки. Следует отметить, что температура в печи должна быть такой, чтобы банки в течение 5 минут полностью сгорали. Кроме того, при большом количестве сажи в дымоходе, рекомендуется в топке во время горения сжечь полведра начищенной и нарезанной картошки.


Крахмал, который будет выделяться при сгорании, позволит смягчить отложения сажи, из-за чего она сама осыплется со стенок. Время от времени можно забрасывать в топку для сжигания каменную соль, что также позволяет увеличить период между чистками.


Запомните: тяга не должна иметь обратного хода! Иначе возможны серьезные последствия!


При возникновении сильного опрокидывания появляется не только угроза задымления здания, но и высокая вероятность выделения искр, которые могут привести к пожару. Наличие обратной тяги в дымоходе чрезвычайно опасно не только для нормального функционирования отопительного оборудования, но и для здоровья человека. Поэтому при наличии опрокидывания категорически запрещено пользоваться прибора обогрева до устранения проблемы.

Обратная тяга в дымоходе что делать и причины возникновения


Что такое тяга

Тяга – это движение дымовых газов вверх по дымовой трубе дома, из области повышенного давления в область пониженного давления. В дымоходе(в трубе) установленного диаметра, высотой не менее 5м., образуется разрежение, это значит образуется необходимый минимальный перепад давления между нижней частью дымохода и верхней, воздух из нижней части, попадая в трубу, уходит вверх. Это и называют тягой. Тягу можно замерить специальными чувствительными приборами, либо взять пушинку и поднести ее к трубе.


Соответственно, если взять трубу достаточного диаметра, в которой у воздуха есть возможность двигаться, и вытянуть ее высоко вверх, то воздух от земли начнет постоянно вытекать наверх. Это происходит потому что вверху ниже давление, а разрежение больше, и воздух стремится туда естественным образом. А на его место придет воздух с других сторон.


В системе «топка + дымоход» тяга действует даже если печь в частном доме не работает. При горении дров образуется повышенное давление во внутренней топочной камере и образующиеся при горении дымовые газы требуют выхода. Все топки и печи имеют конструкцию, выводящую дымовые газы в дымоход.


Высота каждого дымохода подобрана так, чтобы создалась тяга, создалось изначальное разрежение. При горении в топочной камере, выделяется тепло, газы и возникает избыточное давление. Газы движутся в дымоходе под воздействием тяги, стремятся идти из области повышенного в область пониженного давления. Работают законы созданные природой.


Почему возникает обратная тяга в печи или дымоходе?


Обратная тяга – это движение дымовых газов из области повышенного давления в область пониженного, но не вверх (как описано ранее), а вниз. Обратная тяга образуется при инверсии давления — когда давление вверху выше, чем внизу.


Причинами становятся самые обыденные вещи: если в частном доме или помещении герметично, стоят стеклопакеты, а вместе с дымоходом работает вытяжка, вытягивающая воздух из помещения. Тут и создается пониженное давление относительно окружающей местности. Поэтому, при растопке, когда дымоход пока еще холодный, у воздуха в верхней части дымохода большее давление, чем в помещении. Дым конечно пойдет туда, куда ему легче. Это явление называют «холодный столб». При остывании дымохода, внутри образуется воздушная масса низкой температуры, которая давит вниз, возникает обратная тяга. Если давление в частном доме, не пониженное, то теплый воздух пойдет вверх, в дымоход.


обратная тяга


Таким образом, если в доме нет кухонной вытяжки и он не герметичен, никакого застаивания холодного воздуха в топке не будет.


Проверьте: если зимой перед тем, как затопить камин, сперва поджечь газету и занести ее в трубу (минуя топочную часть), то огонь не пойдет в помещение, какой бы ни был столб холодного воздуха. Огонь будет гореть и выходить только в трубу. Это указывает на то, что давление в помещении не пониженное и теплый воздух нормально стремится вверх.


При растопке печи или камина в частном доме иногда дым идёт в помещение. Связано это с тем, что образующиеся дымовые газы при первоначальной растопке еще не успели нагреться, и, при подъёме вверх соприкасаясь с холодными стенками, сразу охлаждаются. После этого они, естественно, устремятся вниз. Снова возникает обратная тяга в вентиляции дымохода. Чтобы нормализовать тягу в печке, важно растапливать правильно, понимая происходящие там процессы.

Опрокидывание тяги


Еще один возникающий вопрос – это опрокидывание тяги. В каких случаях это происходит?


Если дымоход протяженный и холодный (зачастую кирпичный), а давление сниженное. Если соотношение размеров топки и сечения дымохода соответствуют, если в доме нормальное давление, все равно возникает ситуация, когда при растопке пламени не хватает силы и отходящие дымовые газы успевают охладиться в дымоходе и обрушиваются вниз. Почему нет тяги в дымоходе? Происходит подобное при пасмурной погоде, ветре. Бывает, что огонь нормально разгорается, но потом дым валит внутрь дома. Почему нет тяги в печи? Почему образуется обратная тяга в дымоходе? Воздух из дома забирается, и давление снижается, притока воздуха нет. А дымовые газы поднимаясь охлаждаются и обрушиваются вниз. Что надо знать в таких ситуациях? Приоткройте форточку, если помещение имеет стеклопакеты и герметично. Важна подготовка дров, их качество.


обратная тяга в дымоходе что делать?


Как правильно собрать дымоход?


Сэндвич дымоходы (сборные), собираются по дыму и по конденсату.


Существует мнение, что собирать по дыму правильнее. Объясняют тем, что на стыках труб остаются щели, куда забиваются выходящие в трубу дымовые газы. В противоположность этому, считается, что если собрать по дыму, то дым перестанет выходить.


Решить такой спор можно, если в действующей печи дома высверлить в любом месте дымохода отверстие и посмотреть, а что же произойдет. Наиболее интересно сделать это в нижней части. Отверстие высверлите любое, хоть сантиметр в диаметре. Что вы увидите? Из этого отверстия никакого дыма выходить не будет (если не закрывать плотно дымоход сверху).


сборка по дыму и по конденсату


Способы нормализации тяги


Главное – учесть то, что в каждом дымоходе дома возможно возникновение конденсата, особенно когда он еще холодный и теплые дымовые газы, поднимаясь сильно охлаждаются. На стенках может оседать конденсат, который стекает по трубе.


Если дымоход собран по дыму, то конденсат легко проникает в щели и увлажняет изоляцию, полностью лишая её теплоизолирующих свойств. Тут и до пожара недалеко. Поэтому сборка модульных дымоходов ведётся только по конденсату. Дымоходы собираются на четкий стык, с герметиком по внутренней трубе. Однако дымоходы сами по себе должны быть качественными, чтобы не оставалось посторонних щелей. Если щели останутся — через них зайдет воздух, и получается, что все равно тяги не будет.


обратная тяга причины


Но дымоход ведь большой, высокий! Не понимая в чем причина, вызывают мастеров. Мастера используют простой метод: накрывают сверху дымоход и смотрят, откуда пойдет дым. Тут обнаруживаются всевозможные нестыковки в дымоходе, которые и приводят к тому, что подсасывается воздух внутрь дымохода. Помните? Воздух стремится вверх, туда, где давление ниже. Поэтому, чем больше щелей, тем хуже тяга внизу. Сборка по дыму, к сожалению, не учитывает саму суть тяги. В результате огонь горит, а дым прёт во все стороны. Хотя логика тут не сложная — дым идет из области повышенного в область пониженного давления, туда, куда ему легче.


В чем измеряется тяга?


Норма тяги для стандартного камина или печи — в среднем 10 Паскаль (Па). Замеряется тяга за дымовым патрубком, так как именно там видны скорость эвакуации дымовых газов и соответствие соотношению размеров топки печи и диаметра дымохода.


Что еще влияет на величину тяги?


В первую очередь, высота дымохода. Минимально необходимая высота – 5 метров. Этого достаточно для возникновения естественного разрежения и начала движения вверх. Чем выше дымоход, тем сильнее тяга. Однако, в кирпичном дымоходе сечением в среднем 140х140мм., при высоте свыше 10-12 метров, тяга уже не возрастает. Это происходит потому, что значение шероховатости стенок растет с увеличением высоты. Поэтому, избыточная высота не влияет на тягу. Подобный вопрос возникает у желающих использовать под дымоходы каналы в домах. Они бывают большой высоты и узкого сечения, поэтому серьёзный камин редко подсоединяют к такому дымоходу.


Причины влияющие на тягу:


  • Температура отходящих дымовых газов. Чем выше температура, тем скорее устремляются дымовые газы вверх, возникает большая тяга.

  • Прогреваемость дымохода. Чем быстрее прогревается дымоход, тем быстрее нормализуется плохая тяга.

  • Степень шероховатости дымохода, внутренних стенок. Шероховатые стенки тягу снижают, при гладких стенках тяга лучше.

  • Форма сечения дымохода. Круглое сечение – это образец; овальное, прямоугольное и так далее. Чем замысловатее форма, тем это сильнее влияет на тягу, снижая ее.

  • Важно отметить,что влияет и соотношение размеров топки, диаметра выходного патрубка и диаметра дымоходной трубы. При избыточной высоте проектируемого дымохода, следует подумать о том, чтобы уменьшить сечение дымохода в среднем на 10%. На топку, на дымовой патрубок, установить переходник (например с 200-го диаметра на 180-й) и саму трубу брать 180-ую. Это допускается производителями. Если для примера говорить о «EdilKamin», видно, что он расписывает в инструкциях к топкам, какого диаметра брать дымоход в зависимости от высоты.


Например:


  • высота до 3 м – диаметр 250,

  • высота от 3 м до 5 м – 200,

  • высота от 5 м и выше – 180 или 160. Строгие рекомендации.


обратная тяга в дымоходе


Другие производители (как пример, фирма Supra) допускают, что возможны изменения. Некоторые вовсе не допускают. Поэтому руководствуясь инструкциями, не стоит забывать и о происходящих в дымоходе процессах.


Как измеряется тяга?


Вначале затопите печь или камин в доме. Топить не менее получаса, чтобы нормализовались процессы. Затем, проделав отверстие в трубе чуть выше дымового патрубка, вставьте туда специальный датчик депримометра и измерьте тягу. Проверьте, избыточна она или ее не хватает. Факторов, влияющих на тягу, много, рассмотрим еще несколько.


Роза ветров


Ситуация когда господствующие ветра задувают прямо в дымоход и снижают тягу либо разворачивают её. Дымоход ставят с наветренной стороны, конечно если определены направления ветров. Если дымоход расположен далеко от конька и ниже, нельзя использовать подветренную сторону. Многоэтажные дома и деревья тоже влияют на тягу. Для компенсации порывов ветра и неудачного расположения дымохода используют антиветровые дефлекторы. По нормативам дымоход выводится на полметра выше конька. Если расстояние от конька 1,5 м — 3 м, то выводится в один уровень с коньком. Если расстояние свыше 3-х метров, то дальше действуют по формуле: от горизонтали, проведенной от конька, 10 градусов вниз. На практике дымоход делают выше конька, либо в один уровень с коньком. Важно использовать один дымоход для одной печи в доме.


почему нет тяги в дымоходе


нет тяги в печи причины

Что такое естественная тяга в трубе?

Простыми словами, тяга – это внешняя сила, которая обеспечивает приток воздуха в топку и движение продуктов горения по трубе. Она играет важную роль в работе печи или котла, поскольку отвечает за сгоранием всего топлива в топке и вывод продуктов горения наружу. Зависит от нескольких факторов, но об этом подробнее далее.

Тяга или разряжение бывает двух видов:

  • естественная – возникает за счет нагревания и остывания воздуха или продуктов горения;
  • принудительная – обеспечивается вспомогательными устройствами, например, вентиляторами или дымососами.

Если топка сложена правильно или верно подобран котел в случае покупки готовой конструкции, естественная тяга дымовой трубы будет достаточной силы, поэтому устанавливать дымососы или вентиляторы нет необходимости. Они требуют затрат электроэнергии, шумят во время работы и имеют другие недостатки.

Как возникает естественная тяга?

Естественная тяга – это физический процесс, в основе которого лежит сила Архимеда. Разряжение возникает за счет того, что плотность нагретого воздуха или продуктов горения значительно ниже, чем плотность холодного воздуха. Чем выше разница температур, тем больше сила, которая движет продукты горения по дымовым трубам. По этой причине разряжение внизу дымохода всегда больше, чем на выходе.

Воздух попадает в топку через колосник. Так называют решетку внизу топки, на которую укладывают дрова или другое топливо. В процессе горения он сильно нагревается. В современных котлах большая часть тепловой энергии передается на стенки, но при этом температура продуктов горения остается довольно большой. Это и способствует движению дыма по проходам.

Чтобы обеспечить эффективный отвод продуктов горения, создают столб плотного воздуха. Чем больше этот столб, тем выше тяга, поэтому рекомендуется устанавливать дымоходы длиной не менее 5 метров. В верхней точке разряжение равно нулю, поэтому продукты горения без проблем выходят наружу. В теплое время года разряжение хуже, поскольку разница температур внешней среды и дыма не значительная. Чем холоднее на улице, тем лучше тяга.

Чрезмерная или недостаточная тяга

Иногда естественная тяга котла имеет слишком большую силу. В результате кислород поступает в топку в больших количествах, что способствует повышению температуры горения. Чтобы обеспечить безопасное использование отопительных устройств, разряжение регулируют при помощи заслонок, шиберов и других вспомогательных устройств, которые позволяют уменьшать или увеличивать приток воздуха или отвод продуктов горения.

Неконтролируемая тяга может стать причиной пожара.

Если продукты горения движутся чрезмерно быстро. Стенки дымохода будут сильно нагреваться. Если в каких-то местах они соприкасаются с горящими материалами, может возникнуть возгорание. Произойти это может, например, на чердаке.

Недостаточная тяга создает не меньше проблем. При малом разряжении продукты горения будут не полностью удаляться наружу. Дым, а вместе с ним и опасный угарный газ, будет проникать в помещение. При обнаружении задымленности необходимо сразу принимать меры. Чтобы улучшить тягу, нужно почистить трубы от сажи и копоти, а также обеспечить доступ воздуха в топку. Для этого требуется прочистить колосники и поддувало. Собирающийся пепел снизу может препятствовать притоку воздуха.

Если эти меры не помогают, тогда стоит задуматься о футеровке. Гильзование нержавеющими трубами, полимерными руками или керамическими вкладышами позволит решить проблему. Дело в том, что трубы, используемые для гильзования, имеют гладкую поверхность.

Поскольку при движении продукты горения практически не сталкиваются с сопротивлением, они быстрее проходят по дымоходу и выводятся наружу. Шероховатая поверхность кирпича и кладочного раствора замедляет прохождение газов. К тому же в квадратном или прямоугольном сечении прохода могут возникать завихрении, которые также тормозят движение продуктов горения. Подобные проблемы не характерны для труб, применяемых для футеровки. К тому же на гладкой поверхности обычно не оседает сажа, которая также ухудшает тягу.

При правильном сложении топки, верно спроектированной системы дымоудаления естественная тяга дымохода будет иметь достаточную силу. Она сможет обеспечить эффективное сгорание топлива и безопасное отведение продуктов горения наружу.

У вас есть вопросы? Мы можем позвонить вам абсолютно бесплатно!

Мы свяжемся с вами и ответим на любые возникшие вопросы!

Помните: для этого контента требуется JavaScript.

Тяга самолета. Тяга двигателя самолета. Тяга реактивного двигателя.

 

Тяга – сила, выработанная двигателем. Она толкает самолет сквозь воздушный поток. Единственное, что противостоит тяге – лобовое сопротивление. В прямолинейном горизонтально установившемся полете они сравнительно равны. Если летчик увеличивает тягу путем добавления оборотов двигателя и сохраняет постоянную высоту, тяга начинает превосходить сопротивление воздуха. Летательный аппарат (ЛА) при этом ускоряется. Очень быстро сопротивление увеличивается и снова уравнивает тягу. ЛА стабилизируется на постоянной высокой скорости. Тяга – один из самых важных факторов для определения скороподъемности самолета, а именно насколько быстро ЛА может подняться на определенную высоту. Вертикальная скорость зависит не от подъемной силы, а от запаса тяги, которым обладает самолет.

 

Тяга реактивного двигателя самолета

 

Сила тяги двигателя, или его движущая сила, равноценна всем силам давления воздуха на внутреннюю поверхность силовой установки. Тяга некоторых видов реактивных двигателей зависит от скорости и высоты полета. Для вычисления силы тяги реактивного двигателя часто приходится определять тягу на конкретной высоте, у земли, на взлете и во время какой-либо скорости. Для ЖРД сила тяги равноценна произведению массы исходящих газов на скорость, с которой они вылетают из сопла двигателя.

Тяга самолета 3434

Для ВРД (воздушно-реактивный двигатель) сила тяги измеряется как результат массы газов на разность скоростей, а именно скорости воздушной струи, выходящей из сопла двигателя, и скорости поступающего воздуха в двигатель. Проще говоря, данная скорость уравнивается к скорости полета самолета с реактивным двигателем. Тяга ВРД обычно измеряется в тоннах или килограммах. Важным качественным показателем ВРД является его удельная тяга. Для турбореактивного двигателя – тяга, отнесенная к конкретной единице веса воздуха, который проходит через двигатель в секунду. Этот показатель позволяет понять, насколько высока эффективность эксплуатации воздуха в двигателе для образования тяги. Удельная тяга измеряется в килограммах тяги на 1 кг воздуха, расходуемого за секунду. В некоторых случаях применяется другой показатель, который также называется удельной тягой, показывающей отношение количества топлива, которое расходуется, к силе тяги за секунду. Естественно, что чем выше показатель удельной тяги ВРД, тем меньше поперечный вес и размеры самого двигателя.

Показатель полетной или тяговой мощности – это сила, которая задействует реактивный двигатель при конкретной скорости полета. Как правило, измеряется в лошадиных силах. Величина лобовой тяги говорит о степени конструктивного оптимума реактивного двигателя. Лобовая тяга – это отношение наибольшего показателя площади поперечного сечения к тяге. Лобовая тяга равна тяге, в кг поделенной на площадь в метрах квадратных.

Тяга самолета силы

В мировой авиации наиболее ценится тот двигатель, который обладает высокой лобовой тягой.

Чем совершеннее ВРД в конструктивном отношении, тем меньший показатель его удельного веса, а именно общий вес двигателя вместе с приборами и обслуживающими агрегатами, поделенный на величину собственной тяги.

Реактивные двигатели, как и тепловые вообще, отличаются друг от друга не только по мощности, весу, тяге и другим показателям. При оценивании ВРД огромную роль играют параметры, которые зависят от собственной экономичности, а именно от КПД (коэффициент полезного действия). Среди данных показателей главным считается удаленный расход топлива на конкретную единицу тяги. Он выражается в килограммах топлива, которое расходуется за час на образование одного килограмма тяги.
 

Сила тяги воздушного винта аэросаней

Воздушный, винт — это аэродинамический движитель, который, поглощая мощность установленного на аэросани двигателя внутреннего сгорания, и создает аэродинамическую силу — силу тяги.

Воздушный винт состоит из ступицы 2 (рис. 25), которой он с помощью промежуточной детали (втулки винца) закрепляется на валу, и двух, трех и более лопастей, создающих силу тяги.

Каждая лопасть воздушного винта представляет собой пластинку, выполненную в сечении в виде аэродинамического профиля, расположенного под углом атаки α по отношению к (плоскости вращения винта.

Рис. 25. Основные элементы воздушного винта: 1 — лопасть; 2 — ступица; 3— ребро атаки; 4 — сечение лопасти; 5 — задняя кромка; а — угол атаки

При вращении воздушного винта его лопасти за счет угла атаки а, так же как болт за счет наклона его резьбы (шага резьбы) ввертывается в гайку, ввинчиваются в воздух (рис. 26). Но так как плотность воздуха небольшая, лопасти винта проскальзывают в воздухе и отбрасывают, как вентилятор, какую-то массу воздуха назад. Эта масса воздуха является как бы подушкой, от которой винт отталкивается, создавая реактивную силу — силу тяги, за счет которой и движутся аэросани.

Рис. 26. Воздушный винт как бы ввинчивается в воздух

Очевидно, чем больше масса отбрасываемой винтом струи воздуха, тем больше будет и сила тяги, развиваемая воздушным винтом.

Чтобы увеличить массу воздуха, отбрасываемую винтом, можно или увеличить сечение струи (ометаемую площадь) путем использования винта  большего диаметра, или ускорить движение струи, чего можно достигнуть увеличением числа оборотов винта и выбором формы лопасти винта.

Форма лопасти винта имеет исключительно большое значение для получения необходимой силы тяги. Самый мощный двигатель и хорошие формы корпуса и лыж не могут дать необходимого эффекта при плохо сконструированном или изготовленном воздушном винте.

В связи с этим желательно, чтобы установленный на аэросанях воздушный винт снимал с двигателя максимально возможную силу тяги, т. е. как принято определять в технике, имел бы высокий коэффициент полезного действия.

Коэффициент полезного действия винта равен отношению полезной мощности винта к потребляемой мощности:



где Т—сила тяги винта, кг;

υ —поступательная скорость винта, м/сек;

Nn — мощность, потребляемая винтом, л. с.

Из этого выражения силу тяги воздушного винта можно определить по формуле:



Из формулы видно, что сила тяги воздушного винта обратно пропорциональна скорости, т. е. снижается с увеличением скорости движения аэросаней.

Мощность, потребляемая винтом, определяется потерями, вызываемыми сопротивлением воздуха. Эти потери зависят от конструкции воздушного винта и режима его работы и, как правило, требуют проведения экспериментов в виде продувки винта в аэродинамической трубе и ряда испытаний, без результатов которых невозможно произвести точный расчет.

Так как проведение подобных испытаний под силу только крупным научно-исследовательским институтам, а аэродинамический расчет, с помощью которого можно было бы подобрать наивыгоднейший винт, чрезвычайно сложен, ниже приведены сведения, которые дадут общее представление о выборе отдельных важнейших параметров воздушного винта для аэросаней. Эти сведения не дают окончательных рекомендаций о подборе винта с наиболее возможным коэффициентом полезного действия, но вполне достаточны для практических целей по подбору винта к аэросаням.

Конечным результатом работы по подбору винта к аэросаням является получение силы тяги или тяги.

Но что же такое тяга и от чего она зависит?

Если в потоке воздуха, имеющего скорость υ разместить плоскую пластинку (рис. 27,а), имеющую площадь F, так, чтобы поверхность ее была перпендикулярна к потоку, то воздух, набегающий на нее, тормозится и старается обойти ее, за счет чего за пластинкой образуется зона разрежения с сильными завихрениями воздуха.

Рис. 27. Возникновение силы лобового сопротивления и подъемной силы при обтекании прямой пластинки воздухом: а — лобовое сопротивление; б — возникновение подъемной силы

Давление воздуха на пластинку R1 с одной ее стороны и подсос за счет разрежения R2 с другой стороны составят равнодействующую силу сопротивления воздуха R, или силу лобового сопротивления Q.

По закону Бернулли, изменение скорости связано с изменением давления, которое, будучи выражено во времени (за 1 секунду) секундным объемом воздуха W, и будет определять силу R = Q.

Опытами было установлено, что, ударяясь о пластинку, частицы воздуха не полностью теряют скорость, поэтому в формулу, определяющую силу сопротивления, вводится коэффициент α, показывающий, какая часть полной скорости υ потеряна струей воздуха при обтекании пластинки.

Таким образом, сила R будет равна:

R—αpFυ2, где р — плотность воздуха у земли;

F — площадь профиля.

Так как степень торможения потока воздуха зависит от формы тела, которое он обтекает, и замерить ее практически очень трудно, сначала в аэродинамической лаборатории получают опытные величины сопротивления тела к, а потом уже определяют коэффициент а из выражения:

В рассмотренном случае обтекания пластинки не учитывалось трение воздуха о поверхность обтекаемого тела, которое имеет место при обтекании шара, куба и т. п. тел и которое учитывается также коэффициентом α.

Пластинка, шар и куб имеют симметричную форму. У этих плохо обтекаемых тел большую часть сопротивления составляет лобовое сопротивление. При рассмотрении тел несимметричных или симметричных, но расположенных под некоторым углом к набегающему на них потоку воздуха, характер обтекания и возникающие при этом силы изменяются.

Если прямую пластинку (рис. 27,6) установить под некоторым углом а к направлению потока воздуха, то последний будет неравномерно обтекать эту пластинку. Причем на нижней поверхности ее возникает (за счет положительного угла наклона пластинки и набегающего на нее потока) повышенное давление Pi воздуха, а на верхней за счет отрицательного угла воздух отрывается от поверхности, появляются завихрения, давление понижается и создает подсос P2 воздуха.

Силы P1 и P2 будут направлены в одну сторону и в сумме составят силу Р. Сила Р, разложенная по правилу параллелограмма на составляющие, образует две силы—подъемную силу Т1 и силу сопротивления R.

Величина сил, действующих на прямую пластинку, зависит от угла а, наклона пластинки и скорости набегающего на нее потока воздуха, причем сила R уменьшится с уменьшением угла наклона пластинки. Подъемная сила Т1 имеет максимальную величину при каком-то определенном значении угла α наклона пластинки по отношению к потоку воздуха, обтекающего пластинку со скоростью υ, и уменьшается при изменении наклона пластинки в ту или иную сторону.

Лопасти воздушного винта, так же как и рассмотренная пластинка, расположены под углом к плоскости вращения, Следовательно, на каждом  небольшом: отрезке лопасти возникают силы: подъемная сила Т1, которая в данном случае будет силой тяти, и сила сопротивления воздуха R.

Мощность установленного на аэросанях двигателя и должна затрачиваться на создание силы тяги Т1 и преодоление силы R сопротивления воздуха вращению винта.

Желательно, чтобы сила тяги Т1 была как можно больше, а сила сопротивления воздуха R — как можно меньше.

Практика показала, что, используя для воздушного винта металлическую пластинку постоянной толщины, Можно достичь неплохих результатов. Но аэродинамические исследования доказали, что применение аэродинамических профилей (дужек), выбираемых в зависимости От условий работы винта, задаваемых конструктором, позволяет при прочих равных условиях, т. е. при одних и тех же углах атаки а, установки профиля и скорости потока воздуха v, получить значительно большую силу тяги Т1 и меньшую силу сопротивления воздуха R.

Выгодное изменение величины сил Т1 и R по сравнению с силами для прямой пластинки происходит из-за того, что воздух обтекает профилированную дужку более плавно, не образуя сильных завихрений на ее верхней части, что снижает сопротивление воздуха. Одновременно за счет) удлинения пути воздуха, обтекающего выпуклую профилированную дужку сверху, по сравнению с длиной пути воздуха, обтекающего дужку снизу, резко увеличивается скорость воздуха на верхней поверхности, что способствует значительному росту силы P2 (рис.28), входящей составной частью в силу тяги.

Рис. 28. Возникновение подъемной силы на профилированной аэродинамической дужке

Полное сопротивление дужки можно выразить через известную уже нам формулу:



где С — коэффициент сопротивления;

ρ —плотность воздуха;

F — площадь профиля, м2;

υ — скорость потока, м/сек.

Составляющие силы R и Т полного сопротивления (рис. 28) представляют собой  проекции равнодействующей Р (при разложении ее по правилу параллелограмма) на различные направления. Эти составляющие силы могут быть выражены в виде:



где сх — коэффициент лобового сопротивления;

су — коэффициент подъемной силы данного профиля дужки;

ρυ2 —величина скоростного напора.

В этих формулах сх и су — безразмерные величины, а силы R и Т выражены в кг. Эти аэродинамические силы прямо пропорциональны значениям их коэффициентов и квадрату скорости.

Значения аэродинамических коэффициентов определяются экспериментом, причем величина коэффициента сопротивления сх, зависит от формы тела и состояния его поверхности. Величина сх может колебаться в очень больших пределах. Так, для плоской пластинки, установленной поперек воздушного потока, сх = 1,28, а для хорошо обтекаемого тела сх = 0,025.

Значение сх для аэродинамических профилей гораздо меньше, чем для тел самой лучшей обтекаемой формы. Это относится только к телам, которые создают подъемную силу*.

При выборе профиля для лопасти воздушного винта необходимо стремиться подобрать в зависимости от углов атаки такой профиль, который имел бы наименьший коэффициент сх и наибольший коэффициент су.

Величины коэффициентов сх и су для каждого профиля, подвергнутого продувке в лаборатории, изображаются графиком, называемым полярой Лилиенталя. График дает значения коэффициентов сх и су при различных углах атаки а.

На рис. 29 изображены такие кривые для профилей NACA-2309 и CLARY-УН, а в приложении 3 даны их геометрические характеристики. Из приведенных характеристик видно, что два мало отличающихся по форме профиля дают совершенно различные коэффициенты cy и сх.

Рис. 29. Поляры Лилиенталя для аэродинамических профилей: 1 —NACA-2309; 2 —CLARY-УН Цифры у точек кривых указывают значения угла α

*В. А. Попов. Основы авиационной техники. Оборонгиз, 1947.

Тяга и дутье

Тяга и дутье

Для организации процесса горения в топку парового или водогрейного котла необходимо подавать воздух и удалять образующиеся продукты сгорания. Подача воздуха и удаление продуктов сгорания могут быть осуществлены двумя способами: созданием в топке и газоходах разрежения, т. е. давления, меньшего чем давление окружающего воздуха, и созданием избыточного давления по отношению к окружающему воздуху.

Котлоагрегаты, работающие с разрежением в газовом тракте, могут иметь тягу и подачу воздуха естественную или искусственную. Под естественной тягой понимают такую, при которой разрежение в топке и газоходах создается дымовой трубой и вследствие этого под действием разности давлений (окружающего воздуха и продуктов сгорания) в топку поступает воздух, необходимый для горения. При искусственной тяге разрежение в топке и газоходах создается за счет работы дымососа, а подача воздуха производится вентилятором.

Схема действия естественной тяги и эпюр разрежений по газовому тракту показаны на рис. 12-1.

Тяга и дутье в дымовой трубе при работе котельной установки возникает следующим образом. В сечении дымовой трубы со стороны входа продуктов сгорания создается давление окружающего воздуха, имеющего плотность ра. Внутри дымовой трубы находятся продукты сгорания, которые, имея плотность р, также оказывают давление на сечение. Давление столба воздуха на сечение, соответствующее высоте дымовой трубы Н, будет Hgpa, а продуктов сгорания Hgp, где g — ускорение свободного падения, м/с2. Однако плотность продуктов сгорания р меньше плотности окружающего воздуха. В результате этого на селение будет действовать разность давлений, которая и создает тягу.

Тяга и дутье (Па) может быть определена по формуле

h=Hg(pa-p)           (12-1)

Из уравнения ясно, что тяга и дутье, создаваемые дымовой трубой, тем больше, чем больше высота трубы и разность плотностей воздуха и продуктов сгорания. Эта разность будет возрастать с увеличением температуры продуктов сгорания в дымовой трубе и уменьшением температуры окружающего воздуха.

Паровые и водогрейные котлы, в которых топка и газоходы находятся под избыточным давлением по отношению к окружающему воздуху, называются работающими под наддувом. В этих агрегатах подача воздуха и удаление продуктов сгорания производится под действием вентилятора, т. е. принудительно.

Современные промышленные паровые и водогрейные котлы имеют сложный профиль воздушного и газового трактов вследствие применения развитых хвостовых или конвективных поверхностей нагрева, что приводит к увеличению общего аэродинамического сопротивления тракта. Одновременно уменьшение температуры уходящих газов снижает тягу, создаваемую дымовой трубой. По этим причинам промышленные котлы производительностью более 2 т/ч имеют, как правило, искусственную тягу и дутье. Дымовая труба при этом служит не для создания разрежения, а для выброса загрязняющих атмосферу продуктов сгорания (летучая зола, сернистый ангидрид, оксиды азота) в более высокие слои атмосферы.

При работе газового тракта под разрежением через неплотности в обмуровке и других элементах агрегата происходит присос атмосферного воздуха в топку и газоходы, что увеличивает энтальпию уходящих газов и потерю теплоты с ними, а также приводит к излишней загрузке дымососа и, соответственно, росту расхода электроэнергии на его привод. В то же время через неплотности не происходит выброса продуктов сгорания в помещение цеха.

В паровых и водогрейных котлах, работающих под наддувом, нет присоса холодного воздуха в газовый тракт, что заметно повышает их экономичность, а отсутствие дымососа упрощает установку. В то же время конструкция газового тракта агрегата усложняется и удорожается.

В тех случаях когда сопротивление решетки и слоя топлива или горелки преодолевается за счет работы вентилятора, разрежение в топке близко к нулю и тяга, создаваемая дымососом, называется уравновешенной. Кроме того, Тяга и дутье может быть косвенной, когда в дымовой трубе создается разрежение за счет струи воздуха или пара, подаваемой с большой скоростью. Такая струя эжектирует поток продуктов сгорания.

Каналы, по которым движутся продукты сгорания, называются газоходами. Каналы, по которым движется воздух, подаваемый в топку для организации процесса горения, называются воздухопроводами.

Каналы для прохода продуктов сгорания и воздуха в современных парогенераторах и водогрейных котлах имеют прямые участки и различные фасонные части (повороты, изменения сечения, тройники и т. д.). Кроме того, поверхности нагрева в каналах могут работать при различных условиях обтекания их потоком продуктов сгорания или воздухом.

Для регулирования потока в каналах располагают устройства, называемые шиберами. Посредством шибера изменяют сечение канала, по которому протекает поток.

Как улучшить тягу в дымоходе

Важнейшим параметром работы системы дымохода является тяга. Все знают, что она очень важна для работы печи или котла, но мало кто знает – а что же такое тяга? Этот параметр определяет скорость и объем движения дымовых газов по дымоходу. Она необходима для удаления газов и притока кислорода для поддержания процесса горения. Само явление тяги возникает из-за разной плотности холодного и горячего воздуха. Горячий менее плотен, и соответственно замещается холодным. Так происходит движение горячих потоков снизу-вверх.

Содержание статьи

Эффективность тяги может зависеть от нескольких параметров:

  • dymohoddymohodВнутреннее сечение дымохода. Чем меньше его диаметр, тем быстрее скорость выхода горячих газов. Но при достижении определенного минимального размера они начнут попадать вовнутрь помещения. Если же труба слишком большая, то поток холодного воздуха может сформировать так называемую обратную тягу.
  • Количество сажи, осевшей на стенках дымохода. Она может существенно снизить полезный диаметр трубы, что приведет к потере скорости тяги.
  • Количество поворотов в дымоходе. Каждый поворот или отвод – это дополнительное препятствие для прохождения дыма.
  • Герметичность системы. Если в конструкции есть щели, то через них в систему может попадать холодный воздух, образующий холодную завесу и препятствующий прохождению дыма.
  • Погодные условия. Низкое атмосферное давление и высокая влажность уменьшают скорость замещения горячего воздуха холодным в отопительном приборе.


Данные факторы являются основными, но не единственными. Чаще всего тяга зависит от правильного расчета конструкции дымохода – оптимальное сечение и количество угловых элементов.

Несоблюдение вышеизложенных условия зачастую и является причиной плохой тяги. Но как можно определить этот показатель без специальных приборов и устройств?

kak-uluchit-tyagu-v-dymohodekak-uluchit-tyagu-v-dymohode

Определение тяги самостоятельно

Если эффективность работы печи (котла) заметно ухудшилась, то есть несколько способов проверить тягу. Можно воспользоваться специальным прибором – анемометром, но в большинстве случаев его приобретение для домашнего пользования неэффективно в экономическом плане. Лучше всего прибегнуть к проверенным народным методам:

  1. Свеча. Если зажечь свечу, поднести ее к дымоходу и сразу же потушить,- то по направлению движения дыма можно увидеть – есть ли тяга.
  2. Степень задымленности в помещении.
  3. Тонкий листок. Степень его отклонения может говорить о наличии тяги.

После того, как проблема была определена, можно приступать к ее решению.

tyagatyaga

Способы улучшения тяги

Существует несколько способов улучшить тягу, и каждый из них по-своему эффективен. Но прежде чем приступать к реализации одного из них следует сделать ряд профилактических процедур с самой конструкцией дымохода:

  • Чистка от сажи (об этом читайте тут). Для этого используют специальный набор, состоящий из ерша, грузила и стального канатика.

chistka_pechnyh_trub_1chistka_pechnyh_trub_1Для этого необходимо подняться на крышу и в выходную часть дымохода опустить ерш по всей протяженности трубы. Далее поступательными движениями начать прочищать стенки дымохода. При этом в печь начнут падать пласты сажи, которые потом извлекаются.

  • Полная герметизация дымохода. Пользуясь одним из вышеописанных методов необходимо проверить конструкцию на отсутствие щелей или отверстий. Данная проблема характерна для кирпичных дымоходов, когда в процессе эксплуатации происходит частичное разрушение кладки.

Если после этих мер тяга не улучшилась, то нужно прибегнуть к более радикальным способам.

Регулятор тяги

regulyatorregulyatorЭтот прибор устанавливается на выходной патрубок дымохода.

После предварительной регулировки он компенсирует давление в трубе с внешним давлением. При этом происходит не только нормализация работы отопительного прибора, но и скорость тяги имеет величину одинаковую, независимо от внешних погодных условий.


Стоит отметить, что регулятор способствует повышению КПД работы всей отопительной системы.

Дефлектор

Данный дополнительный элемент конструкции также ставится на внешнюю часть дымохода.

deflektordeflektorЕго внешний диаметр намного превышает сечение самого дымохода. Это необходимо для возникновения эффекта падения давления при обтекании воздушным потоком препятствия. Т.е. когда конструкция дефлектора обтекается воздушным потоком, внутри его создается область низкого давления, которая способствует возникновению условий для лучшей скорости тяги.

Дымоходный флюгер

flugerflugerОригинальная конструкция, которая способна не только улучшить тягу , но и защитить дымоход от попадания в него атмосферных осадков.

В основе его работы лежит принцип дефлектора и вывод дымовых газов только с подветренной стороны. Это позволяет уменьшить внешнее воздушное сопротивление и тем самым нормализовать скорость тяги.

 Дымовой вентилятор

Один из самых эффективных методов, который заключается в установке специального вентилятора на дымоход.

ventilyatorventilyatorВнутри этой конструкции расположена вентиляционная система, создающая искусственный воздушный поток в дымоходе. Он создает разряженную воздушную область внутри дымохода, тем самым улучшая условия возникновения хорошей тяги. Но для его установки понадобится подключение электрической линии, что не есть совсем удобно, та как при этом необходимо будет соблюсти все правила техники безопасности.

Как видно из всего вышесказанного, улучшить тягу в дымоходе можно, причем делается это эффективно и быстро. Но для выбора оптимального метода лучше всего воспользоваться советами профессионалов, которые внимательно проанализируют состояние дымохода.

Воздушная тяга — Википедия переиздано // WIKI 2

Расстояние от воды до самой высокой точки на судне или самой низкой точки на пролете моста

The deck of the Allanburg Bridge on Canada

Воздушная тяга (или воздушная тяга ) — это расстояние от поверхности воды до самой высокой точки на судне. Это похоже на «глубокую осадку» судна, которая измеряется от поверхности воды до самой глубокой части корпуса под поверхностью, но воздушная осадка выражается как высота, а не глубина. [1] [2]

Энциклопедия YouTube

  • ✪ SHIP STABILITY_TRIM_ KEEPING AFT ПРОЕКТ ПОСТОЯННОГО

  • ✪ COLREG Правило 23 и Правило 35 Силовые суда

  • ✪ Под зазором киля: определение и расчет UKC

Содержание

Клиренс ниже

«Клиренс» судна — это расстояние, превышающее воздушную осадку, которое позволяет судну безопасно проходить под мостом или препятствием, таким как линии электропередач и т. Д.«Зазор внизу» моста чаще всего отмечается на диаграммах, измеряемых от поверхности воды до нижней стороны моста на уровне средней воды (MHW), [3] [4] и менее ограниченный клиренс, чем средняя высокая вода (MHHW).

В 2014 году Береговая охрана США сообщила, что 1,2% столкновений, которые она исследовала в недавнем прошлом, были связаны с попытками судов проходить под конструкциями с недостаточным зазором. [1]

Примеры

На нескольких мостах, таких как мост Джеральда Десмонда в Лонг-Бич, Калифорния, NOAA установила измерительное устройство «Воздушный зазор», которое точно измеряет расстояние от своего датчика на мосту до поверхности воды и может быть доступно для морских пилотов и корабельные мастера, чтобы помочь им в определении в реальном времени разрешения. [ цитирование необходимо ]

Bridge of the Americas

Мост Америк

Мост Америк в Панаме ограничивает, какие корабли могут пересекать Панамский канал из-за его высоты на 61,3 м (201 фут) над водой. Крупнейшие в мире круизные лайнеры, Oasis of the Seas , Allure of the Seas и Harmony of the Seas будут вписываться в новые расширенные шлюзы канала, но они слишком высокие, чтобы проходить под мостом, даже на низких Прилив (два первых корабля имеют высоту 72 м (236 футов), но имеют воронки с низкой посадкой, что позволяет им проходить через 65-метровый (213 футов) мост Большого пояса в Дании). См .: Береговой пилот США 5, глава 8, с. 354, Сооружения на внутреннем морском навигационном канале, Новый Орлеан, , 15 декабря 2019 г., «Вертикальный зазор, измеренный при средней высоте воды»

Bridge of the Americas
Последний раз эта страница редактировалась 8 июля 2020 года, в 14:56.

,

Воздушная тяга на испанском языке, перевод, английский-испанский словарь

ru Система сгорания имеет лучшую воздушную тягу, чем обычные системы, что позволяет снизить количество кислорода в воздухе на больших высотах, улучшая работу оборудование по сравнению с работой оборудования, уже доступного на рынке, и более эффективное использование невозобновляемых природных ресурсов.

патенты-wipo es INGRESOS PROCEDENTES DEL PRODUCTO DE PRESTACIONES DE SERVICIOS Y DE OBRAS

ru ‘HM’ Максимальная высота над водой (воздушная тяга)

EurLex-2 es perlo el le ma la Pero el le ma la Pero el le ma ma llega a aquellos que sobreviven al ahora

ru продолжить рассмотрение правовых аспектов космического мусора и шагов, которые могут быть уместны при реализации проекта конвенции Буэнос-Айреса и с учетом работы КОПУОС, связанной с этим вопросом

MultiUn и Y los talibanes se aprovechan…- De lo que está pasando

ru ‘HM’ Максимальная высота над водой (воздушная тяга)

Eurlex2019 es Este crédito se destina cubrir la adquisición de mobiliario nuevo

ru Измерительные приборы могут быть воздействие солнечного излучения, теплового излучения и движений окружающего воздуха из-за сквозняков из системы кондиционирования или открытых окон; они не подвержены воздействию конденсированной воды, осадков или образования льда.

EurLex-2 ru Llega tarde

ru По сообщениям, правительство приняло исполнительный план по сокращению загрязнения воздуха и разрабатывает законопроект о чистом воздухе.

UN-2 и Satterfield против Kincaid

ru В отличие от проекта Национальной футбольной лиги, который появился в ESPN, ни одна сеть не транслировала проект MLB.

WikiMatrix es Otro trato corpto, más personas inocentes mueren

ru Государства-Члены должны консультироваться, согласно соответствующему законодательству Союза, с компетентными органами, которые в силу своих специфических экологических обязательств в области загрязнения воздуха, качество и управление на всех уровнях, вероятно, будут обеспокоены реализацией национальных программ контроля загрязнения воздуха, их проекта национальной программы контроля загрязнения воздуха и всех обновлений до их завершения.

eurlex-diff-2018-06-20

ru Государства-члены должны консультироваться, государства-члены должны консультироваться, в соответствии с в соответствии с требованиями государств-членов, с соответствующим законодательством Союза общественность и компетентные органы, которые в силу своих специфических экологических обязательств в области загрязнения воздуха, качества и управления на всех уровнях, вероятно, будут обеспокоены реализацией национальных программ контроля загрязнения воздуха, на их проект национальной программы контроля загрязнения воздуха и любые существенные обновления до их завершения.

eurlex-diff-2018-06-20 es ¿Te estás divirtiendo?

ru Проект соглашения о воздушном сообщении между правительством Королевства Дания и правительством Малайзии, с номерами # и #, именуемый в дальнейшем Проект соглашения Малайзия-Дания в Приложении II

oj4 es Criterios para la aprobación de una sustancia como candidata a la sustitución

ru Проект соглашения о воздушном сообщении между правительством Королевства Швеция и правительством Малайзии, с подписью # и #, именуемый в дальнейшем Проект соглашения Малайзия-Швеция в Приложении II

oj4 es En cuarto lugar, судья общественного мнения по отношению к существующим законам?

ru Проект соглашения о воздушном транспорте между Королевством Испания и Ливанской Республикой, подписанный в Мадриде # августа # (далее именуемый Проектом соглашения между Ливаном и Испанией

oj4 es ¡Otra vez el diablo!

ru — Проект соглашения о воздушном сообщении между правительством Королевства Швеция и правительством Малайзии, подписанный в 1997 и 2002 годах, далее именуемый «Проект соглашения Малайзия — Швеция» в Приложении II,

EurLex-2 es Parece fuerte, ¿Tiene familia?

ru — Проект соглашения о воздушном сообщении между правительством Королевства Дании и правительством Малайзии, подписанный в 1997 и 2002 годах, далее именуемый «Проект соглашения Малайзия — Дания» в Приложении II,

EurLex-2 ru Нет постоянных, недобросовестных, суминистических и естественных приматов, нет никаких человеческих сердец и юниоров

и Аэрофотоснимки Соглашение об оказании услуг между правительством Королевства Швеция и правительством Малайзии, заключенное в 1997 и 2002 годах, далее именуемое «Проект соглашения между Малайзией и Швецией» в Приложении II,

EurLex-2 и Es obvio que después de todo вот окурридо…… no querrás volver acá en vacaciones

ru Проект соглашения о воздушном сообщении между правительством Королевства Дания и правительством Малайзии, подписанный в 1997 и 2002 годах, далее именуемый «Проект соглашения Малайзия — Дания» в Приложении II,

EurLex-2 и Предполагаемый итог: # евро

ru Проект соглашения о воздушном транспорте между Королевством Испания и Республикой Ливан, подписанный в Мадриде 21 августа 1997 года (далее именуемый Проектом Ливан- Испания Соглашение).

EurLex-2 и ¿Qué diablos?

ru — Проект соглашения о воздушном сообщении между правительством Королевства Дания и правительством Малайзии, подписанный в 1997 и 2002 годах, именуемый в дальнейшем «Проект соглашения Малайзия-Дания» в Приложении II;

EurLex-2 и Эта программа является идеальной идеей для бизнеса

ru Проект соглашения о воздушном сообщении между правительством Королевства Дания и правительством Малайзии, подписанный в 1997 и 2002 годах, в дальнейшем именуемый в качестве «Проекта соглашения Малайзия-Дания» в Приложении II;

EurLex-2 es Sí.Los preparamos así.

Отправить ответ

avatar
  Подписаться  
Уведомление о